Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Working on Roxygen documentation #10674

Merged
merged 6 commits into from
Aug 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
597 changes: 329 additions & 268 deletions R-package/R/callbacks.R

Large diffs are not rendered by default.

87 changes: 48 additions & 39 deletions R-package/R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -410,7 +410,7 @@ xgb.createFolds <- function(y, k) {
#' At this time, some of the parameter names were changed in order to make the code style more uniform.
#' The deprecated parameters would be removed in the next release.
#'
#' To see all the current deprecated and new parameters, check the \code{xgboost:::depr_par_lut} table.
#' To see all the current deprecated and new parameters, check the `xgboost:::depr_par_lut` table.
#'
#' A deprecation warning is shown when any of the deprecated parameters is used in a call.
#' An additional warning is shown when there was a partial match to a deprecated parameter
Expand All @@ -419,70 +419,79 @@ xgb.createFolds <- function(y, k) {
#' @name xgboost-deprecated
NULL

#' @title Model Serialization and Compatibility
#' @description
#' Model Serialization and Compatibility
#'
#' @description
#' When it comes to serializing XGBoost models, it's possible to use R serializers such as
#' \link{save} or \link{saveRDS} to serialize an XGBoost R model, but XGBoost also provides
#' [save()] or [saveRDS()] to serialize an XGBoost R model, but XGBoost also provides
#' its own serializers with better compatibility guarantees, which allow loading
#' said models in other language bindings of XGBoost.
#'
#' Note that an `xgb.Booster` object, outside of its core components, might also keep:\itemize{
#' \item Additional model configuration (accessible through \link{xgb.config}),
#' which includes model fitting parameters like `max_depth` and runtime parameters like `nthread`.
#' These are not necessarily useful for prediction/importance/plotting.
#' \item Additional R-specific attributes - e.g. results of callbacks, such as evaluation logs,
#' which are kept as a `data.table` object, accessible through `attributes(model)$evaluation_log`
#' if present.
#' }
#' Note that an `xgb.Booster` object, outside of its core components, might also keep:
#' - Additional model configuration (accessible through [xgb.config()]), which includes
#' model fitting parameters like `max_depth` and runtime parameters like `nthread`.
#' These are not necessarily useful for prediction/importance/plotting.
#' - Additional R specific attributes - e.g. results of callbacks, such as evaluation logs,
#' which are kept as a `data.table` object, accessible through
#' `attributes(model)$evaluation_log` if present.
#'
#' The first one (configurations) does not have the same compatibility guarantees as
#' the model itself, including attributes that are set and accessed through \link{xgb.attributes} - that is, such configuration
#' might be lost after loading the booster in a different XGBoost version, regardless of the
#' serializer that was used. These are saved when using \link{saveRDS}, but will be discarded
#' if loaded into an incompatible XGBoost version. They are not saved when using XGBoost's
#' serializers from its public interface including \link{xgb.save} and \link{xgb.save.raw}.
#' the model itself, including attributes that are set and accessed through
#' [xgb.attributes()] - that is, such configuration might be lost after loading the
#' booster in a different XGBoost version, regardless of the serializer that was used.
#' These are saved when using [saveRDS()], but will be discarded if loaded into an
#' incompatible XGBoost version. They are not saved when using XGBoost's
#' serializers from its public interface including [xgb.save()] and [xgb.save.raw()].
#'
#' The second ones (R attributes) are not part of the standard XGBoost model structure, and thus are
#' not saved when using XGBoost's own serializers. These attributes are only used for informational
#' purposes, such as keeping track of evaluation metrics as the model was fit, or saving the R
#' call that produced the model, but are otherwise not used for prediction / importance / plotting / etc.
#' The second ones (R attributes) are not part of the standard XGBoost model structure,
#' and thus are not saved when using XGBoost's own serializers. These attributes are
#' only used for informational purposes, such as keeping track of evaluation metrics as
#' the model was fit, or saving the R call that produced the model, but are otherwise
#' not used for prediction / importance / plotting / etc.
#' These R attributes are only preserved when using R's serializers.
#'
#' Note that XGBoost models in R starting from version `2.1.0` and onwards, and XGBoost models
#' before version `2.1.0`; have a very different R object structure and are incompatible with
#' each other. Hence, models that were saved with R serializers live `saveRDS` or `save` before
#' version `2.1.0` will not work with latter `xgboost` versions and vice versa. Be aware that
#' the structure of R model objects could in theory change again in the future, so XGBoost's serializers
#' Note that XGBoost models in R starting from version `2.1.0` and onwards, and
#' XGBoost models before version `2.1.0`; have a very different R object structure and
#' are incompatible with each other. Hence, models that were saved with R serializers
#' like [saveRDS()] or [save()] before version `2.1.0` will not work with latter
#' `xgboost` versions and vice versa. Be aware that the structure of R model objects
#' could in theory change again in the future, so XGBoost's serializers
#' should be preferred for long-term storage.
#'
#' Furthermore, note that using the package `qs` for serialization will require version 0.26 or
#' higher of said package, and will have the same compatibility restrictions as R serializers.
#' Furthermore, note that using the package `qs` for serialization will require
#' version 0.26 or higher of said package, and will have the same compatibility
#' restrictions as R serializers.
#'
#' @details
#' Use \code{\link{xgb.save}} to save the XGBoost model as a stand-alone file. You may opt into
#' Use [xgb.save()] to save the XGBoost model as a stand-alone file. You may opt into
#' the JSON format by specifying the JSON extension. To read the model back, use
#' \code{\link{xgb.load}}.
#' [xgb.load()].
#'
#' Use \code{\link{xgb.save.raw}} to save the XGBoost model as a sequence (vector) of raw bytes
#' Use [xgb.save.raw()] to save the XGBoost model as a sequence (vector) of raw bytes
#' in a future-proof manner. Future releases of XGBoost will be able to read the raw bytes and
#' re-construct the corresponding model. To read the model back, use \code{\link{xgb.load.raw}}.
#' The \code{\link{xgb.save.raw}} function is useful if you'd like to persist the XGBoost model
#' re-construct the corresponding model. To read the model back, use [xgb.load.raw()].
#' The [xgb.save.raw()] function is useful if you would like to persist the XGBoost model
#' as part of another R object.
#'
#' Use \link{saveRDS} if you require the R-specific attributes that a booster might have, such
#' Use [saveRDS()] if you require the R-specific attributes that a booster might have, such
#' as evaluation logs, but note that future compatibility of such objects is outside XGBoost's
#' control as it relies on R's serialization format (see e.g. the details section in
#' \link{serialize} and \link{save} from base R).
#' [serialize] and [save()] from base R).
#'
#' For more details and explanation about model persistence and archival, consult the page
#' \url{https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html}.
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' bst <- xgb.train(data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
#' objective = "binary:logistic")
#' data(agaricus.train, package = "xgboost")
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' nrounds = 2,
#' objective = "binary:logistic"
#' )
#'
#' # Save as a stand-alone file; load it with xgb.load()
#' fname <- file.path(tempdir(), "xgb_model.ubj")
Expand Down
Loading
Loading