-
Notifications
You must be signed in to change notification settings - Fork 16
/
pre.py
717 lines (619 loc) · 30.2 KB
/
pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import collections
import json
import logging
import h5py
import os
import pandas as pd
import six
import random
import torch
import pickle as pkl
import numpy as np
import copy
import unicodedata
from tqdm import tqdm
import tokenization
from post import get_final_text_
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
NO_ANS = -1
special_stat = {}
class SquadExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self,
qas_id=None,
question_text=None,
paragraph_text=None,
doc_words=None,
orig_answer_text=None,
start_position=None,
end_position=None,
title="",
doc_idx=0,
par_idx=0,
metadata=None):
self.qas_id = qas_id
self.question_text = question_text
self.paragraph_text = paragraph_text
self.doc_words = doc_words
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.title = title
self.doc_idx = doc_idx
self.par_idx = par_idx
self.metadata = metadata
def __str__(self):
return self.__repr__()
'''
def __repr__(self):
s = ""
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
s += ", question_text: %s" % (tokenization.printable_text(self.question_text))
s += ", paragraph_text: %s" % (tokenization.printable_text(self.paragraph_text))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
return s
'''
class ContextFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_word_map,
token_is_max_context,
input_ids,
input_mask,
paragraph_index=None,
segment_ids=None, # Deprecated due to context/question split
start_position=None,
end_position=None,
switch=None,
answer_mask=None,
doc_tokens=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_word_map = token_to_word_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.start_position = start_position
self.end_position = end_position
self.switch = switch
self.answer_mask = answer_mask
self.paragraph_index = paragraph_index
self.doc_tokens = doc_tokens
class QuestionFeatures(object):
def __init__(self,
unique_id,
example_index,
tokens_,
input_ids,
input_mask,
segment_ids=None): # Deprecated due to context/question split
self.unique_id = unique_id
self.example_index = example_index
self.tokens_ = tokens_
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
def read_squad_examples(input_file, return_answers, context_only=False, question_only=False,
draft=False, draft_num_examples=12, append_title=False):
"""Read a SQuAD json file into a list of SquadExample."""
with open(input_file, "r") as reader:
input_data = json.load(reader)["data"]
examples = []
ans_cnt = 0
no_ans_cnt = 0
# Only word-based tokenization is peformed (whitespace based)
for doc_idx, entry in enumerate(input_data):
title = entry['title'][0] if type(entry['title']) == list else entry['title']
assert type(title) == str
for par_idx, paragraph in enumerate(entry["paragraphs"]):
# Do not load context for question only
if not question_only:
paragraph_text = paragraph["context"]
title_offset = 0
if append_title:
title_str = '[ ' + ' '.join(title.split('_')) + ' ] '
title_offset += len(title_str)
paragraph_text = title_str + paragraph_text
# Note that we use the term 'word' for whitespace based words, and 'token' for subtokens (for BERT input)
doc_words, char_to_word_offset = context_to_words_and_offset(paragraph_text)
# 1) Context only ends here
if context_only:
metadata = {}
if "pubmed_id" in entry:
entry_keys = [
"pubmed_id", "sha", "title_original", "title_entities",
"journal", "authors", "article_idx"
]
para_keys = ["context_entities"]
for entry_key in entry_keys:
if entry_key in entry:
metadata[entry_key] = entry[entry_key]
for para_key in para_keys:
if para_key in paragraph:
metadata[para_key] = paragraph[para_key]
# metadata["pubmed_id"] = (metadata["pubmed_id"] if not pd.isnull(metadata["pubmed_id"])
# else 'NaN')
example = SquadExample(
doc_words=doc_words,
title=title,
doc_idx=doc_idx,
par_idx=par_idx,
metadata=metadata)
examples.append(example)
if draft and len(examples) == draft_num_examples:
return examples
continue
# 2) Question only or 3) context/question pair
else:
for qa in paragraph["qas"]:
qas_id = str(qa["id"])
question_text = qa["question"]
# Noisy question skipping
if len(question_text.split(' ')) == 1:
logger.info('Skipping a single word question: {}'.format(question_text))
continue
if "I couldn't could up with another question." in question_text:
logger.info('Skipping a strange question: {}'.format(question_text))
continue
start_position = None
end_position = None
orig_answer_text = None
# For pre-processing that should return answers together
if return_answers:
assert type(qa["answers"]) == dict or type(qa["answers"]) == list, type(qa["answers"])
if type(qa["answers"]) == dict:
qa["answers"] = [qa["answers"]]
# No answers
if len(qa["answers"]) == 0:
orig_answer_text = ""
start_position = -1 # Word-level no-answer => -1
end_position = -1
no_ans_cnt += 1
# Answer exists
else:
answer = qa["answers"][0]
ans_cnt += 1
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"] + title_offset
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the context
actual_text = " ".join(doc_words[start_position:(end_position + 1)])
cleaned_answer_text = " ".join(
tokenization.whitespace_tokenize(orig_answer_text)) # word based tokenization
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'",
actual_text, cleaned_answer_text)
continue
# Question only ends here
if question_only:
example = SquadExample(
qas_id=qas_id,
question_text=question_text)
# Context/question pair ends here
else:
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
paragraph_text=paragraph_text,
doc_words=doc_words,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
title=title,
doc_idx=doc_idx,
par_idx=par_idx)
examples.append(example)
if draft and len(examples) == draft_num_examples:
return examples
# Testing for shuffled draft (should comment out above 'draft' if-else statements)
if draft:
random.shuffle(examples)
logger.info(str(len(examples)) + ' were collected before draft for shuffling')
return examples[:draft_num_examples]
logger.info('Answer/no-answer stat: %d vs %d'%(ans_cnt, no_ans_cnt))
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, return_answers, skip_no_answer,
verbose=False, save_with_prob=False, msg="Converting examples"):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
features = []
question_features = []
for (example_index, example) in enumerate(tqdm(examples, desc=msg)):
# Tokenize query into (sub)tokens
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
# Creating a map between word <=> (sub)token
tok_to_word_index = []
word_to_tok_index = [] # word to (start of) subtokens
all_doc_tokens = []
for (i, word) in enumerate(example.doc_words):
word_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(word)
for sub_token in sub_tokens:
tok_to_word_index.append(i)
all_doc_tokens.append(sub_token)
# The -2 accounts for [CLS], [SEP]
max_tokens_for_doc = max_seq_length - 2
# Split sequence by max_seq_len with doc_stride, _DocSpan is based on tokens without [CLS], [SEP]
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_tok_offset = 0 # From all_doc_tokens
# Get doc_spans with stride and offset
while start_tok_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_tok_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_tok_offset, length=length))
if start_tok_offset + length == len(all_doc_tokens):
break
start_tok_offset += min(length, doc_stride) # seems to prefer doc_stride always
assert doc_stride < length, "length is no larger than doc_stride for {}".format(doc_spans)
# Iterate each doc_span and make out_tokens
for (doc_span_index, doc_span) in enumerate(doc_spans):
# Find answer position based on new out_tokens
start_position = None
end_position = None
# For no_answer, same (-1, -1) applies
if example.start_position is not None and example.start_position < 0:
assert example.start_position == -1 and example.end_position == -1
start_position, end_position = NO_ANS, NO_ANS
# For existing answers, find answers if exist
elif return_answers:
# Get token-level start/end position
tok_start_position = word_to_tok_index[example.start_position]
if example.end_position < len(example.doc_words) - 1:
tok_end_position = word_to_tok_index[example.end_position + 1] - 1 # By backwarding from next word
else:
assert example.end_position == len(example.doc_words) - 1
tok_end_position = len(all_doc_tokens) - 1
# Improve answer span by subword-level
(tok_start_position, tok_end_position) = _improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
example.orig_answer_text)
# Throw away training samples without answers (due to doc_span split)
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
if (tok_start_position < doc_start or tok_end_position < doc_start or
tok_start_position > doc_end or tok_end_position > doc_end):
if skip_no_answer:
continue
else:
# For NQ, only add this in 2% (50 times downsample)
if save_with_prob:
if np.random.randint(100) < 2:
start_position, end_position = NO_ANS, NO_ANS
else:
continue
else:
start_position, end_position = NO_ANS, NO_ANS
# Training samples with answers
else:
doc_offset = 1 # For [CLS]
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
assert start_position >= 0 and end_position >= 0, (start_position, end_position)
out_tokens = [] # doc
out_tokens_ = [] # quesry
out_tokens.append("[CLS]")
out_tokens_.append("[CLS]")
token_to_word_map = {} # The difference with tok_to_word_index is it includes special tokens
token_is_max_context = {}
# For query tokens, just copy and add [SEP]
for token in query_tokens:
out_tokens_.append(token)
out_tokens_.append("[SEP]")
# For each doc token, create token_to_word_map and is_max_context, and add to out_tokens
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_word_map[len(out_tokens)] = tok_to_word_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index)
token_is_max_context[len(out_tokens)] = is_max_context
out_tokens.append(all_doc_tokens[split_token_index])
out_tokens.append("[SEP]")
# Convert to ids and masks
input_ids = tokenizer.convert_tokens_to_ids(out_tokens)
input_ids_ = tokenizer.convert_tokens_to_ids(out_tokens_)
input_mask = [1] * len(input_ids)
input_mask_ = [1] * len(input_ids_)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
while len(input_ids_) < max_query_length + 2: # +2 for [CLS], [SEP]
input_ids_.append(0)
input_mask_.append(0)
assert len(input_ids_) == max_query_length + 2
assert len(input_mask_) == max_query_length + 2
# Printing for debug
if example_index < 1 and verbose:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in out_tokens]))
logger.info("q tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in out_tokens_]))
logger.info("token_to_word_map: %s" % " ".join(
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_word_map)]))
logger.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
if return_answers:
answer_text = " ".join(out_tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info(
"answer: %s" % (tokenization.printable_text(answer_text)))
# Append feature
features.append(
ContextFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=out_tokens,
token_to_word_map=token_to_word_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
start_position=start_position,
end_position=end_position))
question_features.append(
QuestionFeatures(
unique_id=unique_id,
example_index=example_index,
tokens_=out_tokens_,
input_ids=input_ids_,
input_mask=input_mask_))
# Check validity of answer
if return_answers:
if start_position <= NO_ANS:
assert start_position == NO_ANS and end_position == NO_ANS, (start_position, end_position)
else:
assert out_tokens[start_position:end_position+1] == \
all_doc_tokens[tok_start_position:tok_end_position+1]
orig_text, start_pos, end_pos = get_final_text_(
example, features[-1], start_position, end_position, True, False)
phrase = orig_text[start_pos:end_pos]
try:
assert phrase == example.orig_answer_text
except Exception as e:
# print('diff ans [%s]/[%s]'%(phrase, example.orig_answer_text))
pass
unique_id += 1
return features, question_features
def convert_questions_to_features(examples, tokenizer, max_query_length=None):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
question_features = []
for (example_index, example) in enumerate(tqdm(examples, desc='Converting questions')):
query_tokens = tokenizer.tokenize(example.question_text)
if max_query_length is None:
max_query_length = len(query_tokens)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
for _ in enumerate(range(1)):
tokens_ = []
tokens_.append("[CLS]")
for token in query_tokens:
tokens_.append(token)
tokens_.append("[SEP]")
input_ids_ = tokenizer.convert_tokens_to_ids(tokens_)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask_ = [1] * len(input_ids_)
# Zero-pad up to the sequence length.
while len(input_ids_) < max_query_length + 2:
input_ids_.append(0)
input_mask_.append(0)
assert len(input_ids_) == max_query_length + 2
assert len(input_mask_) == max_query_length + 2
if example_index < 1:
# logger.info("*** Example ***")
# logger.info("unique_id: %s" % (unique_id))
# logger.info("example_index: %s" % (example_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in query_tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids_]))
# logger.info(
# "input_mask: %s" % " ".join([str(x) for x in input_mask_]))
question_features.append(
QuestionFeatures(
unique_id=unique_id,
example_index=example_index,
tokens_=tokens_,
input_ids=input_ids_,
input_mask=input_mask_))
unique_id += 1
return question_features
def convert_documents_to_features(examples, tokenizer, max_seq_length, doc_stride):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
features = []
for (example_index, example) in enumerate(tqdm(examples, desc='Converting documents')):
# Creating a map between word <=> (sub)token
tok_to_word_index = []
word_to_tok_index = [] # word to (start of) subtokens
all_doc_tokens = []
for (i, word) in enumerate(example.doc_words):
word_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(word)
for sub_token in sub_tokens:
tok_to_word_index.append(i)
all_doc_tokens.append(sub_token)
# The -2 accounts for [CLS], [SEP]
max_tokens_for_doc = max_seq_length - 2
# Split sequence by max_seq_len with doc_stride, _DocSpan is based on tokens without [CLS], [SEP]
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_tok_offset = 0 # From all_doc_tokens
# Get doc_spans with stride and offset
while start_tok_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_tok_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_tok_offset, length=length))
if start_tok_offset + length == len(all_doc_tokens):
break
start_tok_offset += min(length, doc_stride) # seems to prefer doc_stride always
assert doc_stride < length, "length is no larger than doc_stride for {}".format(doc_spans)
# Iterate each doc_span and make out_tokens
for (doc_span_index, doc_span) in enumerate(doc_spans):
out_tokens = [] # doc
out_tokens.append("[CLS]")
token_to_word_map = {} # The difference with tok_to_word_index is it includes special tokens
token_is_max_context = {}
# For each doc token, create token_to_word_map and is_max_context, and add to out_tokens
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_word_map[len(out_tokens)] = tok_to_word_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index)
token_is_max_context[len(out_tokens)] = is_max_context
out_tokens.append(all_doc_tokens[split_token_index])
out_tokens.append("[SEP]")
# Convert to ids and masks
input_ids = tokenizer.convert_tokens_to_ids(out_tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
# Printing for debug
if example_index < 1 and doc_span_index < 1:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in out_tokens]))
logger.info("token_to_word_map: %s" % " ".join(
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_word_map)]))
logger.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
# Append feature
features.append(
ContextFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=out_tokens,
token_to_word_map=token_to_word_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask))
unique_id += 1
return features
def context_to_words_and_offset(context):
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
doc_words = []
char_to_word_offset = []
prev_is_whitespace = True
for c in context:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_words.append(c)
else:
doc_words[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_words) - 1)
return doc_words, char_to_word_offset
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
# The SQuAD annotations are character based. We first project them to
# whitespace-tokenized words. But then after WordPiece tokenization, we can
# often find a "better match". For example:
#
# Question: What year was John Smith born?
# Context: The leader was John Smith (1895-1943).
# Answer: 1895
#
# The original whitespace-tokenized answer will be "(1895-1943).". However
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
# the exact answer, 1895.
#
# However, this is not always possible. Consider the following:
#
# Question: What country is the top exporter of electornics?
# Context: The Japanese electronics industry is the lagest in the world.
# Answer: Japan
#
# In this case, the annotator chose "Japan" as a character sub-span of
# the word "Japanese". Since our WordPiece tokenizer does not split
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare
# in SQuAD, but does happen.
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index