-
Notifications
You must be signed in to change notification settings - Fork 44
/
basemodel.py
273 lines (237 loc) · 10.5 KB
/
basemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from utils.general import CUDA, DEVICE
from models.yolov5.yolo import Model
import torch
import cv2
import numpy as np
from models.yolov5.yolo import load_yolov5_ckpt
from utils.yolov5_utils import fuse_conv_and_bn
import glob
import torch.nn as nn
from utils.weight_init import init_weights
from models.yolov5.common import C3, Conv
from torchsummary import summary
import torch.nn.functional as F
import copy
TEXTDET_MASK = 0
TEXTDET_DET = 1
TEXTDET_INFERENCE = 2
class double_conv_up_c3(nn.Module):
def __init__(self, in_ch, mid_ch, out_ch, act=True):
super(double_conv_up_c3, self).__init__()
self.conv = nn.Sequential(
C3(in_ch+mid_ch, mid_ch, act=act),
nn.ConvTranspose2d(mid_ch, out_ch, kernel_size=4, stride = 2, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.conv(x)
class double_conv_c3(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, act=True):
super(double_conv_c3, self).__init__()
if stride > 1 :
self.down = nn.AvgPool2d(2,stride=2) if stride > 1 else None
self.conv = C3(in_ch, out_ch, act=act)
def forward(self, x):
if self.down is not None :
x = self.down(x)
x = self.conv(x)
return x
class UnetHead(nn.Module):
def __init__(self, act=True) -> None:
super(UnetHead, self).__init__()
self.down_conv1 = double_conv_c3(512, 512, 2, act=act)
self.upconv0 = double_conv_up_c3(0, 512, 256, act=act)
self.upconv2 = double_conv_up_c3(256, 512, 256, act=act)
self.upconv3 = double_conv_up_c3(0, 512, 256, act=act)
self.upconv4 = double_conv_up_c3(128, 256, 128, act=act)
self.upconv5 = double_conv_up_c3(64, 128, 64, act=act)
self.upconv6 = nn.Sequential(
nn.ConvTranspose2d(64, 1, kernel_size=4, stride = 2, padding=1, bias=False),
nn.Sigmoid()
)
def forward(self, f160, f80, f40, f20, f3, forward_mode=TEXTDET_MASK):
# input: 640@3
d10 = self.down_conv1(f3) # 512@10
u20 = self.upconv0(d10) # 256@10
u40 = self.upconv2(torch.cat([f20, u20], dim = 1)) # 256@40
if forward_mode == TEXTDET_DET:
return f80, f40, u40
else:
u80 = self.upconv3(torch.cat([f40, u40], dim = 1)) # 256@80
u160 = self.upconv4(torch.cat([f80, u80], dim = 1)) # 128@160
u320 = self.upconv5(torch.cat([f160, u160], dim = 1)) # 64@320
mask = self.upconv6(u320)
if forward_mode == TEXTDET_MASK:
return mask
else:
return mask, [f80, f40, u40]
def init_weight(self, init_func):
self.apply(init_func)
class DBHead(nn.Module):
def __init__(self, in_channels, k = 50, shrink_with_sigmoid=True, act=True):
super().__init__()
self.k = k
self.shrink_with_sigmoid = shrink_with_sigmoid
self.upconv3 = double_conv_up_c3(0, 512, 256, act=act)
self.upconv4 = double_conv_up_c3(128, 256, 128, act=act)
self.conv = nn.Sequential(
nn.Conv2d(128, in_channels, 1),
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True)
)
self.binarize = nn.Sequential(
nn.Conv2d(in_channels, in_channels // 4, 3, padding=1),
nn.BatchNorm2d(in_channels // 4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 2, 2),
nn.BatchNorm2d(in_channels // 4),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels // 4, 1, 2, 2)
)
self.thresh = self._init_thresh(in_channels)
def forward(self, f80, f40, u40, shrink_with_sigmoid=True, step_eval=False):
shrink_with_sigmoid = self.shrink_with_sigmoid
u80 = self.upconv3(torch.cat([f40, u40], dim = 1)) # 256@80
x = self.upconv4(torch.cat([f80, u80], dim = 1)) # 128@160
x = self.conv(x)
threshold_maps = self.thresh(x)
x = self.binarize(x)
shrink_maps = torch.sigmoid(x)
if self.training:
binary_maps = self.step_function(shrink_maps, threshold_maps)
if shrink_with_sigmoid:
return torch.cat((shrink_maps, threshold_maps, binary_maps), dim=1)
else:
return torch.cat((shrink_maps, threshold_maps, binary_maps, x), dim=1)
else:
if step_eval:
return self.step_function(shrink_maps, threshold_maps)
else:
return torch.cat((shrink_maps, threshold_maps), dim=1)
def init_weight(self, init_func):
self.apply(init_func)
def _init_thresh(self, inner_channels, serial=False, smooth=False, bias=False):
in_channels = inner_channels
if serial:
in_channels += 1
self.thresh = nn.Sequential(
nn.Conv2d(in_channels, inner_channels // 4, 3, padding=1, bias=bias),
nn.BatchNorm2d(inner_channels // 4),
nn.ReLU(inplace=True),
self._init_upsample(inner_channels // 4, inner_channels // 4, smooth=smooth, bias=bias),
nn.BatchNorm2d(inner_channels // 4),
nn.ReLU(inplace=True),
self._init_upsample(inner_channels // 4, 1, smooth=smooth, bias=bias),
nn.Sigmoid())
return self.thresh
def _init_upsample(self, in_channels, out_channels, smooth=False, bias=False):
if smooth:
inter_out_channels = out_channels
if out_channels == 1:
inter_out_channels = in_channels
module_list = [
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv2d(in_channels, inter_out_channels, 3, 1, 1, bias=bias)]
if out_channels == 1:
module_list.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1, bias=True))
return nn.Sequential(module_list)
else:
return nn.ConvTranspose2d(in_channels, out_channels, 2, 2)
def step_function(self, x, y):
return torch.reciprocal(1 + torch.exp(-self.k * (x - y)))
class TextDetector(nn.Module):
def __init__(self, weights, map_location='cpu', forward_mode=TEXTDET_MASK, act=True):
super(TextDetector, self).__init__()
yolov5s_backbone = load_yolov5_ckpt(weights=weights, map_location=map_location)
yolov5s_backbone.eval()
out_indices = [1, 3, 5, 7, 9]
yolov5s_backbone.out_indices = out_indices
yolov5s_backbone.model = yolov5s_backbone.model[:max(out_indices)+1]
self.act = act
self.seg_net = UnetHead(act=act)
self.backbone = yolov5s_backbone
self.dbnet = None
self.forward_mode = forward_mode
def train_mask(self):
self.forward_mode = TEXTDET_MASK
self.backbone.eval()
self.seg_net.train()
def initialize_db(self, unet_weights):
self.dbnet = DBHead(64, act=self.act)
self.seg_net.load_state_dict(torch.load(unet_weights, map_location='cpu')['weights'])
self.dbnet.init_weight(init_weights)
self.dbnet.upconv3 = copy.deepcopy(self.seg_net.upconv3)
self.dbnet.upconv4 = copy.deepcopy(self.seg_net.upconv4)
del self.seg_net.upconv3
del self.seg_net.upconv4
del self.seg_net.upconv5
del self.seg_net.upconv6
# del self.seg_net.conv_mask
def train_db(self):
self.forward_mode = TEXTDET_DET
self.backbone.eval()
self.seg_net.eval()
self.dbnet.train()
def forward(self, x):
forward_mode = self.forward_mode
with torch.no_grad():
outs = self.backbone(x)
if forward_mode == TEXTDET_MASK:
return self.seg_net(*outs, forward_mode=forward_mode)
elif forward_mode == TEXTDET_DET:
with torch.no_grad():
outs = self.seg_net(*outs, forward_mode=forward_mode)
return self.dbnet(*outs)
def get_base_det_models(model_path, device='cpu', half=False, act='leaky'):
textdetector_dict = torch.load(model_path, map_location=device)
blk_det = load_yolov5_ckpt(textdetector_dict['blk_det'], map_location=device)
text_seg = UnetHead(act=act)
text_seg.load_state_dict(textdetector_dict['text_seg'])
text_det = DBHead(64, act=act)
text_det.load_state_dict(textdetector_dict['text_det'])
if half:
return blk_det.eval().half(), text_seg.eval().half(), text_det.eval().half()
return blk_det.eval().to(device), text_seg.eval().to(device), text_det.eval().to(device)
class TextDetBase(nn.Module):
def __init__(self, model_path, device='cpu', half=False, fuse=False, act='leaky'):
super(TextDetBase, self).__init__()
self.blk_det, self.text_seg, self.text_det = get_base_det_models(model_path, device, half, act=act)
if fuse:
self.fuse()
def fuse(self):
def _fuse(model):
for m in model.modules():
if isinstance(m, (Conv)) and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward
return model
self.text_seg = _fuse(self.text_seg)
self.text_det = _fuse(self.text_det)
def forward(self, features):
blks, features = self.blk_det(features, detect=True)
mask, features = self.text_seg(*features, forward_mode=TEXTDET_INFERENCE)
lines = self.text_det(*features, step_eval=False)
return blks[0], mask, lines
class TextDetBaseDNN:
def __init__(self, input_size, model_path):
self.input_size = input_size
self.model = cv2.dnn.readNetFromONNX(model_path)
self.uoln = self.model.getUnconnectedOutLayersNames()
def __call__(self, im_in):
blob = cv2.dnn.blobFromImage(im_in, scalefactor=1 / 255.0, size=(self.input_size, self.input_size))
self.model.setInput(blob)
blks, mask, lines_map = self.model.forward(self.uoln)
return blks, mask, lines_map
if __name__ == '__main__':
device = 'cuda'
weights = r'data/yolov5sblk.ckpt'
# yolov5s_backbone = load_yolov5_ckpt(weights=weights, map_location='cpu')
model = TextDetector(weights, map_location=DEVICE)
model.to(DEVICE)
model.train_mask()
summary(model, (3, 640, 640), device=DEVICE)
# model.initialize_db(unet_weights='data/unet_head.pt')
# model.train_db()
# summary(model, (3, 640, 640), device=DEVICE)