diff --git a/.Rbuildignore b/.Rbuildignore index c0fcf59..265b992 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -12,3 +12,4 @@ ^docs$ ^pkgdown$ ^\.github$ +^CRAN-SUBMISSION$ diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION new file mode 100644 index 0000000..fff6226 --- /dev/null +++ b/CRAN-SUBMISSION @@ -0,0 +1,3 @@ +Version: 0.4.1 +Date: 2023-03-10 11:19:55 UTC +SHA: 2475911ff75ad7f043eae9834d3ad7073925b3d2 diff --git a/DESCRIPTION b/DESCRIPTION index c1572bc..6b0a9d6 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: dirichletprocess Type: Package Title: Build Dirichlet Process Objects for Bayesian Modelling -Version: 0.4.0.9000 +Version: 0.4.1 Authors@R: c( person("Gordon", "J. Ross", email="gordon@gordonjross.co.uk", role=c("aut")), person("Dean", "Markwick", email="dean.markwick@talk21.com", role=c("aut", "cre")), diff --git a/README.Rmd b/README.Rmd index db0aa90..bd14981 100644 --- a/README.Rmd +++ b/README.Rmd @@ -19,7 +19,7 @@ knitr::opts_chunk$set( [![R build status](https://github.com/dm13450/dirichletprocess/workflows/R-CMD-check/badge.svg)](https://github.com/dm13450/dirichletprocess/actions) [![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/dm13450/dirichletprocess?branch=master&svg=true)](https://ci.appveyor.com/project/dm13450/dirichletprocess) -[![Coverage Status](https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg)](https://codecov.io/gh/dm13450/dirichletprocess) +[![Coverage Status](https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg)](https://app.codecov.io/gh/dm13450/dirichletprocess) The dirichletprocess package provides tools for you to build custom Dirichlet process mixture models. You can use the pre-built Normal/Weibull/Beta distributions or create your own following the instructions in the vignette. In as little as four lines of code you can be modelling your data nonparametrically. @@ -81,16 +81,16 @@ For more detailed explanations and examples see the vignette. I've written a number of tutorials: -* [Non parametric priors](http://dm13450.github.io/2019/02/22/Nonparametric-Prior.html) -* [Calculating cluster probabilities](http://dm13450.github.io/2018/11/21/Cluster-Probabilities.html) -* [Clustering](http://dm13450.github.io/2018/05/30/Clustering.html) -* [Point processes](http://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html) -* [Custom mixtures](http://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html) -* [Density estimation](http://dm13450.github.io/2018/02/01/Dirichlet-Density.html) -* [Checking convergence](http://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html) +* [Non parametric priors](https://dm13450.github.io/2019/02/22/Nonparametric-Prior.html) +* [Calculating cluster probabilities](https://dm13450.github.io/2018/11/21/Cluster-Probabilities.html) +* [Clustering](https://dm13450.github.io/2018/05/30/Clustering.html) +* [Point processes](https://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html) +* [Custom mixtures](https://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html) +* [Density estimation](https://dm13450.github.io/2018/02/01/Dirichlet-Density.html) +* [Checking convergence](https://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html) and some case studies: -* [State of the Market - Infinite State Hidden Markov Models](http://dm13450.github.io/2020/06/03/State-of-the-Market.html) -* [Palmer Penguins and an Introduction to Dirichlet Processes](http://dm13450.github.io/2020/09/28/PriorToPosterior.html) +* [State of the Market - Infinite State Hidden Markov Models](https://dm13450.github.io/2020/06/03/State-of-the-Market.html) +* [Palmer Penguins and an Introduction to Dirichlet Processes](https://dm13450.github.io/2020/09/28/PriorToPosterior.html) diff --git a/README.md b/README.md index 5f1c867..9b97c02 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ status](https://github.com/dm13450/dirichletprocess/workflows/R-CMD-check/badge. [![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/dm13450/dirichletprocess?branch=master&svg=true)](https://ci.appveyor.com/project/dm13450/dirichletprocess) [![Coverage -Status](https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg)](https://codecov.io/gh/dm13450/dirichletprocess) +Status](https://codecov.io/gh/dm13450/dirichletprocess/branch/master/graph/badge.svg)](https://app.codecov.io/gh/dm13450/dirichletprocess) The dirichletprocess package provides tools for you to build custom Dirichlet process mixture models. You can use the pre-built @@ -76,22 +76,22 @@ For more detailed explanations and examples see the vignette. I’ve written a number of tutorials: - [Non parametric - priors](http://dm13450.github.io/2019/02/22/Nonparametric-Prior.html) + priors](https://dm13450.github.io/2019/02/22/Nonparametric-Prior.html) - [Calculating cluster - probabilities](http://dm13450.github.io/2018/11/21/Cluster-Probabilities.html) -- [Clustering](http://dm13450.github.io/2018/05/30/Clustering.html) + probabilities](https://dm13450.github.io/2018/11/21/Cluster-Probabilities.html) +- [Clustering](https://dm13450.github.io/2018/05/30/Clustering.html) - [Point - processes](http://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html) + processes](https://dm13450.github.io/2018/03/08/dirichletprocess-pointprocess.html) - [Custom - mixtures](http://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html) + mixtures](https://dm13450.github.io/2018/02/21/Custom-Distributions-Conjugate.html) - [Density - estimation](http://dm13450.github.io/2018/02/01/Dirichlet-Density.html) + estimation](https://dm13450.github.io/2018/02/01/Dirichlet-Density.html) - [Checking - convergence](http://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html) + convergence](https://dm13450.github.io/2020/01/11/Dirichlet-Convergence.html) and some case studies: - [State of the Market - Infinite State Hidden Markov - Models](http://dm13450.github.io/2020/06/03/State-of-the-Market.html) + Models](https://dm13450.github.io/2020/06/03/State-of-the-Market.html) - [Palmer Penguins and an Introduction to Dirichlet - Processes](http://dm13450.github.io/2020/09/28/PriorToPosterior.html) + Processes](https://dm13450.github.io/2020/09/28/PriorToPosterior.html) diff --git a/cran-comments.md b/cran-comments.md index acc6485..cd9ca34 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,4 +1,4 @@ --dirichletprocess 0.4.0 +-dirichletprocess 0.4.1 ----------------------- @@ -6,10 +6,7 @@ ## Changes In this version I have: -* Hierarchical Normal Models added by Giovanni Sighinolfi -* Added Giovanni Sighinolfi as a contributor. -* Added params chain to Hidden Markov Models -* Updated the vignette for hierarchical normal models. +* Changed the MhParameterProposal function signature to be consistent. ## Test environments @@ -19,7 +16,7 @@ In this version I have: ## R CMD check results -0 errors | 0 warnings | 1 note +0 errors | 0 warnings | 0 note * This is a new release.