forked from ghcollin/tftables
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tftables_test.py
495 lines (373 loc) · 17.8 KB
/
tftables_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# Copyright (C) 2016 G. H. Collin (ghcollin)
#
# This software may be modified and distributed under the terms
# of the MIT license. See the LICENSE.txt file for details.
import tensorflow as tf
import numpy as np
import tables
import tempfile
import os
import shutil
import tqdm
import tftables
test_table_col_A_shape = (100,200)
test_table_col_B_shape = (7,49)
class TestTableRow(tables.IsDescription):
col_A = tables.UInt32Col(shape=test_table_col_A_shape)
col_B = tables.Float64Col(shape=test_table_col_B_shape)
test_mock_data_shape = (100, 100)
class TestMockDataRow(tables.IsDescription):
label = tables.UInt32Col()
data = tables.Float64Col(shape=test_mock_data_shape)
def lcm(a,b):
import fractions
return abs(a * b) // fractions.gcd(a, b) if a and b else 0
def get_batches(array, size, trim_remainder=False):
result = [ array[i:i+size] for i in range(0, len(array), size)]
if trim_remainder and len(result[-1]) != len(result[0]):
result = result[:-1]
return result
def assert_array_equal(self, a, b):
self.assertTrue(np.all(a == b),
msg="LHS: \n" + str(a) + "\n RHS: \n" + str(b))
def assert_items_equal(self, a, b, key, epsilon=0):
a = [item for sublist in a for item in sublist]
b = [item for sublist in b for item in sublist]
self.assertEqual(len(a), len(b))
a_sorted, b_sorted = (a, b) if key is None else (sorted(a, key=key), sorted(b, key=key))
unique_a, counts_a = np.unique(a, return_counts=True)
unique_b, counts_b = np.unique(b, return_counts=True)
assert_array_equal(self, unique_a, unique_b)
epsilon *= np.prod(a[0].shape)
delta = counts_a - counts_b
non_zero = np.abs(delta) > 0
n_non_zero = np.sum(non_zero)
self.assertLessEqual(n_non_zero, epsilon, msg="Num. zero deltas=" + str(n_non_zero) + " epsilon=" + str(epsilon)
+ "\n" + str(np.unique(delta, return_counts=True))
+ "\n" + str(delta))
class TFTablesTest(tf.test.TestCase):
def setUp(self):
self.test_dir = tempfile.mkdtemp()
self.test_filename = os.path.join(self.test_dir, 'test.h5')
test_file = tables.open_file(self.test_filename, 'w')
self.test_array = np.arange(100*1000).reshape((1000, 10, 10))
self.test_array_path = '/test_array'
array = test_file.create_array(test_file.root, self.test_array_path[1:], self.test_array)
self.test_table_ary = np.array([ (
np.random.randint(256, size=np.prod(test_table_col_A_shape)).reshape(test_table_col_A_shape),
np.random.rand(*test_table_col_B_shape)) for _ in range(100) ],
dtype=tables.dtype_from_descr(TestTableRow))
self.test_table_path = '/test_table'
table = test_file.create_table(test_file.root, self.test_table_path[1:], TestTableRow)
table.append(self.test_table_ary)
self.test_uint64_array = np.arange(10).astype(np.uint64)
self.test_uint64_array_path = '/test_uint64'
uint64_array = test_file.create_array(test_file.root, self.test_uint64_array_path[1:], self.test_uint64_array)
self.test_mock_data_ary = np.array([ (
np.random.rand(*test_mock_data_shape),
np.random.randint(10, size=1)[0] ) for _ in range(1000) ],
dtype=tables.dtype_from_descr(TestMockDataRow))
self.test_mock_data_path = '/mock_data'
mock = test_file.create_table(test_file.root, self.test_mock_data_path[1:], TestMockDataRow)
mock.append(self.test_mock_data_ary)
test_file.close()
def tearDown(self):
import time
time.sleep(5)
shutil.rmtree(self.test_dir)
def test_cyclic_unordered(self):
N = 4
N_threads = 4
def set_up(path, array, batchsize, get_tensors):
blocksize = batchsize*2 + 1
reader = tftables.open_file(self.test_filename, batchsize)
cycles = lcm(len(array), blocksize)//len(array)
batch = reader.get_batch(path, block_size=blocksize, ordered=False)
batches = get_batches(array, batchsize)*cycles*N_threads
loader = reader.get_fifoloader(N, get_tensors(batch), threads=N_threads)
return reader, loader, batches
array_batchsize = 10
array_reader, array_loader, array_batches = set_up(self.test_array_path, self.test_array,
array_batchsize, lambda x: [x])
array_data = array_loader.dequeue()
array_result = []
table_batchsize = 5
table_reader, table_loader, table_batches = set_up(self.test_table_path, self.test_table_ary,
table_batchsize, lambda x: [x['col_A'], x['col_B']])
table_A_data, table_B_data = table_loader.dequeue()
table_result = []
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
array_loader.start(sess)
table_loader.start(sess)
for i in tqdm.tqdm(range(len(array_batches))):
array_result.append(sess.run(array_data))
self.assertEqual(len(array_result[-1]), array_batchsize)
assert_items_equal(self, array_batches, array_result,
key=lambda x: x[0, 0], epsilon=2*N_threads*array_batchsize)
for i in tqdm.tqdm(range(len(table_batches))):
result = np.zeros_like(table_batches[0])
result['col_A'], result['col_B'] = sess.run([table_A_data, table_B_data])
table_result.append(result)
self.assertEqual(len(table_result[-1]), table_batchsize)
assert_items_equal(self, table_batches, table_result,
key=lambda x: x[1][0, 0], epsilon=2*N_threads*table_batchsize)
try:
array_loader.stop(sess)
table_loader.stop(sess)
except tf.errors.CancelledError:
pass
array_reader.close()
table_reader.close()
def test_shared_reader(self):
batch_size = 8
reader = tftables.open_file(self.test_filename, batch_size)
array_batch = reader.get_batch(self.test_array_path, cyclic=False)
table_batch = reader.get_batch(self.test_table_path, cyclic=False)
array_batches = get_batches(self.test_array, batch_size, trim_remainder=True)
table_batches = get_batches(self.test_table_ary, batch_size, trim_remainder=True)
total_batches = min(len(array_batches), len(table_batches))
loader = reader.get_fifoloader(10, [array_batch, table_batch['col_A'], table_batch['col_B']], threads=4)
deq = loader.dequeue()
array_result = []
table_result = []
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
loader.start(sess)
with loader.catch_termination():
while True:
tbl = np.zeros_like(self.test_table_ary[:batch_size])
ary, tbl['col_A'], tbl['col_B'] = sess.run(deq)
array_result.append(ary)
table_result.append(tbl)
assert_items_equal(self, array_result, array_batches[:total_batches],
key=None, epsilon=0)
assert_items_equal(self, table_result, table_batches[:total_batches],
key=None, epsilon=0)
loader.stop(sess)
reader.close()
def test_uint64(self):
reader = tftables.open_file(self.test_filename, 10)
with self.assertRaises(ValueError):
batch = reader.get_batch("/test_uint64")
reader.close()
def test_quick_start_A(self):
my_network = lambda x, y: x
num_iterations = 100
num_labels = 10
with tf.device('/cpu:0'):
# This function preprocesses the batches before they
# are loaded into the internal queue.
# You can cast data, or do one-hot transforms.
# If the dataset is a table, this function is required.
def input_transform(tbl_batch):
labels = tbl_batch['label']
data = tbl_batch['data']
truth = tf.to_float(tf.one_hot(labels, num_labels, 1, 0))
data_float = tf.to_float(data)
return truth, data_float
# Open the HDF5 file and create a loader for a dataset.
# The batch_size defines the length (in the outer dimension)
# of the elements (batches) returned by the reader.
# Takes a function as input that pre-processes the data.
loader = tftables.load_dataset(filename=self.test_filename,
dataset_path=self.test_mock_data_path,
input_transform=input_transform,
batch_size=20)
# To get the data, we dequeue it from the loader.
# Tensorflow tensors are returned in the same order as input_transformation
truth_batch, data_batch = loader.dequeue()
# The placeholder can then be used in your network
result = my_network(truth_batch, data_batch)
with tf.Session() as sess:
# This context manager starts and stops the internal threads and
# processes used to read the data from disk and store it in the queue.
with loader.begin(sess):
for _ in range(num_iterations):
sess.run(result)
def test_howto(self):
def my_network(*args):
return args[0]
N = 100
reader = tftables.open_file(filename=self.test_filename, batch_size=10)
# Accessing a single array
# ========================
array_batch_placeholder = reader.get_batch(
path=self.test_array_path, # This is the path to your array inside the HDF5 file.
cyclic=True, # In cyclic access, when the reader gets to the end of the
# array, it will wrap back to the beginning and continue.
ordered=False # The reader will not require the rows of the array to be
# returned in the same order as on disk.
)
# You can transform the batch however you like now.
# For example, casting it to floats.
array_batch_float = tf.to_float(array_batch_placeholder)
# The data can now be fed into your network
result = my_network(array_batch_float)
with tf.Session() as sess:
# The feed method provides a generator that returns
# feed_dict's containing batches from your HDF5 file.
for i, feed_dict in enumerate(reader.feed()):
sess.run(result, feed_dict=feed_dict)
if i >= N:
break
# Finally, the reader should be closed.
#reader.close()
# Accessing a single table
# ========================
table_batch = reader.get_batch(
path=self.test_mock_data_path,
cyclic=True,
ordered=False
)
label_batch = table_batch['label']
data_batch = table_batch['data']
# Using a FIFO queue
# ==================
# As before
array_batch_placeholder = reader.get_batch(
path=self.test_array_path,
cyclic=True,
ordered=False)
array_batch_float = tf.to_float(array_batch_placeholder)
# Now we create a FIFO Loader
loader = reader.get_fifoloader(
queue_size=10, # The maximum number of elements that the
# internal Tensorflow queue should hold.
inputs=[array_batch_float], # A list of tensors that will be stored
# in the queue.
threads=1 # The number of threads used to stuff the
# queue. If ordered access to a dataset
# was requested, then only 1 thread
# should be used.
)
# Batches can now be dequeued from the loader for use in your network.
array_batch_cpu = loader.dequeue()
result = my_network(array_batch_cpu)
with tf.Session() as sess:
# The loader needs to be started with your Tensorflow session.
loader.start(sess)
for i in range(N):
# You can now cleanly evaluate your network without a feed_dict.
sess.run(result)
# It also needs to be stopped for clean shutdown.
loader.stop(sess)
# Finally, the reader should be closed.
#reader.close()
# Accessing multiple datasets
# ===========================
# Use get_batch to access the table.
# Both datasets must be accessed in ordered mode.
table_batch_dict = reader.get_batch(
path=self.test_table_path,
ordered=True)
col_A_pl, col_B_pl = table_batch_dict['col_A'], table_batch_dict['col_B']
# Now use get_batch again to access an array.
# Both datasets must be accessed in ordered mode.
labels_batch = reader.get_batch(self.test_array_path, ordered=True)
truth_batch = tf.one_hot(labels_batch, 2, 1, 0)
# The loader takes a list of tensors to be stored in the queue.
# When accessing in ordered mode, threads should be set to 1.
loader = reader.get_fifoloader(
queue_size=10,
inputs=[truth_batch, col_A_pl, col_B_pl],
threads=1)
# Batches are taken out of the queue using a dequeue operation.
# Tensors are returned in the order they were given when creating the loader.
truth_cpu, col_A_cpu, col_B_cpu = loader.dequeue()
# The dequeued data can then be used in your network.
result = my_network(truth_cpu, col_A_cpu, col_B_cpu)
with tf.Session() as sess:
with loader.begin(sess):
for _ in range(N):
sess.run(result)
reader.close()
def test_howto_quick(self):
my_network = lambda x, y: x
num_iterations = 100
num_labels = 256
# This function preprocesses the batches before they
# are loaded into the internal queue.
# You can cast data, or do one-hot transforms.
# If the dataset is a table, this function is required.
def input_transform(tbl_batch):
labels = tbl_batch['label']
data = tbl_batch['data']
truth = tf.to_float(tf.one_hot(labels, num_labels, 1, 0))
data_float = tf.to_float(data)
return truth, data_float
# Open the HDF5 file and create a loader for a dataset.
# The batch_size defines the length (in the outer dimension)
# of the elements (batches) returned by the reader.
# Takes a function as input that pre-processes the data.
loader = tftables.load_dataset(filename=self.test_filename,
dataset_path=self.test_mock_data_path,
input_transform=input_transform,
batch_size=20)
# To get the data, we dequeue it from the loader.
# Tensorflow tensors are returned in the same order as input_transformation
truth_batch, data_batch = loader.dequeue()
# The placeholder can then be used in your network
result = my_network(truth_batch, data_batch)
with tf.Session() as sess:
# This context manager starts and stops the internal threads and
# processes used to read the data from disk and store it in the queue.
with loader.begin(sess):
for _ in range(num_iterations):
sess.run(result)
def test_howto_cyclic1(self):
def my_network(*args):
return args[0]
reader = tftables.open_file(filename=self.test_filename, batch_size=10)
# Non-cyclic access
# -----------------
array_batch_placeholder = reader.get_batch(
path=self.test_array_path,
cyclic=False,
ordered=False)
array_batch_float = tf.to_float(array_batch_placeholder)
loader = reader.get_fifoloader(
queue_size=10,
inputs=[array_batch_float],
threads=1
)
array_batch_cpu = loader.dequeue()
result = my_network(array_batch_cpu)
with tf.Session() as sess:
loader.start(sess)
try:
# Keep iterating until the exception breaks the loop
while True:
sess.run(result)
# Now silently catch the exception.
except tf.errors.OutOfRangeError:
pass
loader.stop(sess)
def test_howto_cyclic2(self):
def my_network(*args):
return args[0]
reader = tftables.open_file(filename=self.test_filename, batch_size=10)
# Non-cyclic access
# -----------------
array_batch_placeholder = reader.get_batch(
path=self.test_array_path,
cyclic=False,
ordered=False)
array_batch_float = tf.to_float(array_batch_placeholder)
loader = reader.get_fifoloader(
queue_size=10,
inputs=[array_batch_float],
threads=1
)
array_batch_cpu = loader.dequeue()
result = my_network(array_batch_cpu)
with tf.Session() as sess:
loader.start(sess)
# This context manager suppresses the exception.
with loader.catch_termination():
# Keep iterating until the exception breaks the loop
while True:
sess.run(result)
loader.stop(sess)
if __name__ == '__main__':
tf.test.main()