-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathflp.rs
1278 lines (1091 loc) · 44.5 KB
/
flp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: MPL-2.0
//! Implementation of the generic Fully Linear Proof (FLP) system specified in
//! [[draft-irtf-cfrg-vdaf-08]]. This is the main building block of [`Prio3`](crate::vdaf::prio3).
//!
//! The FLP is derived for any implementation of the [`Type`] trait. Such an implementation
//! specifies a validity circuit that defines the set of valid measurements, as well as the finite
//! field in which the validity circuit is evaluated. It also determines how raw measurements are
//! encoded as inputs to the validity circuit, and how aggregates are decoded from sums of
//! measurements.
//!
//! # Overview
//!
//! The proof system is comprised of three algorithms. The first, `prove`, is run by the prover in
//! order to generate a proof of a statement's validity. The second and third, `query` and
//! `decide`, are run by the verifier in order to check the proof. The proof asserts that the input
//! is an element of a language recognized by the arithmetic circuit. If an input is _not_ valid,
//! then the verification step will fail with high probability:
//!
//! ```
//! use prio::flp::types::Count;
//! use prio::flp::Type;
//! use prio::field::{random_vector, FieldElement, Field64};
//!
//! // The prover chooses a measurement.
//! let count = Count::new();
//! let input: Vec<Field64> = count.encode_measurement(&false).unwrap();
//!
//! // The prover and verifier agree on "joint randomness" used to generate and
//! // check the proof. The application needs to ensure that the prover
//! // "commits" to the input before this point. In Prio3, the joint
//! // randomness is derived from additive shares of the input.
//! let joint_rand = random_vector(count.joint_rand_len()).unwrap();
//!
//! // The prover generates the proof.
//! let prove_rand = random_vector(count.prove_rand_len()).unwrap();
//! let proof = count.prove(&input, &prove_rand, &joint_rand).unwrap();
//!
//! // The verifier checks the proof. In the first step, the verifier "queries"
//! // the input and proof, getting the "verifier message" in response. It then
//! // inspects the verifier to decide if the input is valid.
//! let query_rand = random_vector(count.query_rand_len()).unwrap();
//! let verifier = count.query(&input, &proof, &query_rand, &joint_rand, 1).unwrap();
//! assert!(count.decide(&verifier).unwrap());
//! ```
//!
//! [draft-irtf-cfrg-vdaf-08]: https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/08/
#[cfg(feature = "experimental")]
use crate::dp::DifferentialPrivacyStrategy;
use crate::fft::{discrete_fourier_transform, discrete_fourier_transform_inv_finish, FftError};
use crate::field::{FftFriendlyFieldElement, FieldElement, FieldElementWithInteger, FieldError};
use crate::fp::log2;
use crate::polynomial::poly_eval;
use std::any::Any;
use std::convert::TryFrom;
use std::fmt::Debug;
pub mod gadgets;
#[cfg(all(feature = "crypto-dependencies", feature = "experimental"))]
pub mod szk;
pub mod types;
/// Errors propagated by methods in this module.
#[derive(Debug, thiserror::Error)]
#[non_exhaustive]
pub enum FlpError {
/// Calling [`Type::prove`] returned an error.
#[error("prove error: {0}")]
Prove(String),
/// Calling [`Type::query`] returned an error.
#[error("query error: {0}")]
Query(String),
/// Calling [`Type::decide`] returned an error.
#[error("decide error: {0}")]
Decide(String),
/// Calling a gadget returned an error.
#[error("gadget error: {0}")]
Gadget(String),
/// Calling the validity circuit returned an error.
#[error("validity circuit error: {0}")]
Valid(String),
/// Calling [`Type::encode_measurement`] returned an error.
#[error("value error: {0}")]
Encode(String),
/// Calling [`Type::decode_result`] returned an error.
#[error("value error: {0}")]
Decode(String),
/// Calling [`Type::truncate`] returned an error.
#[error("truncate error: {0}")]
Truncate(String),
/// Generic invalid parameter. This may be returned when an FLP type cannot be constructed.
#[error("invalid paramter: {0}")]
InvalidParameter(String),
/// Returned if an FFT operation propagates an error.
#[error("FFT error: {0}")]
Fft(#[from] FftError),
/// Returned if a field operation encountered an error.
#[error("Field error: {0}")]
Field(#[from] FieldError),
#[cfg(feature = "experimental")]
/// An error happened during noising.
#[error("differential privacy error: {0}")]
DifferentialPrivacy(#[from] crate::dp::DpError),
}
/// A type. Implementations of this trait specify how a particular kind of measurement is encoded
/// as a vector of field elements and how validity of the encoded measurement is determined.
/// Validity is determined via an arithmetic circuit evaluated over the encoded measurement.
pub trait Type: Sized + Eq + Clone + Debug {
/// The type of raw measurement to be encoded.
type Measurement: Clone + Debug;
/// The type of aggregate result for this type.
type AggregateResult: Clone + Debug;
/// The finite field used for this type.
type Field: FftFriendlyFieldElement;
/// Encodes a measurement as a vector of [`Self::input_len`] field elements.
fn encode_measurement(
&self,
measurement: &Self::Measurement,
) -> Result<Vec<Self::Field>, FlpError>;
/// Decodes an aggregate result.
///
/// This is NOT the inverse of `encode_measurement`. Rather, the input is an aggregation of
/// truncated measurements.
fn decode_result(
&self,
data: &[Self::Field],
num_measurements: usize,
) -> Result<Self::AggregateResult, FlpError>;
/// Returns the sequence of gadgets associated with the validity circuit.
///
/// # Notes
///
/// The construction of [[BBCG+19], Theorem 4.3] uses a single gadget rather than many. The
/// idea to generalize the proof system to allow multiple gadgets is discussed briefly in
/// [[BBCG+19], Remark 4.5], but no construction is given. The construction implemented here
/// requires security analysis.
///
/// [BBCG+19]: https://ia.cr/2019/188
fn gadget(&self) -> Vec<Box<dyn Gadget<Self::Field>>>;
/// Evaluates the validity circuit on an input and returns the output.
///
/// # Parameters
///
/// * `gadgets` is the sequence of gadgets, presumably output by [`Self::gadget`].
/// * `input` is the input to be validated.
/// * `joint_rand` is the joint randomness shared by the prover and verifier.
/// * `num_shares` is the number of input shares.
///
/// # Example usage
///
/// Applications typically do not call this method directly. It is used internally by
/// [`Self::prove`] and [`Self::query`] to generate and verify the proof respectively.
///
/// ```
/// use prio::flp::types::Count;
/// use prio::flp::Type;
/// use prio::field::{random_vector, FieldElement, Field64};
///
/// let count = Count::new();
/// let input: Vec<Field64> = count.encode_measurement(&true).unwrap();
/// let joint_rand = random_vector(count.joint_rand_len()).unwrap();
/// let v = count.valid(&mut count.gadget(), &input, &joint_rand, 1).unwrap();
/// assert_eq!(v, Field64::zero());
/// ```
fn valid(
&self,
gadgets: &mut Vec<Box<dyn Gadget<Self::Field>>>,
input: &[Self::Field],
joint_rand: &[Self::Field],
num_shares: usize,
) -> Result<Self::Field, FlpError>;
/// Constructs an aggregatable output from an encoded input. Calling this method is only safe
/// once `input` has been validated.
fn truncate(&self, input: Vec<Self::Field>) -> Result<Vec<Self::Field>, FlpError>;
/// The length in field elements of the encoded input returned by [`Self::encode_measurement`].
fn input_len(&self) -> usize;
/// The length in field elements of the proof generated for this type.
fn proof_len(&self) -> usize;
/// The length in field elements of the verifier message constructed by [`Self::query`].
fn verifier_len(&self) -> usize;
/// The length of the truncated output (i.e., the output of [`Type::truncate`]).
fn output_len(&self) -> usize;
/// The length of the joint random input.
fn joint_rand_len(&self) -> usize;
/// The length in field elements of the random input consumed by the prover to generate a
/// proof. This is the same as the sum of the arity of each gadget in the validity circuit.
fn prove_rand_len(&self) -> usize;
/// The length in field elements of the random input consumed by the verifier to make queries
/// against inputs and proofs. This is the same as the number of gadgets in the validity
/// circuit.
fn query_rand_len(&self) -> usize;
/// Generate a proof of an input's validity. The return value is a sequence of
/// [`Self::proof_len`] field elements.
///
/// # Parameters
///
/// * `input` is the input.
/// * `prove_rand` is the prover' randomness.
/// * `joint_rand` is the randomness shared by the prover and verifier.
fn prove(
&self,
input: &[Self::Field],
prove_rand: &[Self::Field],
joint_rand: &[Self::Field],
) -> Result<Vec<Self::Field>, FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Prove(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
if prove_rand.len() != self.prove_rand_len() {
return Err(FlpError::Prove(format!(
"unexpected prove randomness length: got {}; want {}",
prove_rand.len(),
self.prove_rand_len()
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Prove(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
let mut prove_rand_len = 0;
let mut shims = self
.gadget()
.into_iter()
.map(|inner| {
let inner_arity = inner.arity();
if prove_rand_len + inner_arity > prove_rand.len() {
return Err(FlpError::Prove(format!(
"short prove randomness: got {}; want at least {}",
prove_rand.len(),
prove_rand_len + inner_arity
)));
}
let gadget = Box::new(ProveShimGadget::new(
inner,
&prove_rand[prove_rand_len..prove_rand_len + inner_arity],
)?) as Box<dyn Gadget<Self::Field>>;
prove_rand_len += inner_arity;
Ok(gadget)
})
.collect::<Result<Vec<_>, FlpError>>()?;
assert_eq!(prove_rand_len, self.prove_rand_len());
// Create a buffer for storing the proof. The buffer is longer than the proof itself; the extra
// length is to accommodate the computation of each gadget polynomial.
let data_len = shims
.iter()
.map(|shim| {
let gadget_poly_len = gadget_poly_len(shim.degree(), wire_poly_len(shim.calls()));
// Computing the gadget polynomial using FFT requires an amount of memory that is a
// power of 2. Thus we choose the smallest power of 2 that is at least as large as
// the gadget polynomial. The wire seeds are encoded in the proof, too, so we
// include the arity of the gadget to ensure there is always enough room at the end
// of the buffer to compute the next gadget polynomial. It's likely that the
// memory footprint here can be reduced, with a bit of care.
shim.arity() + gadget_poly_len.next_power_of_two()
})
.sum();
let mut proof = vec![Self::Field::zero(); data_len];
// Run the validity circuit with a sequence of "shim" gadgets that record the value of each
// input wire of each gadget evaluation. These values are used to construct the wire
// polynomials for each gadget in the next step.
let _ = self.valid(&mut shims, input, joint_rand, 1)?;
// Construct the proof.
let mut proof_len = 0;
for shim in shims.iter_mut() {
let gadget = shim
.as_any()
.downcast_mut::<ProveShimGadget<Self::Field>>()
.unwrap();
// Interpolate the wire polynomials `f[0], ..., f[g_arity-1]` from the input wires of each
// evaluation of the gadget.
let m = wire_poly_len(gadget.calls());
let m_inv = Self::Field::from(
<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap(),
)
.inv();
let mut f = vec![vec![Self::Field::zero(); m]; gadget.arity()];
for ((coefficients, values), proof_val) in f[..gadget.arity()]
.iter_mut()
.zip(gadget.f_vals[..gadget.arity()].iter())
.zip(proof[proof_len..proof_len + gadget.arity()].iter_mut())
{
discrete_fourier_transform(coefficients, values, m)?;
discrete_fourier_transform_inv_finish(coefficients, m, m_inv);
// The first point on each wire polynomial is a random value chosen by the prover. This
// point is stored in the proof so that the verifier can reconstruct the wire
// polynomials.
*proof_val = values[0];
}
// Construct the gadget polynomial `G(f[0], ..., f[g_arity-1])` and append it to `proof`.
let gadget_poly_len = gadget_poly_len(gadget.degree(), m);
let start = proof_len + gadget.arity();
let end = start + gadget_poly_len.next_power_of_two();
gadget.call_poly(&mut proof[start..end], &f)?;
proof_len += gadget.arity() + gadget_poly_len;
}
// Truncate the buffer to the size of the proof.
assert_eq!(proof_len, self.proof_len());
proof.truncate(proof_len);
Ok(proof)
}
/// Query an input and proof and return the verifier message. The return value has length
/// [`Self::verifier_len`].
///
/// # Parameters
///
/// * `input` is the input or input share.
/// * `proof` is the proof or proof share.
/// * `query_rand` is the verifier's randomness.
/// * `joint_rand` is the randomness shared by the prover and verifier.
/// * `num_shares` is the total number of input shares.
fn query(
&self,
input: &[Self::Field],
proof: &[Self::Field],
query_rand: &[Self::Field],
joint_rand: &[Self::Field],
num_shares: usize,
) -> Result<Vec<Self::Field>, FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Query(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
if proof.len() != self.proof_len() {
return Err(FlpError::Query(format!(
"unexpected proof length: got {}; want {}",
proof.len(),
self.proof_len()
)));
}
if query_rand.len() != self.query_rand_len() {
return Err(FlpError::Query(format!(
"unexpected query randomness length: got {}; want {}",
query_rand.len(),
self.query_rand_len()
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Query(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
let mut proof_len = 0;
let mut shims = self
.gadget()
.into_iter()
.enumerate()
.map(|(idx, gadget)| {
let gadget_degree = gadget.degree();
let gadget_arity = gadget.arity();
let m = (1 + gadget.calls()).next_power_of_two();
let r = query_rand[idx];
// Make sure the query randomness isn't a root of unity. Evaluating the gadget
// polynomial at any of these points would be a privacy violation, since these points
// were used by the prover to construct the wire polynomials.
if r.pow(<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap())
== Self::Field::one()
{
return Err(FlpError::Query(format!(
"invalid query randomness: encountered 2^{m}-th root of unity"
)));
}
// Compute the length of the sub-proof corresponding to the `idx`-th gadget.
let next_len = gadget_arity + gadget_degree * (m - 1) + 1;
let proof_data = &proof[proof_len..proof_len + next_len];
proof_len += next_len;
Ok(Box::new(QueryShimGadget::new(gadget, r, proof_data)?)
as Box<dyn Gadget<Self::Field>>)
})
.collect::<Result<Vec<_>, _>>()?;
// Create a buffer for the verifier data. This includes the output of the validity circuit and,
// for each gadget `shim[idx].inner`, the wire polynomials evaluated at the query randomness
// `query_rand[idx]` and the gadget polynomial evaluated at `query_rand[idx]`.
let data_len = 1 + shims.iter().map(|shim| shim.arity() + 1).sum::<usize>();
let mut verifier = Vec::with_capacity(data_len);
// Run the validity circuit with a sequence of "shim" gadgets that record the inputs to each
// wire for each gadget call. Record the output of the circuit and append it to the verifier
// message.
//
// NOTE The proof of [BBC+19, Theorem 4.3] assumes that the output of the validity circuit is
// equal to the output of the last gadget evaluation. Here we relax this assumption. This
// should be OK, since it's possible to transform any circuit into one for which this is true.
// (Needs security analysis.)
let validity = self.valid(&mut shims, input, joint_rand, num_shares)?;
verifier.push(validity);
// Fill the buffer with the verifier message.
for (query_rand_val, shim) in query_rand[..shims.len()].iter().zip(shims.iter_mut()) {
let gadget = shim
.as_any()
.downcast_ref::<QueryShimGadget<Self::Field>>()
.unwrap();
// Reconstruct the wire polynomials `f[0], ..., f[g_arity-1]` and evaluate each wire
// polynomial at query randomness value.
let m = (1 + gadget.calls()).next_power_of_two();
let m_inv = Self::Field::from(
<Self::Field as FieldElementWithInteger>::Integer::try_from(m).unwrap(),
)
.inv();
let mut f = vec![Self::Field::zero(); m];
for wire in 0..gadget.arity() {
discrete_fourier_transform(&mut f, &gadget.f_vals[wire], m)?;
discrete_fourier_transform_inv_finish(&mut f, m, m_inv);
verifier.push(poly_eval(&f, *query_rand_val));
}
// Add the value of the gadget polynomial evaluated at the query randomness value.
verifier.push(gadget.p_at_r);
}
assert_eq!(verifier.len(), self.verifier_len());
Ok(verifier)
}
/// Returns true if the verifier message indicates that the input from which it was generated is valid.
fn decide(&self, verifier: &[Self::Field]) -> Result<bool, FlpError> {
if verifier.len() != self.verifier_len() {
return Err(FlpError::Decide(format!(
"unexpected verifier length: got {}; want {}",
verifier.len(),
self.verifier_len()
)));
}
// Check if the output of the circuit is 0.
if verifier[0] != Self::Field::zero() {
return Ok(false);
}
// Check that each of the proof polynomials are well-formed.
let mut gadgets = self.gadget();
let mut verifier_len = 1;
for gadget in gadgets.iter_mut() {
let next_len = 1 + gadget.arity();
let e = gadget.call(&verifier[verifier_len..verifier_len + next_len - 1])?;
if e != verifier[verifier_len + next_len - 1] {
return Ok(false);
}
verifier_len += next_len;
}
Ok(true)
}
/// Check whether `input` and `joint_rand` have the length expected by `self`,
/// return [`FlpError::Valid`] otherwise.
fn valid_call_check(
&self,
input: &[Self::Field],
joint_rand: &[Self::Field],
) -> Result<(), FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Valid(format!(
"unexpected input length: got {}; want {}",
input.len(),
self.input_len(),
)));
}
if joint_rand.len() != self.joint_rand_len() {
return Err(FlpError::Valid(format!(
"unexpected joint randomness length: got {}; want {}",
joint_rand.len(),
self.joint_rand_len()
)));
}
Ok(())
}
/// Check if the length of `input` matches `self`'s `input_len()`,
/// return [`FlpError::Truncate`] otherwise.
fn truncate_call_check(&self, input: &[Self::Field]) -> Result<(), FlpError> {
if input.len() != self.input_len() {
return Err(FlpError::Truncate(format!(
"Unexpected input length: got {}; want {}",
input.len(),
self.input_len()
)));
}
Ok(())
}
}
/// A type which supports adding noise to aggregate shares for Server Differential Privacy.
#[cfg(feature = "experimental")]
#[cfg_attr(docsrs, doc(cfg(feature = "experimental")))]
pub trait TypeWithNoise<S>: Type
where
S: DifferentialPrivacyStrategy,
{
/// Add noise to the aggregate share to obtain differential privacy.
// TODO(#1073): Rename to add_noise_to_agg_share.
fn add_noise_to_result(
&self,
dp_strategy: &S,
agg_result: &mut [Self::Field],
num_measurements: usize,
) -> Result<(), FlpError>;
}
/// A gadget, a non-affine arithmetic circuit that is called when evaluating a validity circuit.
pub trait Gadget<F: FftFriendlyFieldElement>: Debug {
/// Evaluates the gadget on input `inp` and returns the output.
fn call(&mut self, inp: &[F]) -> Result<F, FlpError>;
/// Evaluate the gadget on input of a sequence of polynomials. The output is written to `outp`.
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError>;
/// Returns the arity of the gadget. This is the length of `inp` passed to `call` or
/// `call_poly`.
fn arity(&self) -> usize;
/// Returns the circuit's arithmetic degree. This determines the minimum length the `outp`
/// buffer passed to `call_poly`.
fn degree(&self) -> usize;
/// Returns the number of times the gadget is expected to be called.
fn calls(&self) -> usize;
/// This call is used to downcast a `Box<dyn Gadget<F>>` to a concrete type.
fn as_any(&mut self) -> &mut dyn Any;
}
/// A "shim" gadget used during proof generation to record the input wires each time a gadget is
/// evaluated.
#[derive(Debug)]
struct ProveShimGadget<F: FftFriendlyFieldElement> {
inner: Box<dyn Gadget<F>>,
/// Points at which the wire polynomials are interpolated.
f_vals: Vec<Vec<F>>,
/// The number of times the gadget has been called so far.
ct: usize,
}
impl<F: FftFriendlyFieldElement> ProveShimGadget<F> {
fn new(inner: Box<dyn Gadget<F>>, prove_rand: &[F]) -> Result<Self, FlpError> {
let mut f_vals = vec![vec![F::zero(); 1 + inner.calls()]; inner.arity()];
for (prove_rand_val, wire_poly_vals) in
prove_rand[..f_vals.len()].iter().zip(f_vals.iter_mut())
{
// Choose a random field element as the first point on the wire polynomial.
wire_poly_vals[0] = *prove_rand_val;
}
Ok(Self {
inner,
f_vals,
ct: 1,
})
}
}
impl<F: FftFriendlyFieldElement> Gadget<F> for ProveShimGadget<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
for (wire_poly_vals, inp_val) in self.f_vals[..inp.len()].iter_mut().zip(inp.iter()) {
wire_poly_vals[self.ct] = *inp_val;
}
self.ct += 1;
self.inner.call(inp)
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
self.inner.call_poly(outp, inp)
}
fn arity(&self) -> usize {
self.inner.arity()
}
fn degree(&self) -> usize {
self.inner.degree()
}
fn calls(&self) -> usize {
self.inner.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// A "shim" gadget used during proof verification to record the points at which the intermediate
/// proof polynomials are evaluated.
#[derive(Debug)]
struct QueryShimGadget<F: FftFriendlyFieldElement> {
inner: Box<dyn Gadget<F>>,
/// Points at which intermediate proof polynomials are interpolated.
f_vals: Vec<Vec<F>>,
/// Points at which the gadget polynomial is interpolated.
p_vals: Vec<F>,
/// The gadget polynomial evaluated on a random input `r`.
p_at_r: F,
/// Used to compute an index into `p_val`.
step: usize,
/// The number of times the gadget has been called so far.
ct: usize,
}
impl<F: FftFriendlyFieldElement> QueryShimGadget<F> {
fn new(inner: Box<dyn Gadget<F>>, r: F, proof_data: &[F]) -> Result<Self, FlpError> {
let gadget_degree = inner.degree();
let gadget_arity = inner.arity();
let m = (1 + inner.calls()).next_power_of_two();
let p = m * gadget_degree;
// Each call to this gadget records the values at which intermediate proof polynomials were
// interpolated. The first point was a random value chosen by the prover and transmitted in
// the proof.
let mut f_vals = vec![vec![F::zero(); 1 + inner.calls()]; gadget_arity];
for wire in 0..gadget_arity {
f_vals[wire][0] = proof_data[wire];
}
// Evaluate the gadget polynomial at roots of unity.
let size = p.next_power_of_two();
let mut p_vals = vec![F::zero(); size];
discrete_fourier_transform(&mut p_vals, &proof_data[gadget_arity..], size)?;
// The step is used to compute the element of `p_val` that will be returned by a call to
// the gadget.
let step = (1 << (log2(p as u128) - log2(m as u128))) as usize;
// Evaluate the gadget polynomial `p` at query randomness `r`.
let p_at_r = poly_eval(&proof_data[gadget_arity..], r);
Ok(Self {
inner,
f_vals,
p_vals,
p_at_r,
step,
ct: 1,
})
}
}
impl<F: FftFriendlyFieldElement> Gadget<F> for QueryShimGadget<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
for (wire_poly_vals, inp_val) in self.f_vals[..inp.len()].iter_mut().zip(inp.iter()) {
wire_poly_vals[self.ct] = *inp_val;
}
let outp = self.p_vals[self.ct * self.step];
self.ct += 1;
Ok(outp)
}
fn call_poly(&mut self, _outp: &mut [F], _inp: &[Vec<F>]) -> Result<(), FlpError> {
panic!("no-op");
}
fn arity(&self) -> usize {
self.inner.arity()
}
fn degree(&self) -> usize {
self.inner.degree()
}
fn calls(&self) -> usize {
self.inner.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// Compute the length of the wire polynomial constructed from the given number of gadget calls.
#[inline]
pub(crate) fn wire_poly_len(num_calls: usize) -> usize {
(1 + num_calls).next_power_of_two()
}
/// Compute the length of the gadget polynomial for a gadget with the given degree and from wire
/// polynomials of the given length.
#[inline]
pub(crate) fn gadget_poly_len(gadget_degree: usize, wire_poly_len: usize) -> usize {
gadget_degree * (wire_poly_len - 1) + 1
}
/// Utilities for testing FLPs.
#[cfg(feature = "test-util")]
#[cfg_attr(docsrs, doc(cfg(feature = "test-util")))]
pub mod test_utils {
use super::*;
use crate::field::{random_vector, FieldElement, FieldElementWithInteger};
/// Various tests for an FLP.
#[cfg_attr(docsrs, doc(cfg(feature = "test-util")))]
pub struct FlpTest<'a, T: Type> {
/// The FLP.
pub flp: &'a T,
/// Optional test name.
pub name: Option<&'a str>,
/// The input to use for the tests.
pub input: &'a [T::Field],
/// If set, the expected result of truncating the input.
pub expected_output: Option<&'a [T::Field]>,
/// Whether the input is expected to be valid.
pub expect_valid: bool,
}
impl<T: Type> FlpTest<'_, T> {
/// Construct a test and run it. Expect the input to be valid and compare the truncated
/// output to the provided value.
pub fn expect_valid<const SHARES: usize>(
flp: &T,
input: &[T::Field],
expected_output: &[T::Field],
) {
FlpTest {
flp,
name: None,
input,
expected_output: Some(expected_output),
expect_valid: true,
}
.run::<SHARES>()
}
/// Construct a test and run it. Expect the input to be invalid.
pub fn expect_invalid<const SHARES: usize>(flp: &T, input: &[T::Field]) {
FlpTest {
flp,
name: None,
input,
expect_valid: false,
expected_output: None,
}
.run::<SHARES>()
}
/// Construct a test and run it. Expect the input to be valid.
pub fn expect_valid_no_output<const SHARES: usize>(flp: &T, input: &[T::Field]) {
FlpTest {
flp,
name: None,
input,
expect_valid: true,
expected_output: None,
}
.run::<SHARES>()
}
/// Run the tests.
pub fn run<const SHARES: usize>(&self) {
let name = self.name.unwrap_or("unnamed test");
assert_eq!(
self.input.len(),
self.flp.input_len(),
"{name}: unexpected input length"
);
let mut gadgets = self.flp.gadget();
let joint_rand = random_vector(self.flp.joint_rand_len()).unwrap();
let prove_rand = random_vector(self.flp.prove_rand_len()).unwrap();
let query_rand = random_vector(self.flp.query_rand_len()).unwrap();
assert_eq!(
self.flp.query_rand_len(),
gadgets.len(),
"{name}: unexpected number of gadgets"
);
assert_eq!(
self.flp.joint_rand_len(),
joint_rand.len(),
"{name}: unexpected joint rand length"
);
assert_eq!(
self.flp.prove_rand_len(),
prove_rand.len(),
"{name}: unexpected prove rand length",
);
assert_eq!(
self.flp.query_rand_len(),
query_rand.len(),
"{name}: unexpected query rand length",
);
// Run the validity circuit.
let v = self
.flp
.valid(&mut gadgets, self.input, &joint_rand, 1)
.unwrap();
assert_eq!(
v == T::Field::zero(),
self.expect_valid,
"{name}: unexpected output of valid() returned {v}",
);
// Generate the proof.
let proof = self
.flp
.prove(self.input, &prove_rand, &joint_rand)
.unwrap();
assert_eq!(
proof.len(),
self.flp.proof_len(),
"{name}: unexpected proof length"
);
// Query the proof.
let verifier = self
.flp
.query(self.input, &proof, &query_rand, &joint_rand, 1)
.unwrap();
assert_eq!(
verifier.len(),
self.flp.verifier_len(),
"{name}: unexpected verifier length"
);
// Decide if the input is valid.
let res = self.flp.decide(&verifier).unwrap();
assert_eq!(res, self.expect_valid, "{name}: unexpected decision");
// Run distributed FLP.
let input_shares = split_vector::<_, SHARES>(self.input);
let proof_shares = split_vector::<_, SHARES>(&proof);
let verifier: Vec<T::Field> = (0..SHARES)
.map(|i| {
self.flp
.query(
&input_shares[i],
&proof_shares[i],
&query_rand,
&joint_rand,
SHARES,
)
.unwrap()
})
.reduce(|mut left, right| {
for (x, y) in left.iter_mut().zip(right.iter()) {
*x += *y;
}
left
})
.unwrap();
let res = self.flp.decide(&verifier).unwrap();
assert_eq!(
res, self.expect_valid,
"{name}: unexpected distributed decision"
);
// Try verifying various proof mutants.
for i in 0..std::cmp::min(proof.len(), 10) {
let mut mutated_proof = proof.clone();
mutated_proof[i] *= T::Field::from(
<T::Field as FieldElementWithInteger>::Integer::try_from(23).unwrap(),
);
let verifier = self
.flp
.query(self.input, &mutated_proof, &query_rand, &joint_rand, 1)
.unwrap();
assert!(
!self.flp.decide(&verifier).unwrap(),
"{name}: proof mutant {} deemed valid",
i
);
}
// Try truncating the input.
if let Some(ref expected_output) = self.expected_output {
let output = self.flp.truncate(self.input.to_vec()).unwrap();
assert_eq!(
output.len(),
self.flp.output_len(),
"{name}: unexpected output length of truncate()"
);
assert_eq!(
&output, expected_output,
"{name}: unexpected output of truncate()"
);
}
}
}
fn split_vector<F: FieldElement, const SHARES: usize>(inp: &[F]) -> [Vec<F>; SHARES] {
let mut outp = Vec::with_capacity(SHARES);
outp.push(inp.to_vec());
for _ in 1..SHARES {
let share: Vec<F> =
random_vector(inp.len()).expect("failed to generate a random vector");
for (x, y) in outp[0].iter_mut().zip(&share) {
*x -= *y;
}
outp.push(share);
}
outp.try_into().unwrap()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::{random_vector, split_vector, Field128};
use crate::flp::gadgets::{Mul, PolyEval};
use crate::polynomial::poly_range_check;
use std::marker::PhantomData;
// Simple integration test for the core FLP logic. You'll find more extensive unit tests for
// each implemented data type in src/types.rs.
#[test]
fn test_flp() {
const NUM_SHARES: usize = 2;
let typ: TestType<Field128> = TestType::new();
let input = typ.encode_measurement(&3).unwrap();
assert_eq!(input.len(), typ.input_len());
let input_shares: Vec<Vec<Field128>> = split_vector(input.as_slice(), NUM_SHARES)
.unwrap()
.into_iter()
.collect();