-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiscourse_segmenter
executable file
·475 lines (410 loc) · 19.3 KB
/
discourse_segmenter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/usr/bin/env python
# -*- mode: python; coding: utf-8; -*-
"""
Parse input text into elementary discourse segments and output them
USAGE:
discourse_segmenter [GLOBAL_OPTIONS] type [TYPE_SPECIFIC_OPTIONS] [FILEs]
@author: Wladimir Sidorenko <Uladzimir Sidarenka>
"""
##################################################################
# Imports
from __future__ import print_function, unicode_literals
from dsegmenter.bparseg import BparSegmenter, CTree, read_trees, read_segments, \
trees2segs
from dsegmenter.edseg import EDSSegmenter, CONLL
from collections import defaultdict
from sklearn.cross_validation import KFold
import argparse
import codecs
import glob
import sys
import os
import re
##################################################################
# Constants and Variables
DEFAULT_ENCODING = "utf-8"
ENCODING = DEFAULT_ENCODING
EDSEG = "edseg"
BPARSEG = "bparseg"
CV = "cv"
TEST = "test"
TRAIN = "train"
SEGMENT = "segment"
Segmenter = None
N_FOLDS = 10
##################################################################
# Methods
def _set_train_test_args(a_parser):
"""Add CLI options common to train and test mode to ArgumentParser instance.
@param a_parser - ArgumentParser instance to which new arguments should
be added
@return \c void
"""
a_parser.add_argument("--bpar-sfx", help = """suffix of the names of BitPar files""", \
type = str, default = "")
a_parser.add_argument("--seg-sfx", help = """suffix of the names of segmentation files""", \
type = str, default = "")
a_parser.add_argument("bpar_dir", help="directory containing BitPar files", \
type = str)
a_parser.add_argument("seg_dir", help="directory containing segmentation files", \
type = str)
def _read_files(a_files, a_encoding = DEFAULT_ENCODING, a_skip_line = ""):
"""Return iterator over lines of the input file.
@param a_files - files to read from
@param a_encoding - text encoding used for input/output
@param a_skip_line - line which should be skipped during iteration
@return iterator over input lines
"""
if not a_files:
for line in sys.stdin:
line = line.decode(a_encoding)
if line == a_skip_line:
print(line.encode(a_encoding))
else:
yield line.rstrip()
else:
for fname in a_files:
with codecs.open(fname, encoding = a_encoding, errors = "replace") as ifile:
for line in ifile:
if line == a_skip_line:
print(line.encode(a_encoding))
else:
yield line.rstrip()
def _align_files(a_bpar_dir, a_seg_dir, a_bpar_sfx, a_seg_sfx):
"""Align BitPar and segment files in two directories.
@param a_bpar_dir - directory containing files with BitPar trees
@param a_seg_dir - directory containing files with discourse segments
@param a_bpar_sfx - suffix of the names of BitPar files
@param a_seg_sfx - suffix of the names of segmentation files
@return iterator over list of 2-tuples with BitPar and segment file
"""
segf = ""; basefname = "";
BP_SFX_RE = re.compile(re.escape(a_bpar_sfx))
bpar_files = glob.iglob(os.path.join(a_bpar_dir, '*' + a_bpar_sfx))
for bpf in bpar_files:
basefname = BP_SFX_RE.sub("", os.path.basename(bpf))
segf = os.path.join(a_seg_dir, basefname + a_seg_sfx)
if os.path.isfile(segf) and os.access(segf, os.R_OK):
yield (bpf, segf)
else:
print(\
"WARNING: No counterpart file found for BitPar file '{:s}'.".format(bpf), \
file = sys.stderr)
def _read_trees_segments(a_bpar_dir, a_seg_dir, a_bpar_sfx, a_seg_sfx, \
a_fname2item = False, a_encoding = DEFAULT_ENCODING):
"""Read input files containing discourse segments and BitPar trees.
@param a_bpar_dir - directory containing files with BitPar trees
@param a_seg_dir - directory containing files with discourse segments
@param a_bpar_sfx - suffix of the names of BitPar files
@param a_seg_sfx - suffix of the names of segmentation files
@param a_fname2item - generate mappings from filenames to trees
@param a_encoding - text encoding used for input/output
@return 2-tuple with a list of segments and a list of trees
"""
if a_fname2item:
trees = defaultdict(list); segments = defaultdict(list)
else:
trees = []; segments = []
ts, segs = trees, segments
tree2seg = {}; toks2trees = {}; toks2segs = {};
bpar_seg_files = _align_files(a_bpar_dir, a_seg_dir, a_bpar_sfx, a_seg_sfx)
# do tree/segment alignment
for bpf, segf in bpar_seg_files:
if a_fname2item:
ts, segs = trees[bpf], segments[segf]
with codecs.open(bpf, 'r', encoding = a_encoding) as ibpf:
toks2trees, _ = read_trees(ibpf)
with codecs.open(segf, 'r', encoding = a_encoding) as isegf:
toks2segs = read_segments(isegf)
tree2seg = trees2segs(toks2trees, toks2segs)
for t, s in tree2seg.iteritems():
ts.append(t)
segs.append(s)
return (trees, segments)
def _output_segment_forrest(a_forrest, a_segmenter, a_output, a_encoding):
"""Split CONLL sentences in elementary discourse units and output them.
@param a_forrest - pointer to CONLL forrest
@param a_segmnter - pointer to discourse segmenter
@param a_output - boolean flag indicating whether dependency trees
should be printed
@param a_encoding - text encoding used for output
@return \c void
"""
if a_forrest.is_empty():
return
else:
if a_output:
print(unicode(a_forrest).encode(a_encoding))
sds_list = [a_segmenter.segment(sent) for sent in a_forrest]
for sds in sds_list:
sds.pretty_print(a_encoding = a_encoding)
a_forrest.clear()
def edseg_segment(a_ilines, a_output_trees, a_encoding = DEFAULT_ENCODING):
"""Perform rule-based segmentation of CONLL dependency trees.
@param a_ilines - iterator over input lines
@param a_output_trees - boolean flag indicating whether dependency trees
should be printed
@param a_encoding - text encoding used for input/output
@return \c void
"""
forrest = CONLL()
segmenter = EDSSegmenter()
for line in a_ilines:
if not line:
# print collected sentences
_output_segment_forrest(forrest, segmenter, a_output_trees, a_encoding)
# output line
print(line.encode(a_encoding))
# otherwise, append the line to the CONLL forrest
else:
forrest.add_line(line)
istart = True
# output remained EDUs
_output_segment_forrest(forrest, segmenter, a_output_trees, a_encoding)
def bparseg_segment(a_segmenter, a_ilines, a_encoding = DEFAULT_ENCODING, \
a_ostream = sys.stdout):
"""Perform machine-learning driven segmentation of BitPar constituency trees.
@param a_segmenter - pointer to BitPar segmenter
@param a_ilines - iterator over input lines
@param a_encoding - text encoding used for input/output
@param a_ostream - output stream
@return \c void
"""
segments = []
for ctree in CTree.parse_lines(a_ilines):
segments = a_segmenter.segment([ctree])
print(u'\n'.join([unicode(s[-1]) for s in segments]).encode(a_encoding), \
file = a_ostream)
def bparseg_test(a_segmenter, a_trees, a_segments):
"""Evaluate performance of segment classification.
@param a_segmenter - pointer to BitPar segmenter
@param a_trees - list of BitPar trees
@param a_segments - list of discourse segments corresponding
to BitPar trees
@return \c void
"""
macro_f1, micro_f1 = a_segmenter.test(a_trees, a_segments)
print("Macro F1-score: {:.2%}".format(macro_f1), file = sys.stderr)
print("Micro F1-score: {:.2%}".format(micro_f1), file = sys.stderr)
def _cnt_stat(a_gold_segs, a_pred_segs):
"""Estimate the number of true positives, false positives, and false negatives
@param a_gold_segs - gold segments
@param a_pred_segs - predicted segments
@return 3-tuple with true positives, false positives, and false negatives
"""
tp = fp = fn = 0
for gs, ps in zip(a_gold_segs, a_pred_segs):
gs = gs.lower(); ps = ps.lower()
if gs == "none":
if ps != "none":
fp += 1
elif gs == ps:
tp += 1
else:
fn += 1
return tp, fp, fn
def crossval(a_segmenter, a_path, a_fname2trees, a_fname2segs, \
a_output = False, a_out_dir = ".", a_out_sfx = ".tree", \
a_folds = N_FOLDS, a_encoding = ENCODING):
"""Train and evaluate model using n-fold cross-validation.
@param a_segmenter - pointer to untrained segmenter instance
@param a_path - path in which to store the model
@param a_fname2trees - mapping from file names to trees
@param a_fname2segs - mapping from file names to segments
@param a_output - boolean flag indicating whether output files should be produced
@param a_out_dir - directory for writing output files
@param a_out_sfx - suffix which should be appended to output files
@param a_folds - number of folds
@param a_encoding - default output encoding
@return 3-tuple containing list of macro F-scores, micro F-scores, and F1_{tp,fp}
"""
# do necessary imports
from sklearn.metrics import precision_recall_fscore_support
from sklearn.externals import joblib
import numpy as np
# check conditions
assert len(a_fname2trees) == len(a_fname2segs), \
"Unmatching number of files with trees and segments."
# make file names in `a_fname2trees` and `a_fname2segs` uniform and convert
# segment classes to strings
a_fname2segs = {os.path.splitext(os.path.basename(k))[0] + a_out_sfx: \
[str(iseg) for iseg in v] for k, v in a_fname2segs.iteritems()}
ofname2ifname = {os.path.splitext(os.path.basename(k))[0] + a_out_sfx: k \
for k in a_fname2trees}
a_fname2trees = {os.path.splitext(os.path.basename(k))[0] + a_out_sfx: v \
for k, v in a_fname2trees.iteritems()}
# estimate the number of and generate folds
fnames = a_fname2trees.keys()
n_fnames = len(fnames)
if n_fnames < 2:
print("Insufficient number of samples for cross-validation: {:d}.".format(\
n_fnames), file = sys.stderr)
return -1
folds = KFold(n_fnames, min(len(fnames), a_folds))
# generate features for trees
fname2feats = {fname: [a_segmenter.featgen(t) for t in trees] \
for fname, trees in a_fname2trees.iteritems()}
# initialize auxiliary variables
F1_macro = F1_micro = F1_tpfp = 0.
macro_f1 = 0.; macro_F1s = []
micro_f1 = 0.; micro_F1s = []
best_macro_f1 = float("-inf")
best_i = -1 # index of the best run
istart = ilen = 0
trees = []
pred_segs = []
out_fnames = []
fname2range = {}
# fname2gld_pred = {}
processed_fnames = {}
in_fname = test_fname = out_fname = ""
train_feats = train_segs = None
test_feats = []; test_segs = []
tp = fp = fn = tp_i = fp_i = fn_i = 0
# iterate over folds
for i, (train, test) in enumerate(folds):
print("Fold: {:d}".format(i), file = sys.stderr)
train_feats = [feat for k in train for feat in fname2feats[fnames[k]]]
train_segs = [seg for k in train for seg in a_fname2segs[fnames[k]]]
istart = 0
for k in test:
ilen = len(fname2feats[fnames[k]])
fname2range[fnames[k]] = [istart, istart + ilen]
istart += ilen
test_feats += fname2feats[fnames[k]]
test_segs += a_fname2segs[fnames[k]]
# train classifier model
a_segmenter.model = BparSegmenter.DEFAULT_PIPELINE
a_segmenter.model.fit(train_feats, train_segs)
# obtain new predictions
pred_segs = a_segmenter.model.predict(test_feats)
# update statistics and F1 scores
tp_i, fp_i, fn_i = _cnt_stat(test_segs, pred_segs)
tp += tp_i; fp += fp_i; fn += fn_i
_, _, macro_f1, _ = precision_recall_fscore_support(test_segs, pred_segs, average = 'macro', \
pos_label = None)
_, _, micro_f1, _ = precision_recall_fscore_support(test_segs, pred_segs, average = 'micro', \
pos_label = None)
macro_F1s.append(macro_f1); micro_F1s.append(micro_f1)
print("Macro F1: {:.2%}".format(macro_f1), file = sys.stderr)
print("Micro F1: {:.2%}".format(micro_f1), file = sys.stderr)
# update maximum macro F-score and store the most successful model
if macro_f1 > best_macro_f1:
best_i = i
best_macro_f1 = macro_f1
joblib.dump(a_segmenter.model, a_path)
# generate new output files, if necessary
if a_output:
for k in test:
test_fname = fnames[k]
if test_fname in processed_fnames and processed_fnames[test_fname] > macro_f1:
continue
processed_fnames[test_fname] = macro_f1
# fname2gld_pred[test_fname] = [(test_segs[i], pred_segs[i]) \
# for i in xrange(*fname2range[test_fname])]
in_fname = ofname2ifname[test_fname]
out_fname = os.path.join(a_out_dir, test_fname)
with open(out_fname, "w") as ofile:
print("(TEXT", file = ofile)
bparseg_segment(a_segmenter, _read_files([in_fname], a_encoding), \
a_encoding, ofile)
print(")", file = ofile)
test_feats = []; test_segs = []
del trees[:]; del out_fnames[:]; fname2range.clear()
print("Average macro F1: {:.2%} +/- {:.2%}".format(np.mean(macro_F1s), np.std(macro_F1s)), \
file = sys.stderr)
print("Average micro F1: {:.2%} +/- {:.2%}".format(np.mean(micro_F1s), np.std(micro_F1s)), \
file = sys.stderr)
if tp or fp or fn:
F1_tpfp = (2. * tp / (2. * tp + fp + fn))
print("F1_{{tp,fp}} {:.2%}".format(F1_tpfp), file = sys.stderr)
return (macro_F1s, micro_F1s, F1_tpfp, best_i)
def main(argv):
"""Read input text and segment it into elementary discourse units.
@param argv - command line arguments
@return \c 0 on success, non-\c 0 otherwise
"""
# process arguments
parser = argparse.ArgumentParser(description = """Script for segmenting text
into elementary discourse units.""")
# define global options
parser.add_argument("-e", "--encoding", help = "input encoding of text", nargs = 1, \
type = str, default = DEFAULT_ENCODING)
parser.add_argument("-s", "--skip-line", help = """lines which should be ignored during the
processing and output without changes (defaults to empty lines)""", type = str, default = "")
# add type-specific subparsers
subparsers = parser.add_subparsers(help="type of discourse segmenter to use", dest = "dtype")
# edgseg argument parser
parser_edseg = subparsers.add_parser(EDSEG, help = "rule-based discourse segmenter for CONLL\
dependency trees")
parser_edseg.add_argument("-o", "--output-trees", help="output dependency trees along with\
segments", action = "store_true")
parser_edseg.add_argument("files", help="input files", nargs = '*', metavar="file")
# bpar argument parser
parser_bpar = subparsers.add_parser(BPARSEG, help = """machine-learning driven discourse\
segmenter for BitPar constituency trees""")
bpar_subparsers = parser_bpar.add_subparsers(help = "action to perform", dest = "mode")
parser_bpar_train = bpar_subparsers.add_parser(TRAIN, help = """train new model on BitPar
and segment files""")
parser_bpar_train.add_argument("--cross-validate", help = "train model in cross-validation mode")
parser_bpar_train.add_argument("model", help = "path to file in which to store the trained model", \
type = str)
_set_train_test_args(parser_bpar_train)
parser_bpar_cv = bpar_subparsers.add_parser(CV, help = """train and evaluate model
using cross-validation""")
parser_bpar_cv.add_argument("-o", "--output-dir", help = """output directory (leave empty for
no output)""", type = str, default = "")
parser_bpar_cv.add_argument("model", help = """path to the file in which the best trained model
should be stored""", type = str)
_set_train_test_args(parser_bpar_cv)
parser_bpar_test = bpar_subparsers.add_parser(TEST, help = """test model on BitPar
and segment files""")
parser_bpar_test.add_argument("-m", "--model", help = "path to file containing model", \
type = str, default = BparSegmenter.DEFAULT_MODEL)
_set_train_test_args(parser_bpar_test)
parser_bpar_segment = bpar_subparsers.add_parser(SEGMENT, help = """split BitPar trees\
into discourse units""")
parser_bpar_segment.add_argument("-m", "--model", help = "path to file containing model", \
type = str, default = BparSegmenter.DEFAULT_MODEL)
parser_bpar_segment.add_argument("files", help="input files", nargs = '*', metavar="file")
args = parser.parse_args()
# process input files
ifiles = []
if hasattr(args, "files"):
ifiles = _read_files(args.files, args.encoding, args.skip_line)
# process input with edseg
if args.dtype == EDSEG:
edseg_segment(ifiles, args.output_trees)
# process input with bparseg
else:
if args.mode == TRAIN or args.mode == CV:
# make sure there is a directory for storing the model
mdir = os.path.dirname(args.model)
if mdir == '':
pass
elif os.path.exists(mdir):
if not os.path.isdir(mdir) or not os.access(mdir, os.R_OK):
print("Can't write to directory '{:s}'.".format(mdir), file = sys.stderr)
else:
os.makedirs(mdir)
segmenter = BparSegmenter()
trees, segments = _read_trees_segments(args.bpar_dir, args.seg_dir, args.bpar_sfx, \
args.seg_sfx, args.mode == CV, args.encoding)
if args.mode == TRAIN:
segmenter.train(trees, segments, args.model)
else:
crossval(segmenter, args.model, trees, segments, bool(args.output_dir), args.output_dir)
else:
assert os.path.exists(args.model) and os.path.isfile(args.model) and \
os.access(args.model, os.R_OK), "Can't read model file '{:s}'.".format(args.model)
segmenter = BparSegmenter(a_model = args.model)
if args.mode == TEST:
trees, segments = _read_trees_segments(args.bpar_dir, args.seg_dir, args.bpar_sfx, \
args.seg_sfx, args.encoding)
bparseg_test(segmenter, trees, segments)
else:
bparseg_segment(segmenter, ifiles, args.encoding)
##################################################################
# Main
if __name__ == "__main__":
main(sys.argv[1:])