-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
529 lines (432 loc) · 23.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.ops.seq2seq import *
import tf_util
import rprop
import model
class AbstractKBScoringModel:
def __init__(self, kb, size, batch_size, is_train=True, num_neg=200, learning_rate=1e-2, l2_lambda=0.0,
is_batch_training=False):
self._kb = kb
self._size = size
self._batch_size = batch_size
self._is_batch_training = is_batch_training
self._is_train = is_train
self._init = model.default_init()
with vs.variable_scope(self.name(), initializer=self._init):
self.learning_rate = tf.Variable(float(learning_rate), trainable=False, name="lr")
self.global_step = tf.Variable(0, trainable=False, name="step")
with tf.device("/cpu:0"):
if is_batch_training:
self.opt = rprop.RPropOptimizer() # tf.train.GradientDescentOptimizer(self.learning_rate)
else:
self.opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.0)
self._init_inputs()
with vs.variable_scope("score", initializer=self._init):
self._scores = self._scoring_f()
if is_train or is_batch_training:
assert batch_size % (num_neg+1) == 0, "Batch size must be multiple of num_neg+1 during training"
#with vs.variable_scope("score", initializer=init):
# tf.get_variable_scope().reuse_variables()
# for i in xrange(num_neg):
# self.triple_inputs.append((tf.placeholder(tf.int64, shape=[None], name="rel_%d" % (i+1)),
# tf.placeholder(tf.int64, shape=[None], name="subj_%d" % (i+1)),
# tf.placeholder(tf.int64, shape=[None], name="obj_%d" % (i+1))))
# self.scores.append(
# self._scoring_f(self.triple_inputs[i+1][0], self.triple_inputs[i+1][1], self.triple_inputs[i+1][2]))
num_pos = int(batch_size/(num_neg+1))
scores = tf.reshape(self._scores, [num_pos, num_neg + 1])
labels = np.zeros([num_pos, num_neg+1], dtype=np.float32)
labels[:, 0] = 1
labels = tf.constant(labels, name="labels_constant", dtype=tf.float32)
loss = math_ops.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(scores, labels))
train_params = filter(lambda v: self.name() in v.name, tf.trainable_variables())
self.training_weight = tf.Variable(float(learning_rate), trainable=False, name="training_weight")
self._feed_dict[self.training_weight] = np.array([1.0], dtype=np.float32)
with tf.device("/cpu:0"):
#clipped_gradients = _clip_by_value(self.grads, -max_grad, max_grad)
if is_batch_training:
self._grads = tf.gradients(loss, train_params, self.training_weight)
with vs.variable_scope("batch_gradient", initializer=self._init):
self._acc_gradients = map(lambda param: tf.get_variable(param.name.split(":")[0],
param.get_shape(), param.dtype,
tf.constant_initializer(0.0), False),
train_params)
self._loss = tf.get_variable("acc_loss", (), tf.float32, tf.constant_initializer(0.0), False)
# We abuse the gradient descent optimizer for accumulating gradients and loss (summing)
acc_opt = tf.train.GradientDescentOptimizer(-1.0)
self._accumulate_gradients = acc_opt.apply_gradients(zip(self._grads, self._acc_gradients))
self._acc_loss = acc_opt.apply_gradients([(loss, self._loss)])
self._update = self.opt.apply_gradients(
zip(map(lambda v: v.value(), self._acc_gradients), train_params), global_step=self.global_step)
self._reset = map(lambda param: param.initializer, self._acc_gradients)
self._reset.append(self._loss.initializer)
else:
self._loss = loss / math_ops.cast(num_pos, dtypes.float32)
in_params = self._input_params()
if not in_params:
self._grads = tf.gradients(self._loss, train_params, self.training_weight)
else:
self._grads = tf.gradients(self._loss, train_params + in_params, self.training_weight)
self._input_grads = self._grads[len(train_params):]
if len(train_params) > 0:
self._update = self.opt.apply_gradients(zip(self._grads[:len(train_params)], train_params),
global_step=self.global_step)
if l2_lambda > 0.0:
l2 = tf.reduce_sum(array_ops.pack([tf.nn.l2_loss(t) for t in train_params]))
l2_loss = l2_lambda * l2
if is_batch_training:
l2_grads = tf.gradients(l2_loss, train_params)
self._l2_accumulate_gradients = acc_opt.apply_gradients(zip(l2_grads, self._acc_gradients))
self._l2_acc_loss = acc_opt.apply_gradients([(l2_loss, self._loss)])
else:
self._l2_update = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(l2_loss, var_list=train_params)
self.saver = tf.train.Saver(tf.all_variables())
def _input_params(self):
return None
def name(self):
return self.__class__.__name__
def _scoring_f(self):
"""
:return: a batch_size tensor of scores
"""
return tf.constant(np.ones([self._batch_size], dtype=np.float32), name="dummy_score", dtype=tf.float32)
def _init_inputs(self):
self._rel_input = tf.placeholder(tf.int64, shape=[None], name="rel")
self._subj_input = tf.placeholder(tf.int64, shape=[None], name="subj")
self._obj_input = tf.placeholder(tf.int64, shape=[None], name="obj")
self._subj_in = np.zeros([self._batch_size], dtype=np.int64)
self._obj_in = np.zeros([self._batch_size], dtype=np.int64)
self._rel_in = np.zeros([self._batch_size], dtype=np.int64)
self._feed_dict = {}
def _start_adding_triples(self):
pass
def _add_triple_to_input(self, t, j):
(rel, subj, obj) = t
self._rel_in[j] = self._kb.get_id(rel, 0)
self._subj_in[j] = self._kb.get_id(subj, 1)
self._obj_in[j] = self._kb.get_id(obj, 2)
def _finish_adding_triples(self, batch_size):
if batch_size < self._batch_size:
self._feed_dict[self._subj_input] = self._subj_in[:batch_size]
self._feed_dict[self._obj_input] = self._obj_in[:batch_size]
self._feed_dict[self._rel_input] = self._rel_in[:batch_size]
else:
self._feed_dict[self._subj_input] = self._subj_in
self._feed_dict[self._obj_input] = self._obj_in
self._feed_dict[self._rel_input] = self._rel_in
def _get_feed_dict(self):
return self._feed_dict
def score_triples(self, sess, triples):
i = 0
result = np.zeros([len(triples)])
while i < len(triples):
batch_size = min(self._batch_size, len(triples)-i)
self._start_adding_triples()
for j in xrange(batch_size):
self._add_triple_to_input(triples[i+j], j)
self._finish_adding_triples(batch_size)
result[i:i+batch_size] = sess.run(self._scores, feed_dict=self._get_feed_dict())
i += batch_size
return result
def step(self, sess, pos_triples, neg_triples, mode="update"):
'''
:param sess: tf session
:param pos_triples: list of positive triple
:param neg_triples: list of (lists of) negative triples
:param mode: default(train)|loss|accumulate(used for batch training)
:return:
'''
assert self._is_train or self._is_batch_training, "model has to be created in training mode!"
assert len(pos_triples) + reduce(lambda acc, x: acc+len(x), neg_triples, 0) == self._batch_size, \
"batch_size and provided batch do not fit"
j = 0
self._start_adding_triples()
for pos, negs in zip(pos_triples, neg_triples):
self._add_triple_to_input(pos, j)
j += 1
for neg in negs:
self._add_triple_to_input(neg, j)
j += 1
self._finish_adding_triples(j)
if mode == "loss":
return sess.run(self._loss, feed_dict=self._get_feed_dict())
elif mode == "accumulate":
assert self._is_batch_training, "accumulate only possible during batch training."
sess.run([self._accumulate_gradients, self._acc_loss], feed_dict=self._get_feed_dict())
return 0.0
else:
return sess.run([self._loss, self._update], feed_dict=self._get_feed_dict())[0]
def acc_l2_gradients(self, sess):
assert self._is_batch_training, "acc_l2_gradients only possible during batch training."
if hasattr(self, "_l2_accumulate_gradients"):
return sess.run([self._l2_accumulate_gradients, self._l2_acc_loss])
def reset_gradients_and_loss(self, sess):
assert self._is_batch_training, "reset_gradients_and_loss only possible during batch training."
return sess.run(self._reset)
def update(self, sess):
assert self._is_batch_training, "update only possible during batch training."
return sess.run([self._loss, self._update])[0]
class DistMult(AbstractKBScoringModel):
def _scoring_f(self):
with tf.device("/cpu:0"):
E_subjs = tf.get_variable("E_s", [len(self._kb.get_symbols(1)), self._size])
E_objs = tf.get_variable("E_o", [len(self._kb.get_symbols(2)), self._size])
E_rels = tf.get_variable("E_r", [len(self._kb.get_symbols(0)), self._size])
self.e_subj = tf.tanh(tf.nn.embedding_lookup(E_subjs, self._subj_input))
self.e_obj = tf.tanh(tf.nn.embedding_lookup(E_objs, self._obj_input))
self.e_rel = tf.sigmoid(tf.nn.embedding_lookup(E_rels, self._rel_input))
s_o_prod = self.e_obj * self.e_subj
score = tf_util.batch_dot(self.e_rel, s_o_prod)
return score
class ModelE(AbstractKBScoringModel):
def _scoring_f(self):
with tf.device("/cpu:0"):
E_subjs = tf.get_variable("E_s", [len(self._kb.get_symbols(1)), self._size])
E_objs = tf.get_variable("E_o", [len(self._kb.get_symbols(2)), self._size])
E_rels_s = tf.get_variable("E_r_s", [len(self._kb.get_symbols(0)), self._size])
E_rels_o = tf.get_variable("E_r_o", [len(self._kb.get_symbols(0)), self._size])
self.e_subj = tf.tanh(tf.nn.embedding_lookup(E_subjs, self._subj_input))
self.e_obj = tf.tanh(tf.nn.embedding_lookup(E_objs, self._obj_input))
self.e_rel_s = tf.tanh(tf.nn.embedding_lookup(E_rels_s, self._rel_input))
self.e_rel_o = tf.tanh(tf.nn.embedding_lookup(E_rels_o, self._rel_input))
score = tf_util.batch_dot(self.e_rel_s, self.e_subj) + tf_util.batch_dot(self.e_rel_o, self.e_obj)
return score
class ModelO(AbstractKBScoringModel):
def __init__(self, kb, size, batch_size, is_train=True, num_neg=200, learning_rate=1e-2, l2_lambda=0.0,
is_batch_training=False, which_sets=["train_text"]):
self._which_sets = set(which_sets)
AbstractKBScoringModel.__init__(self, kb, size, batch_size, is_train=True, num_neg=200, learning_rate=1e-2,
l2_lambda=0.0, is_batch_training=False)
def _init_inputs(self):
self._rel_ids = dict()
# create tuple to rel lookup
self._tuple_rels_lookup = dict()
for (rel, subj, obj), _, typ in self._kb.get_all_facts():
if typ in self._which_sets:
if rel not in self._rel_ids:
self._rel_ids[rel] = len(self._rel_ids)
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
r_i = self._rel_ids[rel]
t = (s_i, o_i)
if t not in self._tuple_rels_lookup:
self._tuple_rels_lookup[t] = [r_i]
else:
self._tuple_rels_lookup[t].append(r_i)
self._num_relations = len(self._rel_ids)
#also add inverse relations to tuples
for (rel, subj, obj), _, typ in self._kb.get_all_facts():
if typ in self._which_sets:
if rel not in self._rel_ids:
self._rel_ids[rel] = len(self._rel_ids)
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
r_i = self._rel_ids[rel] + self._num_relations
t = (o_i, s_i)
if t not in self._tuple_rels_lookup:
self._tuple_rels_lookup[t] = [r_i]
else:
self._tuple_rels_lookup[t].append(r_i)
self._rel_input = tf.placeholder(tf.int64, shape=[None], name="rel")
self._rel_in = np.zeros([self._batch_size], dtype=np.int64)
self._sparse_indices_input = tf.placeholder(tf.int64, name="sparse_indices")
self._sparse_values_input = tf.placeholder(tf.int64, name="sparse_values")
self._shape_input = tf.placeholder(tf.int64, name="shape")
self._feed_dict = {}
def _start_adding_triples(self):
self._sparse_indices = []
self._sparse_values = []
self._max_cols = 1
def _add_triple_to_input(self, t, j):
(rel, subj, obj) = t
r_i = self._kb.get_id(rel, 0)
self._rel_in[j] = r_i
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
rels = self._tuple_rels_lookup.get((s_i, o_i))
if rels:
for i in xrange(len(rels)):
if rels[i] != self._rel_ids.get(rel):
self._sparse_indices.append([j, i])
self._sparse_values.append(rels[i])
self._max_cols = max(self._max_cols, len(rels) + 1)
# default relation
self._sparse_indices.append([j, len(rels)])
else:
self._sparse_indices.append([j, 0])
self._sparse_values.append(2 * self._num_relations)
def _finish_adding_triples(self, batch_size):
self._feed_dict[self._sparse_indices_input] = self._sparse_indices
self._feed_dict[self._sparse_values_input] = self._sparse_values
self._feed_dict[self._shape_input] = [batch_size, self._max_cols]
if batch_size < self._batch_size:
self._feed_dict[self._rel_input] = self._rel_in[:batch_size]
else:
self._feed_dict[self._rel_input] = self._rel_in
def _scoring_f(self):
with tf.device("/cpu:0"):
E_rels = tf.get_variable("E_r", [len(self._kb.get_symbols(0)), self._size])
E_tup_rels = tf.get_variable("E_tup_r", [2 * self._num_relations + 1, self._size]) # rels + inv rels + default rel
self.e_rel = tf.tanh(tf.nn.embedding_lookup(E_rels, self._rel_input))
# weighted sum of tuple rel embeddings
sparse_tensor = tf.SparseTensor(self._sparse_indices_input, self._sparse_values_input, self._shape_input)
# mean embedding
self.e_tuple_rels = tf.tanh(tf.nn.embedding_lookup_sparse(E_tup_rels, sparse_tensor, None))
return tf_util.batch_dot(self.e_rel, self.e_tuple_rels)
class WeightedModelO(ModelO):
def _init_inputs(self):
ModelO._init_inputs(self)
self._gather_rels_input = tf.placeholder(tf.int64, name="gathered_rels")
def _finish_adding_triples(self, batch_size):
ModelO._finish_adding_triples(self, batch_size)
self._feed_dict[self._gather_rels_input] = map(lambda x: x[0], self._sparse_indices)
def _scoring_f(self):
with tf.device("/cpu:0"):
E_rels = tf.get_variable("E_r", [len(self._kb.get_symbols(0)), self._size])
E_tup_rels = tf.get_variable("E_tup_r", [2 * self._num_relations + 1, self._size]) # rels + inv rels + default rel
# duplicate rels to fit with observations
e_rel = tf.gather(tf.tanh(tf.nn.embedding_lookup(E_rels, self._rel_input)), self._gather_rels_input)
e_tup_rels = tf.tanh(tf.nn.embedding_lookup(E_tup_rels, self._sparse_values_input))
scores_flat = tf_util.batch_dot(e_rel, e_tup_rels)
# for softmax set empty cells to something very small, so weight becomes practically zero
scores = tf.sparse_to_dense(self._sparse_indices_input, self._shape_input,
scores_flat, default_value=-1e-3)
softmax = tf.nn.softmax(scores)
weighted_scores = tf.reduce_sum(scores * softmax, reduction_indices=[1], keep_dims=False)
return weighted_scores
class BlurWeightedModelO(WeightedModelO):
def _scoring_f(self):
with tf.device("/cpu:0"):
E_rels = tf.get_variable("E_r", [len(self._kb.get_symbols(0)), self._size])
E_tup_rels = tf.get_variable("E_tup_r", [2 * self._num_relations + 1, self._size]) # rels + inv rels + default rel
blur_factor = tf.get_variable("blur", shape=[1], initializer=tf.constant_initializer(0.0))
blur_factor = tf.sigmoid(blur_factor)
# duplicate rels to fit with observations
e_rel = tf.gather(tf.tanh(tf.nn.embedding_lookup(E_rels, self._rel_input)), self._gather_rels_input)
e_tup_rels = tf.tanh(tf.nn.embedding_lookup(E_tup_rels, self._sparse_values_input))
scores_flat = tf_util.batch_dot(e_rel, e_tup_rels)
# for softmax set empty cells to something very small, so weight becomes practically zero
scores = tf.sparse_to_dense(self._sparse_indices_input, self._shape_input,
scores_flat, default_value=-1e-3)
softmax = tf.nn.softmax(scores * blur_factor)
weighted_scores = tf.reduce_sum(scores * softmax, reduction_indices=[1], keep_dims=False)
return weighted_scores
class ModelN(ModelO):
def _init_inputs(self):
ModelO._init_inputs(self)
self._rel_cooc_lookup = dict()
for (rel, subj, obj), _, typ in self._kb.get_all_facts():
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
if rel not in self._rel_ids:
self._rel_ids[rel] = len(self._rel_ids)
r_i = self._rel_ids[rel]
t = (s_i, o_i)
rels = self._tuple_rels_lookup.get(t)
if rels:
for rel2 in rels:
if r_i != rel2:
rel_cooc = (r_i, rel2)
if rel_cooc not in self._rel_cooc_lookup:
self._rel_cooc_lookup[rel_cooc] = len(self._rel_cooc_lookup)
def _add_triple_to_input(self, t, j):
(rel, subj, obj) = t
r_i = self._rel_ids.get(rel, 0)
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
rels = self._tuple_rels_lookup.get((s_i, o_i))
if rels:
for i in xrange(len(rels)):
if rels[i] != r_i:
cooc_id = self._rel_cooc_lookup.get((r_i, rels[i]))
if cooc_id:
self._sparse_indices.append([j, i])
self._sparse_values.append(cooc_id)
self._max_cols = max(self._max_cols, len(rels) + 1)
# default relation
self._sparse_indices.append([j, len(rels)])
else:
self._sparse_indices.append([j, 0])
self._sparse_values.append(len(self._rel_cooc_lookup))
def _scoring_f(self):
with tf.device("/cpu:0"):
E_neighbour_weights = tf.get_variable("E_tup_r", [len(self._rel_cooc_lookup) + 1, 1])
# weighted sum of tuple rel embeddings
sparse_tensor = tf.SparseTensor(self._sparse_indices_input, self._sparse_values_input, self._shape_input)
score = tf.nn.embedding_lookup_sparse(E_neighbour_weights, sparse_tensor, None, combiner="sum")
score = tf.reshape(score, [-1])
return score
class ModelF(AbstractKBScoringModel):
def _init_inputs(self):
# create tuple to rel lookup
self.__tuple_lookup = dict()
for (rel, subj, obj), _, typ in self._kb.get_all_facts():
if typ.startswith("train"):
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
t = (s_i, o_i)
if t not in self.__tuple_lookup:
self.__tuple_lookup[t] = len(self.__tuple_lookup)
self._rel_input = tf.placeholder(tf.int64, shape=[None], name="rel")
self._rel_in = np.zeros([self._batch_size], dtype=np.int64)
self._tuple_input = tf.placeholder(tf.int64, shape=[None], name="tuple")
self._tuple_in = np.zeros([self._batch_size], dtype=np.int64)
self._feed_dict = {}
def _add_triple_to_input(self, t, j):
(rel, subj, obj) = t
r_i = self._kb.get_id(rel, 0)
self._rel_in[j] = r_i
s_i = self._kb.get_id(subj, 1)
o_i = self._kb.get_id(obj, 2)
self._tuple_in[j] = self.__tuple_lookup[(s_i, o_i)]
def _finish_adding_triples(self, batch_size):
if batch_size < self._batch_size:
self._feed_dict[self._rel_input] = self._rel_in[:batch_size]
self._feed_dict[self._tuple_input] = self._tuple_in[:batch_size]
else:
self._feed_dict[self._rel_input] = self._rel_in
self._feed_dict[self._tuple_input] = self._tuple_in
def _scoring_f(self):
with tf.device("/cpu:0"):
E_rels = tf.get_variable("E_r", [len(self._kb.get_symbols(0)), self._size])
E_tups = tf.get_variable("E_t", [len(self.__tuple_lookup), self._size])
self.e_rel = tf.tanh(tf.nn.embedding_lookup(E_rels, self._rel_input))
self.e_tup = tf.tanh(tf.nn.embedding_lookup(E_tups, self._tuple_input))
return tf_util.batch_dot(self.e_rel, self.e_tup)
class CombinedModel(AbstractKBScoringModel):
def __init__(self, models, kb, size, batch_size, is_train=True, num_neg=200, learning_rate=1e-2, l2_lambda=0.0,
is_batch_training=False, composition=None, share_vars=False):
self._models = []
self.__name = '_'.join(models)
if composition:
self.__name = composition + "__" + self.__name
with vs.variable_scope(self.name()):
for m in models:
self._models.append(model.create_model(kb, size, batch_size, False, num_neg, learning_rate,
l2_lambda, False, composition=composition, type=m))
AbstractKBScoringModel.__init__(self, kb, size, batch_size, is_train, num_neg, learning_rate,
l2_lambda, is_batch_training)
def name(self):
return self.__name
def _scoring_f(self):
weights = map(lambda _: tf.Variable(float(1)), xrange(len(self._models)-1))
scores = [self._models[0]._scores]
for i in xrange(len(self._models)-1):
scores.append(self._models[i+1]._scores * weights[i])
return tf.reduce_sum(tf.pack(scores), 0)
def _add_triple_to_input(self, t, j):
for m in self._models:
m._add_triple_to_input(t, j)
def _finish_adding_triples(self, batch_size):
for m in self._models:
m._finish_adding_triples(batch_size)
for m in self._models:
self._feed_dict.update(m._get_feed_dict())
def _start_adding_triples(self):
for m in self._models:
m._start_adding_triples()
self._feed_dict = dict()