forked from docker/genai-stack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bot.py
176 lines (141 loc) · 5.04 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import streamlit as st
from streamlit.logger import get_logger
from langchain.callbacks.base import BaseCallbackHandler
from langchain.graphs import Neo4jGraph
from dotenv import load_dotenv
from utils import (
create_vector_index,
)
from chains import (
load_embedding_model,
load_llm,
configure_llm_only_chain,
configure_qa_rag_chain,
generate_ticket,
)
load_dotenv(".env")
url = os.getenv("NEO4J_URI")
username = os.getenv("NEO4J_USERNAME")
password = os.getenv("NEO4J_PASSWORD")
ollama_base_url = os.getenv("OLLAMA_BASE_URL")
embedding_model_name = os.getenv("EMBEDDING_MODEL")
llm_name = os.getenv("LLM")
# Remapping for Langchain Neo4j integration
os.environ["NEO4J_URL"] = url
logger = get_logger(__name__)
# if Neo4j is local, you can go to http://localhost:7474/ to browse the database
neo4j_graph = Neo4jGraph(url=url, username=username, password=password)
embeddings, dimension = load_embedding_model(
embedding_model_name, config={"ollama_base_url": ollama_base_url}, logger=logger
)
create_vector_index(neo4j_graph, dimension)
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
llm = load_llm(llm_name, logger=logger, config={"ollama_base_url": ollama_base_url})
llm_chain = configure_llm_only_chain(llm)
rag_chain = configure_qa_rag_chain(
llm, embeddings, embeddings_store_url=url, username=username, password=password
)
# Streamlit UI
styl = f"""
<style>
/* not great support for :has yet (hello FireFox), but using it for now */
.element-container:has([aria-label="Select RAG mode"]) {{
position: fixed;
bottom: 33px;
background: white;
z-index: 101;
}}
.stChatFloatingInputContainer {{
bottom: 20px;
}}
/* Generate ticket text area */
textarea[aria-label="Description"] {{
height: 200px;
}}
</style>
"""
st.markdown(styl, unsafe_allow_html=True)
def chat_input():
user_input = st.chat_input("What coding issue can I help you resolve today?")
if user_input:
with st.chat_message("user"):
st.write(user_input)
with st.chat_message("assistant"):
st.caption(f"RAG: {name}")
stream_handler = StreamHandler(st.empty())
result = output_function(
{"question": user_input, "chat_history": []}, callbacks=[stream_handler]
)["answer"]
output = result
st.session_state[f"user_input"].append(user_input)
st.session_state[f"generated"].append(output)
st.session_state[f"rag_mode"].append(name)
def display_chat():
# Session state
if "generated" not in st.session_state:
st.session_state[f"generated"] = []
if "user_input" not in st.session_state:
st.session_state[f"user_input"] = []
if "rag_mode" not in st.session_state:
st.session_state[f"rag_mode"] = []
if st.session_state[f"generated"]:
size = len(st.session_state[f"generated"])
# Display only the last three exchanges
for i in range(max(size - 3, 0), size):
with st.chat_message("user"):
st.write(st.session_state[f"user_input"][i])
with st.chat_message("assistant"):
st.caption(f"RAG: {st.session_state[f'rag_mode'][i]}")
st.write(st.session_state[f"generated"][i])
with st.expander("Not finding what you're looking for?"):
st.write(
"Automatically generate a draft for an internal ticket to our support team."
)
st.button(
"Generate ticket",
type="primary",
key="show_ticket",
on_click=open_sidebar,
)
with st.container():
st.write(" ")
def mode_select() -> str:
options = ["Disabled", "Enabled"]
return st.radio("Select RAG mode", options, horizontal=True)
name = mode_select()
if name == "LLM only" or name == "Disabled":
output_function = llm_chain
elif name == "Vector + Graph" or name == "Enabled":
output_function = rag_chain
def open_sidebar():
st.session_state.open_sidebar = True
def close_sidebar():
st.session_state.open_sidebar = False
if not "open_sidebar" in st.session_state:
st.session_state.open_sidebar = False
if st.session_state.open_sidebar:
new_title, new_question = generate_ticket(
neo4j_graph=neo4j_graph,
llm_chain=llm_chain,
input_question=st.session_state[f"user_input"][-1],
)
with st.sidebar:
st.title("Ticket draft")
st.write("Auto generated draft ticket")
st.text_input("Title", new_title)
st.text_area("Description", new_question)
st.button(
"Submit to support team",
type="primary",
key="submit_ticket",
on_click=close_sidebar,
)
display_chat()
chat_input()