forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport.py
68 lines (51 loc) · 2 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Creates a simple TF-Hub Module.
The module has a single default signature that computes a*x+b. Where 'a' and 'b'
are variables in the graph. Before export, the Module is "trained" by explicitly
setting those variables to the magic numbers that make it compute:
0.5 * x + 2 # Half plus two.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
def half_plus_two():
a = tf.get_variable("a", shape=[])
b = tf.get_variable("b", shape=[])
x = tf.placeholder(tf.float32)
y = a*x + b
hub.add_signature(inputs=x, outputs=y)
def export_module(path):
spec = hub.create_module_spec(half_plus_two)
with tf.Graph().as_default():
module = hub.Module(spec)
init_a = tf.assign(module.variable_map["a"], 0.5)
init_b = tf.assign(module.variable_map["b"], 2.0)
init_vars = tf.group([init_a, init_b])
with tf.Session() as session:
session.run(init_vars)
module.export(path, session)
def main(argv):
try:
_, export_path, = argv
except ValueError:
raise ValueError("Usage: %s <export-path>" % argv[0])
if tf.gfile.Exists(export_path):
raise RuntimeError("Path %s already exists." % export_path)
export_module(export_path)
if __name__ == "__main__":
tf.app.run(main)