You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We train a classifier model ,run it in pc or darknet without nnpack in arm cpu the result is:
darknet_alexeyAB/darknet classifier predict dataset.data darknet.cfg darknet_last.weights 1590749416321855_number.jpg
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 256 x 256 x 3 -> 256 x 256 x 16 0.057 BF
1 max 2 x 2/ 2 256 x 256 x 16 -> 128 x 128 x 16 0.001 BF
2 conv 32 3 x 3/ 1 128 x 128 x 16 -> 128 x 128 x 32 0.151 BF
3 max 2 x 2/ 2 128 x 128 x 32 -> 64 x 64 x 32 0.001 BF
4 conv 64 3 x 3/ 1 64 x 64 x 32 -> 64 x 64 x 64 0.151 BF
5 max 2 x 2/ 2 64 x 64 x 64 -> 32 x 32 x 64 0.000 BF
6 conv 128 3 x 3/ 1 32 x 32 x 64 -> 32 x 32 x 128 0.151 BF
7 max 2 x 2/ 2 32 x 32 x 128 -> 16 x 16 x 128 0.000 BF
8 conv 256 3 x 3/ 1 16 x 16 x 128 -> 16 x 16 x 256 0.151 BF
9 max 2 x 2/ 2 16 x 16 x 256 -> 8 x 8 x 256 0.000 BF
10 conv 512 3 x 3/ 1 8 x 8 x 256 -> 8 x 8 x 512 0.151 BF
11 max 2 x 2/ 2 8 x 8 x 512 -> 4 x 4 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 4 x 4 x 512 -> 4 x 4 x1024 0.151 BF
13 avg 4 x 4 x1024 -> 1024
14 conv 15 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 15 0.000 BF
15 softmax 15
Total BFLOPS 0.965
Loading weights from darknet_last.weights...
seen 64
Done!
256 256
1590749416321855_number.jpg: Predicted in 0.221806 seconds.
letter_E: 0.999997
seven: 0.000001
It is correct result . But we run same model ,same picture it is wrong result:
../darknet classifier predict dataset.data darknet.cfg darknet_last.weights 1590749416321855_number.jpg
OpenCV isn't used
batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 256 x 256 x 3 -> 256 x 256 x 16 0.057 BF
1 max 2x 2/ 2 256 x 256 x 16 -> 128 x 128 x 16 0.001 BF
2 conv 32 3 x 3/ 1 128 x 128 x 16 -> 128 x 128 x 32 0.151 BF
3 max 2x 2/ 2 128 x 128 x 32 -> 64 x 64 x 32 0.001 BF
4 conv 64 3 x 3/ 1 64 x 64 x 32 -> 64 x 64 x 64 0.151 BF
5 max 2x 2/ 2 64 x 64 x 64 -> 32 x 32 x 64 0.000 BF
6 conv 128 3 x 3/ 1 32 x 32 x 64 -> 32 x 32 x 128 0.151 BF
7 max 2x 2/ 2 32 x 32 x 128 -> 16 x 16 x 128 0.000 BF
8 conv 256 3 x 3/ 1 16 x 16 x 128 -> 16 x 16 x 256 0.151 BF
9 max 2x 2/ 2 16 x 16 x 256 -> 8 x 8 x 256 0.000 BF
10 conv 512 3 x 3/ 1 8 x 8 x 256 -> 8 x 8 x 512 0.151 BF
11 max 2x 2/ 2 8 x 8 x 512 -> 4 x 4 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 4 x 4 x 512 -> 4 x 4 x1024 0.151 BF
13 avg 4 x 4 x1024 -> 1024
14 conv 15 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 15 0.000 BF
15 softmax 15
Total BFLOPS 0.965
avg_outputs = 162369
Loading weights from darknet_last.weights...
seen 64, trained: 160050 K-images (2500 Kilo-batches_64)
Done! Loaded 16 layers from weights-file
classes = 15, output in cfg = 15
256 256
1590749416321855_number.jpg: Predicted in 116.049000 milli-seconds.
one: 0.146572
two: 0.143859
We train a classifier model ,run it in pc or darknet without nnpack in arm cpu the result is:
darknet_alexeyAB/darknet classifier predict dataset.data darknet.cfg darknet_last.weights 1590749416321855_number.jpg
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 256 x 256 x 3 -> 256 x 256 x 16 0.057 BF
1 max 2 x 2/ 2 256 x 256 x 16 -> 128 x 128 x 16 0.001 BF
2 conv 32 3 x 3/ 1 128 x 128 x 16 -> 128 x 128 x 32 0.151 BF
3 max 2 x 2/ 2 128 x 128 x 32 -> 64 x 64 x 32 0.001 BF
4 conv 64 3 x 3/ 1 64 x 64 x 32 -> 64 x 64 x 64 0.151 BF
5 max 2 x 2/ 2 64 x 64 x 64 -> 32 x 32 x 64 0.000 BF
6 conv 128 3 x 3/ 1 32 x 32 x 64 -> 32 x 32 x 128 0.151 BF
7 max 2 x 2/ 2 32 x 32 x 128 -> 16 x 16 x 128 0.000 BF
8 conv 256 3 x 3/ 1 16 x 16 x 128 -> 16 x 16 x 256 0.151 BF
9 max 2 x 2/ 2 16 x 16 x 256 -> 8 x 8 x 256 0.000 BF
10 conv 512 3 x 3/ 1 8 x 8 x 256 -> 8 x 8 x 512 0.151 BF
11 max 2 x 2/ 2 8 x 8 x 512 -> 4 x 4 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 4 x 4 x 512 -> 4 x 4 x1024 0.151 BF
13 avg 4 x 4 x1024 -> 1024
14 conv 15 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 15 0.000 BF
15 softmax 15
Total BFLOPS 0.965
Loading weights from darknet_last.weights...
seen 64
Done!
256 256
1590749416321855_number.jpg: Predicted in 0.221806 seconds.
letter_E: 0.999997
seven: 0.000001
It is correct result . But we run same model ,same picture it is wrong result:
../darknet classifier predict dataset.data darknet.cfg darknet_last.weights 1590749416321855_number.jpg
OpenCV isn't used
batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 256 x 256 x 3 -> 256 x 256 x 16 0.057 BF
1 max 2x 2/ 2 256 x 256 x 16 -> 128 x 128 x 16 0.001 BF
2 conv 32 3 x 3/ 1 128 x 128 x 16 -> 128 x 128 x 32 0.151 BF
3 max 2x 2/ 2 128 x 128 x 32 -> 64 x 64 x 32 0.001 BF
4 conv 64 3 x 3/ 1 64 x 64 x 32 -> 64 x 64 x 64 0.151 BF
5 max 2x 2/ 2 64 x 64 x 64 -> 32 x 32 x 64 0.000 BF
6 conv 128 3 x 3/ 1 32 x 32 x 64 -> 32 x 32 x 128 0.151 BF
7 max 2x 2/ 2 32 x 32 x 128 -> 16 x 16 x 128 0.000 BF
8 conv 256 3 x 3/ 1 16 x 16 x 128 -> 16 x 16 x 256 0.151 BF
9 max 2x 2/ 2 16 x 16 x 256 -> 8 x 8 x 256 0.000 BF
10 conv 512 3 x 3/ 1 8 x 8 x 256 -> 8 x 8 x 512 0.151 BF
11 max 2x 2/ 2 8 x 8 x 512 -> 4 x 4 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 4 x 4 x 512 -> 4 x 4 x1024 0.151 BF
13 avg 4 x 4 x1024 -> 1024
14 conv 15 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 15 0.000 BF
15 softmax 15
Total BFLOPS 0.965
avg_outputs = 162369
Loading weights from darknet_last.weights...
seen 64, trained: 160050 K-images (2500 Kilo-batches_64)
Done! Loaded 16 layers from weights-file
classes = 15, output in cfg = 15
256 256
1590749416321855_number.jpg: Predicted in 116.049000 milli-seconds.
one: 0.146572
two: 0.143859
the model and test images is there:
classifier_model.zip
The text was updated successfully, but these errors were encountered: