.. -*- mode: rst -*-

ND DIAL: Imbalanced Algorithms
==============================

Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learning algorithms (implemented via TensorFlow). Below is a list of the methods currently implemented.

* Undersampling
	1. Random Majority Undersampling with/without Replacement

* Oversampling
    1. SMOTE - Synthetic Minority Over-sampling Technique [1]_
    2. DAE - Denoising Autoencoder [2]_ (*TensorFlow*)
    3. GAN - Generative Adversarial Network [3]_ (*TensorFlow*)
    4. VAE - Variational Autoencoder [4]_ (*TensorFlow*)

* Ensemble Sampling
    1. RAMOBoost [5]_
    2. RUSBoost [6]_
    3. SMOTEBoost [7]_

References:
-----------

.. [1] : N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. Kegelmeyer. "SMOTE: Synthetic Minority Over-Sampling Technique." Journal of Artificial Intelligence Research (JAIR), 2002.

.. [2] : P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion". Journal of Machine Learning Research (JMLR), 2010.

.. [3] : I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. "Generative Adversarial Nets". Advances in Neural Information Processing Systems 27 (NIPS), 2014.

.. [4] : D. P. Kingma and M. Welling. "Auto-Encoding Variational Bayes". arXiv preprint arXiv:1312.6114, 2013.

.. [5] : S. Chen, H. He, and E. A. Garcia. "RAMOBoost: Ranked Minority Oversampling in Boosting". IEEE Transactions on Neural Networks, 2010.

.. [6] : C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano. "RUSBoost: Improving Classification Performance when Training Data is Skewed". International Conference on Pattern Recognition (ICPR), 2008.

.. [7] : N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. "SMOTEBoost: Improving Prediction of the Minority Class in Boosting." European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), 2003.