-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathREADME.rst.release.template
222 lines (168 loc) · 7.56 KB
/
README.rst.release.template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
``bezier``
==========
Helper for B |eacute| zier Curves, Triangles, and Higher Order Objects
|linux-build| |macos-build| |windows-build| |coverage|
|docs| |zenodo| |JOSS|
.. |eacute| unicode:: U+000E9 .. LATIN SMALL LETTER E WITH ACUTE
:trim:
This library provides:
* Support for B |eacute| zier `Curves`_
* Support for B |eacute| zier `Triangles`_
Dive in and take a look!
.. image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/images/triangles6Q_and_7Q.png
:align: center
Why B |eacute| zier?
--------------------
A B |eacute| zier curve (and triangle, etc.) is a parametric curve
that uses the `Bernstein basis`_:
.. image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/images/bernstein_basis.png
:align: center
to define a curve as a linear combination:
.. image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/images/bezier_defn.png
:align: center
This comes from the fact that the weights sum to one:
.. image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/images/sum_to_unity.png
:align: center
This can be generalized to higher order by considering three, four, etc.
non-negative weights that sum to one (in the above we have the two
non-negative weights ``s`` and ``1 - s``).
Due to their simple form, B |eacute| zier curves:
* can easily model geometric objects as parametric curves, triangles, etc.
* can be computed in an efficient and numerically stable way via
`de Casteljau's algorithm`_
* can utilize convex optimization techniques for many algorithms (such as
curve-curve intersection), since curves (and triangles, etc.)
are convex combinations of the basis
Many applications -- as well as the history of their development --
are described in
"The Bernstein polynomial basis: A centennial `retrospective`_",
for example;
* aids physical analysis using finite element methods (`FEM`_) on
isogeometric models by using geometric shape functions called
`NURBS`_ to represent data
* used in robust control of dynamic systems; utilizes convexity to
create a hull of curves
.. _retrospective: https://dx.doi.org/10.1016/j.cagd.2012.03.001
.. _Bernstein basis: https://en.wikipedia.org/wiki/Bernstein_polynomial
.. _de Casteljau's algorithm: https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
.. _FEM: https://en.wikipedia.org/wiki/Finite_element_method
.. _NURBS: https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
Installing
----------
The ``bezier`` Python package can be installed with `pip`_:
.. code-block:: console
$ python -m pip install --upgrade bezier
$ python3.12 -m pip install --upgrade bezier
$ # To install optional dependencies, e.g. SymPy
$ python -m pip install --upgrade bezier[full]
To install a pure Python version (i.e. with no binary extension):
.. code-block:: console
$ BEZIER_NO_EXTENSION=true \
> python -m pip install --upgrade bezier --no-binary=bezier
``bezier`` is open-source, so you can alternatively grab the source
code from `GitHub`_ and install from source.
.. _pip: https://pip.pypa.io
.. _GitHub: https://github.com/dhermes/bezier/
Getting Started
---------------
For example, to create a curve:
.. code-block:: python
>>> import bezier
>>> import numpy as np
>>> nodes1 = np.asfortranarray([
... [0.0, 0.5, 1.0],
... [0.0, 1.0, 0.0],
... ])
>>> curve1 = bezier.Curve(nodes1, degree=2)
The intersection (points) between two curves can
also be determined:
.. code-block:: python
>>> nodes2 = np.asfortranarray([
... [0.0, 0.25, 0.5, 0.75, 1.0],
... [0.0, 2.0 , -2.0, 2.0 , 0.0],
... ])
>>> curve2 = bezier.Curve.from_nodes(nodes2)
>>> intersections = curve1.intersect(curve2)
>>> intersections
array([[0.31101776, 0.68898224, 0. , 1. ],
[0.31101776, 0.68898224, 0. , 1. ]])
>>> s_vals = np.asfortranarray(intersections[0, :])
>>> points = curve1.evaluate_multi(s_vals)
>>> points
array([[0.31101776, 0.68898224, 0. , 1. ],
[0.42857143, 0.42857143, 0. , 0. ]])
and then we can plot these curves (along with their
intersections):
.. code-block:: python
>>> import seaborn
>>> seaborn.set()
>>>
>>> ax = curve1.plot(num_pts=256)
>>> _ = curve2.plot(num_pts=256, ax=ax)
>>> lines = ax.plot(
... points[0, :], points[1, :],
... marker="o", linestyle="None", color="black")
>>> _ = ax.axis("scaled")
>>> _ = ax.set_xlim(-0.125, 1.125)
>>> _ = ax.set_ylim(-0.0625, 0.625)
.. image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/images/curves1_and_13.png
:align: center
For API-level documentation, check out the B |eacute| zier Python
`package`_ documentation.
Development
-----------
To work on adding a feature or to run the functional tests, see the
`DEVELOPMENT doc`_ for more information on how to get
started.
Citation
--------
For publications that use ``bezier``, there is a `JOSS paper`_ that can be
cited. The following BibTeX entry can be used:
.. code-block:: rest
@article{{Hermes2017,
doi = {{10.21105/joss.00267}},
url = {{https://doi.org/10.21105%2Fjoss.00267}},
year = {{2017}},
month = {{Aug}},
publisher = {{The Open Journal}},
volume = {{2}},
number = {{16}},
pages = {{267}},
author = {{Danny Hermes}},
title = {{Helper for B{{\'{{e}}}}zier Curves, Triangles, and Higher Order Objects}},
journal = {{The Journal of Open Source Software}}
}}
A **particular** version of this library can be cited via a Zenodo DOI; see
a full `list by version`_.
.. _JOSS paper: https://joss.theoj.org/papers/10.21105/joss.00267
.. _list by version: https://zenodo.org/search?page=1&size=20&q=conceptrecid:%22838307%22&sort=-version&all_versions=True
License
-------
``bezier`` is made available under the Apache 2.0 License. For more
details, see `the LICENSE`_.
.. _Curves: https://bezier.readthedocs.io/en/{version}/python/reference/bezier.curve.html
.. _Triangles: https://bezier.readthedocs.io/en/{version}/python/reference/bezier.triangle.html
.. _package: https://bezier.readthedocs.io/en/{version}/python/reference/bezier.html
.. _DEVELOPMENT doc: https://github.com/dhermes/bezier/blob/{version}/DEVELOPMENT.rst
.. _the LICENSE: https://github.com/dhermes/bezier/blob/{version}/LICENSE
.. |docs| image:: https://readthedocs.org/projects/bezier/badge/?version={version}
:target: https://bezier.readthedocs.io/en/{version}/
:alt: Documentation Status
.. |linux-build| image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/linux-passing.svg?sanitize=true
:target: https://github.com/dhermes/bezier/actions/runs/{linux_run}
:alt: Linux Build (GitHub Actions)
.. |macos-build| image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/macos-passing.svg?sanitize=true
:target: https://github.com/dhermes/bezier/actions/runs/{macos_run}
:alt: macOS Build (GitHub Actions)
.. |windows-build| image:: https://raw.githubusercontent.com/dhermes/bezier/{version}/docs/windows-passing.svg?sanitize=true
:target: https://github.com/dhermes/bezier/actions/runs/{windows_run}
:alt: Windows Build (GitHub Actions)
.. |coverage| image:: https://s3.amazonaws.com/assets.coveralls.io/badges/coveralls_100.svg
:target: https://coveralls.io/builds/{coveralls_build}
:alt: Code Coverage
.. |zenodo| image:: https://zenodo.org/badge/73047402.svg
:target: https://zenodo.org/badge/latestdoi/73047402
:alt: Zenodo DOI for ``bezier``
.. |JOSS| image:: https://joss.theoj.org/papers/10.21105/joss.00267/status.svg
:target: https://dx.doi.org/10.21105/joss.00267
:alt: "Journal of Open Source Science" DOI for ``bezier``