-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_segmentation.py
362 lines (327 loc) · 18 KB
/
train_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from unet import Unet
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
import matplotlib.pyplot as plt
import numpy as np
import logging
import argparse
import wandb
import sys
import os
import molgrid
from skimage.morphology import binary_dilation
from skimage.morphology import cube
torch.backends.cudnn.benchmark = True
def get_mask(coordinateset,center,gmaker):
# Create ground truth tensor
c2grid = molgrid.Coords2Grid(gmaker, center=center)
origtypes = torch.ones(coordinateset.coords.tonumpy().shape[0], 1)
radii = torch.ones((coordinateset.coords.tonumpy().shape[0]))
grid_gen = c2grid(torch.tensor(coordinateset.coords.tonumpy()), origtypes, radii)
grid_np = grid_gen.numpy()
grid_np=binary_dilation(grid_np[0],cube(3))
grid_np =grid_np.astype(float)
return torch.tensor(np.expand_dims(grid_np,axis=0))
def parse_args(argv=None):
'''Return argument namespace and commandline'''
parser = argparse.ArgumentParser(description='Train neural net on .types data.')
parser.add_argument('--train_types', type=str, required=True,
help="training types file")
parser.add_argument('--upsample', type=str, required=False,
help="Type of Upsampling", default=None)
parser.add_argument('--test_types', type=str, required=True,
help="test types file")
parser.add_argument('-d', '--data_dir', type=str, required=False,
help="Root directory of data", default="")
parser.add_argument('--train_recmolcache', type=str, required=False,
help="path to train receptor molcache", default="")
parser.add_argument('--test_recmolcache', type=str, required=False,
help="path to test receptor molcache", default="")
parser.add_argument('-e', '--num_epochs', type=int, required=False,
help="Number of epochs", default=50)
parser.add_argument('-b', '--batch_size', type=int, required=False,
help="Batch size for training, default 50", default=40)
parser.add_argument('--num_classes', type=int, required=False,
help="Output channels for predicted masks, default 1", default=1)
parser.add_argument('-s', '--seed', type=int, required=False, help="Random seed, default 0", default=0)
parser.add_argument('-r', '--run_name', type=str, help="name for wandb run", required=False)
parser.add_argument('-o', '--outprefix', type=str, help="Prefix for output files", required=True)
parser.add_argument('--checkpoint', type=str, required=False, help="file to continue training from")
parser.add_argument('--solver', type=str, help="Solver type. Default is SGD, Nesterov or Adam", default='SGD')
parser.add_argument('--step_reduce', type=float,
help="Reduce the learning rate by this factor with dynamic stepping, default 0.1",
default=0.1)
parser.add_argument('--step_end_cnt', type=float, help='Terminate training after this many lr reductions',
default=3)
parser.add_argument('--step_when', type=int,
help="Perform a dynamic step (reduce base_lr) when training has not improved after these many epochs, default 2",
default=15)
parser.add_argument('--base_lr', type=float, help='Initial learning rate, default 0.01', default=0.01)
parser.add_argument('--momentum', type=float, help="Momentum parameters, default 0.9", default=0.9)
parser.add_argument('--weight_decay', type=float, help="Weight decay, default 0.001", default=0.001)
parser.add_argument('--clip_gradients', type=float, default=10.0, help="Clip gradients threshold (default 10)")
args = parser.parse_args(argv)
argdict = vars(args)
line = ''
for (name, val) in list(argdict.items()):
if val != parser.get_default(name):
line += ' --%s=%s' % (name, val)
return (args, line)
def cal_dice_coeff(input, target):
eps = 0.0001
inter = torch.dot(input.view(-1), target.view(-1))
union = torch.sum(input) + torch.sum(target) + eps
t = (2 * inter.float() + eps) / union.float()
return t
def cal_IOU(input, target):
inter = torch.dot(input.view(-1), target.view(-1))
union = torch.sum(input) + torch.sum(target)
t = (inter.float()) / (union.float() - inter.float())
return t
def get_model_gmaker_eproviders(args):
# train example provider
eptrain = molgrid.ExampleProvider(shuffle=True, stratify_receptor=False,balanced=False,data_root=args.data_dir,recmolcache=args.train_recmolcache,iteration_scheme=molgrid.IterationScheme.LargeEpoch,default_batch_size=args.batch_size,cache_structs=True)
eptrain.populate(args.train_types)
print(round(eptrain.large_epoch_size()/args.batch_size))
# test example provider
eptest = molgrid.ExampleProvider(shuffle=False, stratify_receptor=False,data_root=args.data_dir,iteration_scheme=molgrid.IterationScheme.LargeEpoch,default_batch_size=args.batch_size,recmolcache=args.test_recmolcache,balanced=False,cache_structs=True)
eptest.populate(args.test_types)
print(round(eptest.large_epoch_size()/args.batch_size))
# gridmaker with defaults
gmaker_img = molgrid.GridMaker(dimension=32)
dims = gmaker_img.grid_dimensions(eptrain.num_types())
#grid maker for ground truth tensor
gmaker_mask = molgrid.GridMaker(dimension=32,binary=True,gaussian_radius_multiple=-1,resolution=0.5)
return gmaker_img, gmaker_mask,eptrain, eptest
def initialize_model(model, args):
def weights_init(m):
'''initialize model weights with xavier'''
if isinstance(m, (nn.Conv3d, nn.ConvTranspose3d)):
torch.nn.init.kaiming_normal_(m.weight)
torch.nn.init.zeros_(m.bias)
if isinstance(m, nn.BatchNorm3d):
torch.nn.init.ones_(m.weight)
torch.nn.init.zeros_(m.bias)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint)
model.cuda()
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.apply(weights_init)
def train(model, train_loader, test_loader,gmaker_img,gmaker_mask, args, device):
checkpoint = None
if args.checkpoint:
checkpoint = torch.load(args.checkpoint)
initialize_model(model, args)
wandb.watch(model)
num_epochs = args.num_epochs
outprefix = args.outprefix
prev_total_loss_snap = ''
prev_total_accuracy_snap = ''
prev_total_dice_snap = ''
prev_total_IOU_snap = ''
prev_snap = ''
initial = 0
# global_step = 0
box_size = 65
last_test = 0
if args.checkpoint:
initial = checkpoint['Epoch']
if 'SGD' in args.solver:
optimizer = torch.optim.SGD(model.parameters(), lr=args.base_lr, momentum=args.momentum,
weight_decay=args.weight_decay)
elif 'Nesterov' in args.solver:
optimizer = torch.optim.SGD(model.parameters(), lr=args.base_lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=True)
elif 'Adam' in args.solver:
optimizer = torch.optim.Adam(model.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)
else:
print("No test solver argument passed (SGD, Adam, Nesterov)")
sys.exit(1)
if args.checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', factor=args.step_reduce,
patience=args.step_when, verbose=True)
if args.checkpoint:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
Bests = {}
Bests['train_epoch'] = 0
Bests['test_loss'] = torch.from_numpy(np.asarray(np.inf))
Bests['test_accuracy'] = torch.from_numpy(np.asarray([0]))
Bests['dice_coeff'] = torch.from_numpy(np.asarray([0]))
Bests['IOU'] = torch.from_numpy(np.asarray([0]))
if args.checkpoint:
Bests = checkpoint['Bests']
criterion = nn.BCEWithLogitsLoss()
dims = gmaker_img.grid_dimensions(eptrain.num_types())
tensor_shape = (args.batch_size,) + dims
mask_shape=(args.batch_size,1) + dims[1:]
#create tensor for input, ground truth/mask, centers and labels
input_tensor = torch.zeros(tensor_shape, dtype=torch.float32, device=device, requires_grad=True)
mask_tensor = torch.empty(mask_shape, dtype=torch.float32, device=device, requires_grad=True)
float_labels = torch.zeros((args.batch_size, 4), dtype=torch.float32, device=device)
logging.info("Started Training.....")
for epoch in range(initial, num_epochs):
model.train()
#running_acc = 0.0
#running_loss = 0.0
for batch in train_loader:
# extract labels and centers of batch datapoints
batch.extract_labels(float_labels)
centers = float_labels[:, 1:]
for b in range(args.batch_size):
center = molgrid.float3(float(centers[b][0]), float(centers[b][1]), float(centers[b][2]))
#intialise transformer for rotaional augmentation
transformer = molgrid.Transform(center, 0, True)
# random rotation on input protein
transformer.forward(batch[b], batch[b])
# Update input tensor with b'th datapoint of the batch
gmaker_img.forward(center, batch[b].coord_sets[0], input_tensor[b])
with torch.no_grad():
# Update mask tensor with b'th datapoint ground truth of the batch
mask_tensor[b]=get_mask(batch[b].coord_sets[-1],center,gmaker_mask).to(device)
optimizer.zero_grad()
# Take only the first 14 channels as that is for proteins, other 14 are ligands and will remain 0.
masks_pred = model(input_tensor[:,:14])
loss = criterion(masks_pred, mask_tensor)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradients)
optimizer.step()
#running_loss += loss.item()
_, predictions = torch.max(masks_pred, 1)
acc=torch.mean(
(mask_tensor == predictions).float())# Pixel-wise accuracy can be misleading in case of class imbalance
#running_acc += acc
pred = torch.sigmoid(masks_pred)
pred = (pred > 0.5).float()
dice= cal_dice_coeff(pred, mask_tensor)
IOU = cal_IOU(pred,mask_tensor)
wandb.log({'train_loss': loss.item(), 'train_accuracy': acc,'train_dice':dice, 'train_IOU': IOU })
#train_acc = running_acc / (round(train_loader.large_epoch_size()/args.batch_size))
#train_loss = running_loss / (round(train_loader.large_epoch_size()/args.batch_size))
#print("epoch "+ epoch +" train_acc "+ train_acc + " train_loss " + train_loss)
test_loss, test_acc, dice_coeff,IOU = test(model, test_loader,gmaker_img ,gmaker_mask, args, criterion,device)
scheduler.step(dice_coeff)
if test_loss < Bests['test_loss']:
Bests['test_loss'] = test_loss
wandb.run.summary["test_loss"] = Bests['test_loss']
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'Bests': Bests,
'Epoch': epoch + 1}, outprefix + '_best_test_loss_' + str(epoch + 1) + '.pth.tar')
if prev_total_loss_snap:
os.remove(prev_total_loss_snap)
prev_total_loss_snap = outprefix + '_best_test_loss_' + str(epoch + 1) + '.pth.tar'
if test_acc > Bests['test_accuracy']:
Bests['test_accuracy'] = test_acc
wandb.run.summary["test_accuracy"] = Bests['test_accuracy']
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'Bests': Bests,
'Epoch': epoch + 1}, outprefix + '_best_test_accuracy_' + str(epoch + 1) + '.pth.tar')
if prev_total_accuracy_snap:
os.remove(prev_total_accuracy_snap)
prev_total_accuracy_snap = outprefix + '_best_test_accuracy_' + str(epoch + 1) + '.pth.tar'
if IOU > Bests['IOU']:
Bests['IOU'] = IOU
wandb.run.summary["IOU"] = Bests['IOU']
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'Bests': Bests,
'Epoch': epoch + 1}, outprefix + '_best_test_IOU_' + str(epoch + 1) + '.pth.tar')
if prev_total_IOU_snap:
os.remove(prev_total_IOU_snap)
prev_total_IOU_snap = outprefix + '_best_test_IOU_' + str(epoch + 1) + '.pth.tar'
if dice_coeff > Bests['dice_coeff']:
Bests['dice_coeff'] = dice_coeff
wandb.run.summary["dice_coeff"] = Bests['dice_coeff']
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'Bests': Bests,
'Epoch': epoch + 1}, outprefix + '_best_dice_coeff_' + str(epoch + 1) + '.pth.tar')
if prev_total_dice_snap:
os.remove(prev_total_dice_snap)
prev_total_dice_snap = outprefix + '_best_dice_coeff_' + str(epoch + 1) + '.pth.tar'
Bests['train_epoch'] = epoch
if epoch - Bests['train_epoch'] >= args.step_when and optimizer.param_groups[0]['lr'] <= (
(args.step_reduce) ** args.step_end_cnt) * args.base_lr:
last_test = 1
print(
"Epoch {}, total_test_loss: {:.3f},total_test_accuracy: {:.3f},total_dice_coeff: {:.3f}, Best_test_loss: {:.3f},Best_test_accuracy: {:.3f},Best_dice_coeff: {:.3f},learning_Rate: {:.7f}".format(
epoch + 1, test_loss, test_acc, dice_coeff, Bests['test_loss'], Bests['test_accuracy'],
Bests['dice_coeff'], optimizer.param_groups[0]['lr']))
wandb.log({'test_loss': test_loss, 'test_accuracy': test_acc, 'dice_coeff': dice_coeff,
'learning rate': optimizer.param_groups[0]['lr']})
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'Bests': Bests,
'Epoch': epoch + 1}, outprefix + '_' + str(epoch + 1) + '.pth.tar')
if prev_snap:
os.remove(prev_snap)
prev_snap = outprefix + '_' + str(epoch + 1) + '.pth.tar'
if last_test:
return Bests
logging.info("Finished Training")
def test(model, test_loader, gmaker_img,gmaker_mask, args, criterion,device):
model.eval()
running_acc = 0.0
running_loss = 0.0
tot_dice = 0.0
tot_IOU=0.0
dice_coeff = None
dims = gmaker_img.grid_dimensions(eptrain.num_types())
tensor_shape = (args.batch_size,) + dims
mask_shape = (args.batch_size, 1) + dims[1:]
#create tensor for input, ground truth/mask, centers and labels
input_tensor = torch.zeros(tensor_shape, dtype=torch.float32, device=device, requires_grad=True)
mask_tensor = torch.empty(mask_shape, dtype=torch.float32, device=device, requires_grad=True)
float_labels = torch.zeros((args.batch_size, 4), dtype=torch.float32, device=device)
for batch in test_loader:
# extract labels and centers of batch datapoints
batch.extract_labels(float_labels)
centers = float_labels[:, 1:]
for b in range(args.batch_size):
center = molgrid.float3(float(centers[b][0]), float(centers[b][1]), float(centers[b][2]))
transformer = molgrid.Transform(center, 0, True)
transformer.forward(batch[b], batch[b])
# Update input tensor with b'th datapoint of the batch
gmaker_img.forward(center, batch[b].coord_sets[0], input_tensor[b])
with torch.no_grad():
# Update mask tensor with b'th datapoint ground truth of the batch
mask_tensor[b] = get_mask(batch[b].coord_sets[-1], center, gmaker_mask).to(device)
# Take only the first 14 channels as that is for proteins, other 14 are ligands and will remain 0.
masks_pred = model(input_tensor[:,:14])
loss = criterion(masks_pred, mask_tensor)
_, predictions = torch.max(masks_pred, 1)
running_loss += loss.detach().cpu()
running_acc += torch.mean((mask_tensor == predictions).float()).detach().cpu()
pred = torch.sigmoid(masks_pred)
pred = (pred > 0.5).float()
tot_dice += cal_dice_coeff(pred, mask_tensor).detach().cpu()
tot_IOU += cal_IOU(pred,mask_tensor).detach().cpu()
test_loss = running_loss / (round(test_loader.large_epoch_size()/args.batch_size))
test_acc = running_acc / (round(test_loader.large_epoch_size()/args.batch_size))
dice_coeff = tot_dice / (round(test_loader.large_epoch_size()/args.batch_size))
IOU = tot_IOU/(round(test_loader.large_epoch_size()/args.batch_size))
return test_loss, test_acc, dice_coeff,IOU
if __name__ == "__main__":
(args, cmdline) = parse_args()
wandb.init(project='deep-pocket', name=args.run_name)
gmaker_img, gmaker_mask,eptrain, eptest=get_model_gmaker_eproviders(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Unet(args.num_classes, args.upsample)
model.to(device)
model=nn.DataParallel(model)
Bests = train(model, eptrain, eptest,gmaker_img,gmaker_mask, args, device)
print(Bests)