-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
68 lines (56 loc) · 1.85 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
"""setup.py"""
import os
import sys
from setuptools import setup
from setuptools.command.test import test as TestCommand
class Tox(TestCommand):
user_options = [("tox-args=", "a", "Arguments to pass to tox")]
def initialize_options(self):
TestCommand.initialize_options(self)
self.tox_args = None
def finalize_options(self):
TestCommand.finalize_options(self)
self.test_args = []
self.test_suite = True
def run_tests(self):
import tox
import shlex
if self.tox_args:
errno = tox.cmdline(args=shlex.split(self.tox_args))
else:
errno = tox.cmdline(self.test_args)
sys.exit(errno)
classifiers = [
"Development Status :: 3 - Alpha",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
]
requires = ["setuptools", "numpy", "scipy", "numdifftools"]
extras_require = {
"reST": ["Sphinx"],
}
if os.environ.get("READTHEDOCS", None):
extras_require["reST"].append("recommonmark")
setup(
name="mcup",
version="0.1.1",
description="MCUP will propagate uncertainty of your data points to the parameters of the regression using a Monte Carlo approach.",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
keywords="physics, stats, error, uncertainty, propagation",
author="Daniel Herman",
author_email="[email protected]",
url="https://github.com/detrin/MCUP",
classifiers=classifiers,
packages=["mcup"],
data_files=[],
install_requires=requires,
include_package_data=True,
extras_require=extras_require,
tests_require=["tox"],
cmdclass={"test": Tox},
)