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Abstract

We first outline the core invariant derivation from price for the mod-
ified Yieldspace curve used in Hyperdrive. We then derive the algorithm
for computing the maximum long trade amount that is possible for a given
Hyperdrive market pool. Finally, we derive a targeted long trade amount
for adjusting the Hyperdrive market to a desired fixed rate. The tar-
geted long proposal is also summarized in Hyperdrive #775. The issues
we found along the way are summarized in this audit report, Hyperdrive
#774.

1 Max long
1.1 The Hyperdrive-Yieldspace AMM
For a deployed market pool, the Hyperdrive-Yieldspace AMM uses a modified
constant power sum formula to derive a price relationship between two assets.
In this case, our assets are vault shares, z, and bonds, y. When base, x, is
supplied to the market, it is converted into shares, z, by depositing the base
into an underlying yield bearing vault. The Hyperdrive AMM then supplies
bonds, y, such that k is kept constant. The two are related via an invariance
formula (yieldspace.rs, l285):

k = µ
c
−Tsx1−Ts + y1−Ts

= c
µ (µz)

1−Ts + y1−Ts
(1)

where Ts is the time stretch constant, c is the current vault share price, and
µ is the share price of the vault when the Hyperdrive pool was created (aka
initial_share_price).
The relationship between shares and bonds is also described using the spot price.
Our generic equation for spot price (max.rs, l154 and yieldspace.rs, l36) is given
by:

p =
(

µz
y

)Ts

(2)
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NOTE
We can use the procedure outlined in Appendix C of the YieldSpace
paper to relate the price and invariant formula. Recall from the paper:

In any invariant-based liquidity provision formula, the price
at any point along the curve is equal to the negation of the
derivative at that point
px = − dy

dx

However, in Hyperdrive we consider a price that is <= 1, while the
YieldSpace paper assumes it is >= 1, which we can express as an inver-
sion: phyperdrive = 1

pyieldspace
. Given this, and that base is converted to

shares via x = cz, we can derive the invariant from the price as such:

− dy
dx = p−1

− dy
dx =

(
µz
y

)−Ts

− dy
dx =

(
µx

c

)−Ts
yTs

−y−Ts dy
dx =

(
µx

c

)−Ts

−
∫

y−Tsdy =

∫ (
µx

c

)−Ts
dx

− 1
1−Ts

y1−Ts + α1 = µ−Ts 1
c−Ts

(
1

1−Ts
x1−Ts + α2

)
−y1−Ts + α′

1 =
(
µ
c

)−Ts
x1−Ts + α′′

2

α′
1 − α′′

2 =
(
µ
c

)−Ts
x1−Ts + y1−Ts

k = c
µ

(
µ
c

)1−Ts
x1−Ts + y1−Ts

k = c
µ

(
µ
c x
)1−Ts

+ y1−Ts

k = c
µ (µz)

1−Ts + y1−Ts

Hyperdrive computes fees that are removed from the system whenever a trade is
made. The fee constants are denoted with φ, where φf refers to the flat fee, φc

refers to the curve fee, and φg is the governance fee. The open-long governance
and curve fees can be written as a function of the base transferred, ∆x, and
initial spot price (fees.rs):

Φc(∆x) = φc

(
1
p0

− 1
)
∆x (3)

Φg(∆x) = φgp0Φc(∆x) = φgφc (1− p0)∆x (4)

where p0 is the spot price before the trade, i.e. the current spot price. We do
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not include a function for the flat fee because it is only applied when closing a
long.

NOTE
We will use capital letters to denote functions and lower-case letters to
denote scalars.

The pool’s maximum spot price such that the trade doesn’t result in negative
interest is given by (max.rs, line 147 and derived in issue #655):

pmax =
(1−φf )

1+φc

(
1
p0

−1
)
(1−φf )

(5)

1.2 Deriving the target base and bond amounts
Our goal is to determine the maximum long that can be opened for a given
market, which will result in the max spot price. The two price equations can be
used to derive the target reserve levels for a pool with the max spot price. These
are given as target shares, zt, and target bonds, yt. First we will solve for the
target bond reserves in terms of the target share reserves by setting equations
(2) and (5) to be equal max.rs, l162:

p = pmax(
µzt
yt

)Ts

=
(1−φf )

1+φc

(
1
p0

−1
)
(1−φf )

µzt
yt

=

(
(1−φf )

1+φc

(
1
p0

−1
)
(1−φf )

) 1
Ts

yt =
µzt (1−φf )

1+φc

(
1
p0

−1
)
(1−φf )


1
Ts

yt = µzt

(
1+φc(

1
p0

−1)(1−φf )

1−φf

) 1
Ts

(6)

NOTE That last step required some algebra acrobatics:

1x

y


c = 1

xc

yc

= 1

y−c

x−c

= 1y

x


−c =

(
y
x

)c

Using the invariant equation we can solve for zt isolated, without yt max.rs,
l175:
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k = c
µ (µzt)

1−Ts + y1−Ts
t

k = c
µ (µzt)

1−Ts +

µzt

(
1+φc(

1
p0

−1)(1−φf )

1−φf

) 1
Ts


1−Ts

k = (µzt)
1−Ts

 c
µ +

(
1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1−Ts

Ts


(µzt)

1−Ts = k

/ c
µ +

(
1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1−Ts

Ts



µzt =

k

/ c
µ +

(
1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1−Ts

Ts




1
1−Ts

zt =
1
µ

k

/ c
µ +

(
1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1−Ts

Ts




1
1−Ts

(7)

Next, we plug this result into our earlier equation to get yt isolated (max.rs,
l202):

yt = µzt

(
1+φc(

1
p0

−1)(1−φf )

1−φf

) 1
Ts

=

k

/ c
µ +

(
1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1−Ts

Ts




1
1−Ts (

1+φc

(
1
p0

−1
)
(1−φf )

1−φf

) 1
Ts

(8)
These target reserve levels then correspond to opening a long for a delta base
or bonds (max.rs, l213 and max.rs, l219, respectively):

∆x = c(zt − z) (9)
∆y = (y − yt)− Φc(∆x) (10)

If the pool is solvent after opening this long, then we’re done. Otherwise, we
will use a numerical approach to estimate the actual trade amount.
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1.3 Iterative refinement of the maximum long amount
Opening a long causes a change in both base and bonds and is impacted by fees.
Without a closed-form solution, we will need a numerical approach to estimate
the actual trade amount for most pool conditions. Specifically, we will use
Newton’s method with the pool’s solvency as our objective function. Solvency
captures the protocol’s ability to pay its debts by measuring its assets versus
its liabilities and minimum reserves. Assets are the share reserves, z. Liabilities
are the aggregate long exposure. Minimum share reserves are set in a pool’s
configuration, as zmin. Liabilities and reserves are converted to common units
(base or shares) via the share price, c.

S(z) = assets − liabilities − minimum_reserves
= z − l

c − zmin

= 1
c (x− l − xmin)

(11)

For a single long, the change in exposure is given by the amount of bonds
returned, ∆l = Y (∆x) (aka the amount of longs opened, or long amount). The
amount of bonds returned can be broken down into a component without fees
and a fee component (open.rs, l11):

Y (∆x) = Y∗(∆x)− Φc(∆x) (12)

where, for some initial bond reserves, y0, and base reserves, x0 (or alternatively
initial effective share reserves, z0),

Y∗(∆x) = y0 −
(
k − c

µ

(
µ
(
z0 +

∆x
c

))1−Ts
) 1

1−Ts

= y0 −
(
k − c

µ

(
µ
c (x0 +∆x)

)1−Ts
) 1

1−Ts

= y0 −
(
k −

(
µ
c

)−Ts
(x0 +∆x)

1−Ts

) 1
1−Ts

(13)

When a long is opened, the share reserves is increased by (max.rs, l315):

∆z =
∆x−Φg(∆x)

c (14)

Using these components, we can derive our objective function as the solvency
after a change in shares (max.rs, l329):

S(∆z) = (z0 +∆z)−
(
l0+lchk+∆l

c

)
− zmin

∴

S(∆x) = 1
c (x0 +∆x− Φg (∆x)− l0 − lchk − Y (∆x)− xmin)

(15)

where lchk is the checkpoint long exposure and is assumed to be >= 0. We
add the checkpoint exposure to account for negative exposure from non-netted
shorts in the checkpoint. We will keep everything in units of base, but see
max.rs, l336 for the implementation using units of shares.
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In summary, our optimization objective is

argmax
∆x

−S(∆x)

s.t.S(∆x) > 0
(16)

To perform Newton’s method we also need the gradient of the objective, starting
with the long amount:

Y ′(∆x) = Y ′
∗(∆x)− Φ′

c(∆x) (17)

where,

Y ′
∗(∆x) =

(
µ
c

)−Ts
(x0 +∆x)

−Ts

(
k −

(
µ
c

)−Ts
(x0 +∆x)

1−Ts

) Ts

1−Ts

=
(
µ(z0 +

∆x
c )
)−Ts

(
k − c

µ

(
µ(z0 +

∆x
c

)1−Ts
) Ts

1−Ts

(18)

We also need the gradient of the governance and curve fee calculations:

Φ′
c(∆x) = φc(

1
p0

− 1) (19)

Φ′
g(∆x) = φgp0Φ

′
c(∆x) (20)

Together, these give us the solvency gradient:

S′(∆x) = 1
c

(
1− Φ′

g(∆x)− Y ′(∆x)
)

(21)

We want to discover a ∆x to push the pool to be as close to insolvent as possible,
without passing over to actually being insolvent. We achieve this by maximizing
the negative solvency, since solvency decreases as more longs are opened. For
each iteration of Newton’s method (max.rs, l73):

∆xn+1 = ∆xn − S(∆xn)
S′(∆xn)

= ∆xn + S(∆xn)
−S′(∆xn)

(22)

In the actual implementation, we will iteratively compute solvency for the new
∆xn until the system is no longer solvent, and then back up one step to return
the maximum long.

1.4 Deriving an initial guess for the max long amount
The rate of convergence for Newton’s method is improved with a better ini-
tial guess, ∆xn=0. To derive an initial guess, we can use a conservative price
estimate, pr, to approximate Y (∆x) (max.rs, l253):
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Y (∆x) ≈ ∆x
pr

− Φc(∆x)

≈ ∆x
(

1
pr

− φc

(
1
p0

− 1
)) (23)

We define our initial solvency as in equation (11): s0 = 1
c (x0 − l0 − xmin).

Plugging this into our solvency function S(∆x), we can calculate the share
reserves and exposure after opening a long with ∆x base as (max.rs, l259):

Z(∆x) = z0 +
∆x−g(∆x)

c

Z(∆x) = 1
c (x0 +∆x− Φg(∆x))

(24)

L(∆x) = l0 + lchk + 2Y (∆x)−∆x+Φg(∆x)

= l0 + lchk + 2p−1
r ∆x− 2Φc(∆x)−∆x+Φg(∆x)

(25)

These formulae allow us to calculate the approximate ending solvency of (max.rs,
l271):

S(∆x) ≈ Z(∆x)− L(∆x)
c − zmin

≈ 1
c (x0 +∆x− Φg(∆x)− L(∆x)− xmin)

≈ 1
c

(
x0 + 2∆x− 2Φg(∆x)− l0 − lchk − 2Ỹ (∆x)− xmin

) (26)

If we rearrange to represent the initial solvency, s0, then we can solve for ∆x
(max.rs, l278):

s0 − 1
c lchk + 2

c

(
∆x− Φg(∆x)− Ỹ (∆x)

)
≈ 0

s0 − 1
c lchk + 2

c

(
∆x− Φg(∆x)− Ỹ (∆x)

)
≈ 0

s0 − 1
c lchk + 2

c∆x
(
1− φgφc (1− p0)− 1

pr
+ φc

(
1
p0

− 1
))

≈ 0

(27)

∴

∆x ≈ c
2

−(s0−(
1
c lchk))

1−φgφc(1−p0)−p−1
r +φc

(
p−1
0 −1

)
∆x ≈ c

2

s0+
1
c lchk

p−1
r +φgφc(1−p0)−φc

(
p−1
0 −1

)
−1

(28)

This gives us the initial value for ∆x0 in the iterative process.

Discrepancy
This does not match max.rs, l73, which has the numerator equal to
s0 + lchk.
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2 Targeted long
2.1 Targeted long for a given rate
We can follow a similar derivation to get a long that results in a target fixed
rate (aka spot rate). The fixed rate for a Hyperdrive pool given the spot price,
p, and the annualized position duration, d̄ is given by:

r = (1− p)(pd̄)−1 (29)

Note that the conversion from a “price” (which is computed at a single point in
time) to a “rate” (which is computed using at least 2 points in time) is automatic
because of the predetermined position duration. Solving for p, we get:

(1− p)(pd̄)−1 = r
1
pd̄

− 1
d̄
= r

1
p
1
d̄
= r + 1

d̄

1
p = d

(
r + 1

d̄

)
p =

(
rd̄+ 1

)−1

(30)

As before, we use p =
(

µzt
yt

)Ts

to find target reserve bonds, yt, in terms of a
target rate, rt (utils.rs, l112):(

µzt
yt

)Ts

= 1
rtd̄+1

µzt
yt

=
(

1
rtd̄+1

) 1
Ts

yt =
µzt(
1

rtd̄+1

) 1
Ts

yt = µzt
(
rtd̄+ 1

) 1
Ts

(31)

We then use the invariant formula from Equation (1) to determine the share
reserves required for a given rate.
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c
µ (µzt)

1−Ts + y1−Ts
t = k

c
µ (µzt)

1−Ts +

(
µzt

(
rtd̄+ 1

) 1
Ts

)1−Ts

= k

c
µ (µzt)

1−Ts + (µzt)
1−Ts

((
rtd̄+ 1

) 1
Ts

)1−Ts

= k

(µzt)
1−Ts

(
c
µ +

(
(rtd̄+ 1)

1
Ts

)1−Ts
)

= k

(µzt)
1−Ts = k

c
µ+

(rtd̄+1)

1
Ts

1−Ts

zt =
1
µ

 k

c
µ+

(rtd̄+1)

1
Ts

1−Ts


1

1−Ts

(32)
And finally, we plug this in to equation (31) to isolate the target bonds, yt.

yt =

 k

c
µ+

(
rtd̄+1

) 1
Ts

1−Ts


1−Ts (

rtd̄+ 1
) 1
Ts (33)

Using these targets in Equations (9) and (10), we can compute the long base
amount to hit a target rate assuming an infinitesimally-derived price (i.e. spot
price). The approximate reserve levels for a target rate are much more likely to
be solvent than the reserves after an approximated maximum long, but we still
have to deal with the discrepancy between the spot price and the realized price
that arises from a realistic trade size.

2.2 Iteratively finding a trade for a target rate
We need to know how the rate changes when base reserves change, R(∆x),
which will become our new objective function. The derivative of this objective
will give us the updates in each step of the refinement algorithm.
Picking up from (12), we can write the full equation for the bonds received for
a given base provided from a long trade:

Y (∆x) = y0 −
(
k −

(
µ
c

)−Ts
(x0 +∆x)

1−Ts

) 1
1−Ts − φc

(
1
p0

− 1
)
∆x (34)

9



This is also the amount that is subtracted from the pool, i.e. ∆ypool = Y (∆x)
and thus ynew-pool = yold-pool − Y (∆x). The corresponding delta that would be
applied to the pool’s effective share reserves is:

∆ze,pool =
∆x
c − Φg(∆x)− ζ

= 1
c (∆x− φgφc (1− p0))− ζ

(35)

where ζ is the pool’s zeta adjustment state, which is unchanged when opening
positions. The instantaneous spot price given pool reserve levels (ze, y) is

p =
(

µze
y

)Ts

(36)

Together these allow us to derive the new share price after opening a long
(open.rs, l52):

P (∆x) =
(

µ(ze0,pool+∆ze,pool)
(y−∆ypool)

)Ts

P (∆x) =

(
µ
(
ze0,pool+

∆x
c −Φg(∆x)−ζ

)
(y−Y (∆x))

)Ts

=

 µ
(
ze0+

1
c (∆x−φgφc(1−p0))−ζ

)
y0−

y0−
(
k−

(µ
c

)−Ts
(x0+∆x)1−Ts

) 1
1−Ts −φc

(
1
p0

−1
)
∆x





Ts (37)

where again p0, y0, ze0, and x0 are the spot price, bond reserves, effective share
reserves, and base reserves before the trade, respectively.
We will also need the derivative of this function:

P ′(∆x) = Ts

(
y0 − Y (∆x)

µ
(
ze0 +

∆x
c − Φg(∆x)− ζ

))1−Ts

(y0 − Y (∆x))
(
µ
c − Φ′

g(∆x)
)
+ Y ′(∆x)µ

(
ze0 +

∆x
c − Φg(∆x)− ζ

)
(y0 − Y (∆x))

2 (38)

Given this, we can write the rate:

R(∆x) = (1− P (∆x))
(
P (∆x)d̄

)−1 (39)

And the derivative of the rate:
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R′(∆x) =
−P ′(∆x)P (∆x)d̄− (1− P (∆x))

(
P ′(∆x)d̄

)
(P (∆x)d̄)2

=
−P ′(∆x)P (∆x)d̄− P ′(∆x)d̄+ P ′(∆x)P (∆x)d̄

(P (∆x)d̄)2

=
−P ′(∆x)

P (∆x)2d̄

(40)

We can now write our optimization function for the Newton updates. l(∆x) =
R(∆x)− rt shifts the trading curve down towards the zero-point.

argmax
∆x

(R(∆x)− rt)

s.t.S(∆x) > 0
(41)

As before, the derivative of loss gives us our ∆x:

∆xn+1 = ∆x− l(∆x)

l′(∆x)

= ∆xn − R(∆x)− rt
R′(∆x)

= ∆xn +
R(∆x)− rt
−R′(∆x)

(42)
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