-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
299 lines (268 loc) · 12.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 12 20:47:01 2021
@author: simone
"""
import os
import numpy as np
import tensorflow as tf
from vit_keras import vit
import tensorflow_addons as tfa
from omegaconf import OmegaConf
from tensorflow.keras import Model
from typing import List, Optional, Tuple
from tensorflow.keras.metrics import MeanIoU
from tensorflow.keras.regularizers import L2
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.layers import Dense, \
Dropout, GlobalMaxPooling2D, Activation, \
TimeDistributed, LSTM, Bidirectional, Layer
from tensorflow.keras.losses import Reduction
from tensorflow.keras.initializers import RandomNormal
from utils import resize, ignore_labels, \
p2i, flatten, iT, affine_patch_level, \
apply_affine_transform_batch, revert_affine_transform_batch, \
extract_nonoverlapping_patches_inverse, extract_nonoverlapping_patches, fix_json_ndarray
from tensorflow.keras.losses import BinaryCrossentropy, CategoricalCrossentropy
from dataloader import IMAGE, IMAGE_ET, CLASS_LABELS, SEG_LABELS, AFFINE, AFFINE_ET
def get_model(config: OmegaConf, *args, **kwargs):
'''
Return VIT-PCM for WSSS task
'''
backbone = ViT(config, name='patch_encoder')
features = p2i(backbone.output)
features_hv = HVBiLSTM(hidden_dim=config.MODEL.HIDDEN_SIZE,
dropout=config.SOLVER.DROPOUT, \
name='patch_conditioning', *args, **kwargs)(features)
output = PC(num_categories=config.DATASET.NUM_CLASSES,
dropout=config.SOLVER.DROPOUT, \
name='patch_classifier', *args, **kwargs)(features_hv)
model = VITPCM(inputs=backbone.input, outputs=output, \
config=config, name='vit_pcm', *args, **kwargs)
if config.MODEL.INIT_MODEL is not None:
print(f'[INFO]: load model from {config.MODEL.INIT_MODEL}')
model.load_weights(
config.MODEL.INIT_MODEL,
by_name=True,skip_mismatch=True)
return model
def ViT(config: OmegaConf, *args, **kwargs):
vit_builder = dict(ViT_L16=vit.vit_l16,ViT_B16=vit.vit_b16,ViT_S16=vit.vit_s16,ViT_B8=vit.vit_b8)
backbone = vit_builder[config.MODEL.NAME](image_size = 384,
pretrained = True, include_top = False, pretrained_top = False,
weights = "imagenet21k+imagenet2012")
# remove [cls] token
features = backbone.get_layer('Transformer/encoder_norm').output[:,1:]
return Model(inputs=backbone.input, outputs=features, *args, **kwargs)
class VITPCM(Model):
'''
This class implements a Wrapper for the VITPCM for WSSS problem
'''
def __init__(self, config: OmegaConf, *args, **kwargs):
super(VITPCM, self).__init__(*args, **kwargs)
self.config = config
f1_macro = tfa.metrics.F1Score(
num_classes=self.config.DATASET.NUM_CLASSES-1, # no background
average='macro', threshold=0.5,name= 'f1_macro')
f1_micro = tfa.metrics.F1Score(
num_classes=self.config.DATASET.NUM_CLASSES-1, # no background
average='micro', threshold=0.5,name= 'f1_micro')
mean_iou = MeanIoUWrapper(self.config.DATASET.NUM_CLASSES,name='mean_iou')
self.metrics_list = [f1_macro, f1_micro, mean_iou]
def compile(self, optimizer):
super(VITPCM, self).compile()
self.optimizer = optimizer
def train_step(self, data):
images = data.get(IMAGE)
class_labels = data.get(CLASS_LABELS)
if self.config.SOLVER.LOSS_ET:
# inference: stop gradient, no dropout
outputs_sg = self(images,training=False)
with tf.GradientTape() as tape:
outputs = self(images,training=True)
record = dict()
if self.config.SOLVER.LOSS_MCE:
record.update(compute_mce_loss(outputs, class_labels))
if self.config.SOLVER.LOSS_REG:
record.update(compute_reg_loss(self))
if self.config.SOLVER.LOSS_ET:
outputs_et = self.merged_step(data.get(IMAGE_ET), training=True)
record.update(compute_cce_loss(outputs_sg, outputs_et, \
data.get(AFFINE), data.get(AFFINE_ET), class_labels, self.config.MODEL.PATCH_SIZE, \
self.config.IMAGE.SIZE.SCALE))
record.update(dict(loss=sum(record.values())))
gradients = tape.gradient(record.get('loss'), self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
record.update(compute_metrics(self.metrics, \
outputs_sg if self.config.SOLVER.LOSS_ET else outputs, class_labels, \
data.get(SEG_LABELS), self.config.DATASET.IGNORE_LABEL))
record.update(dict(lr=self.optimizer.lr))
return record
def test_step(self, data):
outputs = self(data.get(IMAGE),training=False)
record = compute_mce_loss(outputs, data.get(CLASS_LABELS))
record.update(compute_metrics(self.metrics, outputs, \
data.get(CLASS_LABELS), data.get(SEG_LABELS), \
self.config.DATASET.IGNORE_LABEL))
return record
def infer(self, image, class_labels: Optional[tf.Tensor] = None) -> tf.Tensor:
preds = self(image,training=False).get('preds')
return preds if class_labels is None else merge_class_labels(preds, class_labels)
def merged_step(self, batch, training=True):
B = tf.shape(batch)[0]
D = self.config.IMAGE.SIZE.SCALE
merged_batch = extract_nonoverlapping_patches_inverse(
tf.ones((B//4,D*2,D*2,3)),batch[:4*B//4],size=D)
merged_output = self(merged_batch, training=training)
return merged_output
@property
def metrics(self):
return self.metrics_list
def warmup(self):
self.freeze(False)
self.get_layer('patch_conditioning').trainable = True
self.get_layer('patch_classifier').trainable = True
self.show()
def unfreeze(self):
n_block = sum([1 for layer in self.layers if 'encoderblock' in layer.name])
trainables = ['Transformer/encoder_norm'] + [f'Transformer/encoderblock_{i}' \
for i in range(n_block-self.config.MODEL.NUM_BLOCK_UNFREEZE,n_block)]
for layer_name in trainables:
self.get_layer(layer_name).trainable = True
self.show()
def freeze(self, summary=True):
for layer in self.layers:
self.get_layer(layer.name).trainable = False
self.show()
def show(self):
self.summary(expand_nested=True, show_trainable=True)
class HVBiLSTM(Layer):
'''
HVBiLSTM for patch conditioning
'''
def __init__(self,
hidden_dim: int = 384,
dropout: float = 0.1,
*args, **kwargs):
super(HVBiLSTM, self).__init__(*args, **kwargs)
self.drop = Dropout(dropout)
self.HBiLSTM = TimeDistributed(
Bidirectional(
LSTM(hidden_dim,dropout=dropout,
return_sequences=True,name='lstm_rows'),
name='bidirection_rows'),
name='temporal_rows')
self.VBiLSTM = TimeDistributed(
Bidirectional(
LSTM(hidden_dim,dropout=dropout,
return_sequences=True,name='lstm_cols'),
name='bidirection_cols'),
name='temporal_cols')
def build(self, input_shape):
self.HBiLSTM.build(input_shape)
self.VBiLSTM.build(input_shape)
def call(self, features, training=True):
features_grid = self.drop(features,training=training) # B x (Gh x Gw) x F -> B x Gh x Gw x F
features_grid_h = self.HBiLSTM(features_grid) # B x Gh x Gw x F -> B x Gh x Gw x D1
features_grid_v = iT(self.VBiLSTM(iT(features_grid))) # B x Gh x Gw x F -> B x Gw x Gh x D2
features_hv = tf.concat([features_grid_h, features_grid_v],axis=-1) # B x Gh x Gw x D
return features_hv
class PC(Layer):
'''
Patch Classifier and Max Pooling
'''
def __init__(self,
num_categories: int = 21,
dropout: float = 0.1,
*args,**kwargs):
super(PC, self).__init__(*args,**kwargs)
self.drop = Dropout(dropout)
self.layer = Dense(units=num_categories,
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05, seed=None),
kernel_regularizer=L2(0.01),use_bias=False,activation=None,name='classifier')
self.softmax = Activation('softmax', name='preds')
self.pool = GlobalMaxPooling2D(data_format='channels_last',keepdims=False)
def build(self, input_shape):
self.layer.build(input_shape)
def call(self, features, training=True):
drop = self.drop(features, training=training)
logits = self.layer(drop)
preds = self.softmax(logits)
pooled_preds = self.pool(preds)
return dict(logits=logits, preds=preds, pooled_preds=pooled_preds, features=features)
def compute_reg_loss(model):
loss = tf.reduce_mean(model.get_layer('patch_classifier').losses)
return {f"reg_loss": loss}
def compute_cce_loss(outputs, outputs_t, affine, affine_t, labels, patch_size, scale_size):
affine_t = affine_patch_level(affine_t, patch_size)
affine = affine_patch_level(affine, patch_size)
preds = apply_affine_transform_batch(revert_affine_transform_batch(outputs.get('preds'), affine),affine_t)
preds_t = extract_nonoverlapping_patches(outputs_t.get('preds'),size=scale_size//patch_size)
cce_loss = CategoricalCrossentropy(reduction=Reduction.NONE,name='cce')
loss = tf.reduce_mean(cce_loss(y_true=tf.stop_gradient(merge_class_labels(preds, labels)), y_pred=preds_t))
return {f"cce_loss": loss}
def compute_mce_loss(outputs, labels):
bce_loss = BinaryCrossentropy(reduction=Reduction.NONE,name='bce')
loss = tf.reduce_mean(bce_loss(y_true=labels, y_pred=outputs.get('pooled_preds')))
return {f"bce_loss": loss}
def merge_class_labels(preds, labels):
H, W = tf.shape(preds)[1], tf.shape(preds)[2]
# incorporate gt class labels observation -> push to 0 absent categories
preds *= tf.cast(tf.tile(labels[:,None,None],(1,H,W,1)),preds.dtype)
# incorporate gt class labels observation -> push to 1 max prob for present categories
preds = tf.math.divide_no_nan(preds, tf.reduce_max(preds, axis=(1,2), keepdims=True))
# map again into categorical distribution
preds = tf.math.divide_no_nan(preds, tf.reduce_sum(preds, axis=-1, keepdims=True))
return preds
def compute_metrics(metrics, outputs, class_labels, seg_labels, ignore_label):
'''
This method permits to compute metrics for nested structure
'''
for m in metrics:
if 'iou' in m.name:
preds = merge_class_labels(outputs.get('preds'), class_labels)
preds = resize(preds,(tf.shape(seg_labels)[1],tf.shape(seg_labels)[2]))
preds = tf.argmax(preds,axis=-1,output_type=seg_labels.dtype)
preds, seg_labels = flatten(preds), flatten(seg_labels)
preds = ignore_labels(preds, seg_labels, ignore_label)
seg_labels = ignore_labels(seg_labels, seg_labels, ignore_label)
m.update_state(seg_labels, preds)
else:
# exclude background
m.update_state(class_labels[...,1:],outputs.get('pooled_preds')[...,1:])
return {m.name: m.result() for m in metrics}
class ConfusionMatrixCallback(Callback):
def __init__(self, basedir=''):
super(ConfusionMatrixCallback, self).__init__()
self.basedir = os.path.join(basedir,'conf_matrix')
self.epoch = 0
os.makedirs(self.basedir, exist_ok = True)
def on_test_begin(self, batch, logs=None):
self.epoch+=1
def on_test_end(self, batch, logs=None):
miou = [m for m in self.model.metrics if 'iou' in m.name][0]
filepath = os.path.join(self.basedir,\
f'cm_{self.epoch}_miou_{miou.result().numpy().round(4)}.npy')
np.save(file=filepath, arr=miou.total_cm.numpy())
tf.print(f'Saved confusion matrix: {filepath}.')
class MeanIoUWrapper(MeanIoU):
@fix_json_ndarray
def summary(self):
''' adapted from https://github.com/kazuto1011/deeplab-pytorch/blob/master/libs/utils/metric.py'''
hist = self.total_cm.numpy()
acc = np.diag(hist).sum() / hist.sum()
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
valid = hist.sum(axis=1) > 0 # added
mean_iu = np.nanmean(iu[valid])
freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
cls_iu = dict(zip(range(self.num_classes), iu))
return {
"Pixel Accuracy": acc,
"Mean Accuracy": acc_cls,
"Frequency Weighted IoU": fwavacc,
"Mean IoU": mean_iu,
"Class IoU": cls_iu,
}