-
Notifications
You must be signed in to change notification settings - Fork 526
/
Copy pathdata_system.py
823 lines (750 loc) · 28.1 KB
/
data_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# SPDX-License-Identifier: LGPL-3.0-or-later
import collections
import logging
import warnings
from functools import (
cached_property,
)
from typing import (
Any,
Optional,
Union,
)
import numpy as np
import deepmd.utils.random as dp_random
from deepmd.common import (
expand_sys_str,
make_default_mesh,
)
from deepmd.env import (
GLOBAL_NP_FLOAT_PRECISION,
)
from deepmd.utils.data import (
DataRequirementItem,
DeepmdData,
)
from deepmd.utils.out_stat import (
compute_stats_from_redu,
)
from deepmd.utils.path import (
DPPath,
)
log = logging.getLogger(__name__)
class DeepmdDataSystem:
"""Class for manipulating many data systems.
It is implemented with the help of DeepmdData
"""
def __init__(
self,
systems: list[str],
batch_size: int,
test_size: int,
rcut: Optional[float] = None,
set_prefix: str = "set",
shuffle_test: bool = True,
type_map: Optional[list[str]] = None,
optional_type_map: bool = True,
modifier=None,
trn_all_set=False,
sys_probs=None,
auto_prob_style="prob_sys_size",
sort_atoms: bool = True,
) -> None:
"""Constructor.
Parameters
----------
systems
Specifying the paths to systems
batch_size
The batch size
test_size
The size of test data
rcut
The cut-off radius. Not used.
set_prefix
Prefix for the directories of different sets
shuffle_test
If the test data are shuffled
type_map
Gives the name of different atom types
optional_type_map
If the type_map.raw in each system is optional
modifier
Data modifier that has the method `modify_data`
trn_all_set
Use all sets as training dataset. Otherwise, if the number of sets is more than 1, the last set is left for test.
sys_probs : list of float
The probabilitis of systems to get the batch.
Summation of positive elements of this list should be no greater than 1.
Element of this list can be negative, the probability of the corresponding system is determined
automatically by the number of batches in the system.
auto_prob_style : str
Determine the probability of systems automatically. The method is assigned by this key and can be
- "prob_uniform" : the probability all the systems are equal, namely 1.0/self.get_nsystems()
- "prob_sys_size" : the probability of a system is proportional to the number of batches in the system
- "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." :
the list of systems is divided into blocks. A block is specified by `stt_idx:end_idx:weight`,
where `stt_idx` is the starting index of the system, `end_idx` is then ending (not including) index of the system,
the probabilities of the systems in this block sums up to `weight`, and the relatively probabilities within this block is proportional
to the number of batches in the system.
sort_atoms : bool
Sort atoms by atom types. Required to enable when the data is directly fed to
descriptors except mixed types.
"""
# init data
del rcut
self.system_dirs = systems
self.nsystems = len(self.system_dirs)
self.data_systems = []
for ii in self.system_dirs:
self.data_systems.append(
DeepmdData(
ii,
set_prefix=set_prefix,
shuffle_test=shuffle_test,
type_map=type_map,
optional_type_map=optional_type_map,
modifier=modifier,
trn_all_set=trn_all_set,
sort_atoms=sort_atoms,
)
)
# check mix_type format
error_format_msg = (
"if one of the system is of mixed_type format, "
"then all of the systems should be of mixed_type format!"
)
if self.data_systems[0].mixed_type:
for data_sys in self.data_systems[1:]:
assert data_sys.mixed_type, error_format_msg
self.mixed_type = True
else:
for data_sys in self.data_systems[1:]:
assert not data_sys.mixed_type, error_format_msg
self.mixed_type = False
# batch size
self.batch_size = batch_size
is_auto_bs = False
self.mixed_systems = False
if isinstance(self.batch_size, int):
self.batch_size = self.batch_size * np.ones(self.nsystems, dtype=int)
elif isinstance(self.batch_size, str):
words = self.batch_size.split(":")
if "auto" == words[0]:
is_auto_bs = True
rule = 32
if len(words) == 2:
rule = int(words[1])
self.batch_size = self._make_auto_bs(rule)
elif "mixed" == words[0]:
self.mixed_type = True
self.mixed_systems = True
if len(words) == 2:
rule = int(words[1])
else:
raise RuntimeError("batch size must be specified for mixed systems")
self.batch_size = rule * np.ones(self.nsystems, dtype=int)
else:
raise RuntimeError("unknown batch_size rule " + words[0])
elif isinstance(self.batch_size, list):
pass
else:
raise RuntimeError("invalid batch_size")
assert isinstance(self.batch_size, (list, np.ndarray))
assert len(self.batch_size) == self.nsystems
# natoms, nbatches
ntypes = []
for ii in self.data_systems:
ntypes.append(ii.get_ntypes())
self.sys_ntypes = max(ntypes)
self.natoms = []
self.natoms_vec = []
self.nbatches = []
type_map_list = []
for ii in range(self.nsystems):
self.natoms.append(self.data_systems[ii].get_natoms())
self.natoms_vec.append(
self.data_systems[ii].get_natoms_vec(self.sys_ntypes).astype(int)
)
self.nbatches.append(
self.data_systems[ii].get_sys_numb_batch(self.batch_size[ii])
)
type_map_list.append(self.data_systems[ii].get_type_map())
self.type_map = self._check_type_map_consistency(type_map_list)
# ! altered by Marián Rynik
# test size
# now test size can be set as a percentage of systems data or test size
# can be set for each system individually in the same manner as batch
# size. This enables one to use systems with diverse number of
# structures and different number of atoms.
self.test_size = test_size
if isinstance(self.test_size, int):
self.test_size = self.test_size * np.ones(self.nsystems, dtype=int)
elif isinstance(self.test_size, str):
words = self.test_size.split("%")
try:
percent = int(words[0])
except ValueError as e:
raise RuntimeError("unknown test_size rule " + words[0]) from e
self.test_size = self._make_auto_ts(percent)
elif isinstance(self.test_size, list):
pass
else:
raise RuntimeError("invalid test_size")
assert isinstance(self.test_size, (list, np.ndarray))
assert len(self.test_size) == self.nsystems
# init pick idx
self.pick_idx = 0
# derive system probabilities
self.sys_probs = None
self.set_sys_probs(sys_probs, auto_prob_style)
# check batch and test size
for ii in range(self.nsystems):
chk_ret = self.data_systems[ii].check_batch_size(self.batch_size[ii])
if chk_ret is not None and not is_auto_bs and not self.mixed_systems:
warnings.warn(
"system %s required batch size is larger than the size of the dataset %s (%d > %d)"
% (
self.system_dirs[ii],
chk_ret[0],
self.batch_size[ii],
chk_ret[1],
)
)
chk_ret = self.data_systems[ii].check_test_size(self.test_size[ii])
if chk_ret is not None and not is_auto_bs and not self.mixed_systems:
warnings.warn(
"system %s required test size is larger than the size of the dataset %s (%d > %d)"
% (self.system_dirs[ii], chk_ret[0], self.test_size[ii], chk_ret[1])
)
def _load_test(self, ntests=-1) -> None:
self.test_data = collections.defaultdict(list)
for ii in range(self.nsystems):
test_system_data = self.data_systems[ii].get_test(ntests=ntests)
for nn in test_system_data:
self.test_data[nn].append(test_system_data[nn])
@cached_property
def default_mesh(self) -> list[np.ndarray]:
"""Mesh for each system."""
return [
make_default_mesh(
self.data_systems[ii].pbc, self.data_systems[ii].mixed_type
)
for ii in range(self.nsystems)
]
def compute_energy_shift(self, rcond=None, key="energy"):
sys_ener = []
for ss in self.data_systems:
sys_ener.append(ss.avg(key))
sys_ener = np.concatenate(sys_ener)
sys_tynatom = np.array(self.natoms_vec, dtype=GLOBAL_NP_FLOAT_PRECISION)
sys_tynatom = np.reshape(sys_tynatom, [self.nsystems, -1])
sys_tynatom = sys_tynatom[:, 2:]
energy_shift, _ = compute_stats_from_redu(
sys_ener.reshape(-1, 1),
sys_tynatom,
rcond=rcond,
)
return energy_shift.ravel()
def add_dict(self, adict: dict[str, dict[str, Any]]) -> None:
"""Add items to the data system by a `dict`.
`adict` should have items like
.. code-block:: python.
adict[key] = {
"ndof": ndof,
"atomic": atomic,
"must": must,
"high_prec": high_prec,
"type_sel": type_sel,
"repeat": repeat,
}
For the explanation of the keys see `add`
"""
for kk in adict:
self.add(
kk,
adict[kk]["ndof"],
atomic=adict[kk]["atomic"],
must=adict[kk]["must"],
high_prec=adict[kk]["high_prec"],
type_sel=adict[kk]["type_sel"],
repeat=adict[kk]["repeat"],
default=adict[kk]["default"],
dtype=adict[kk].get("dtype"),
output_natoms_for_type_sel=adict[kk].get(
"output_natoms_for_type_sel", False
),
)
def add_data_requirements(
self, data_requirements: list[DataRequirementItem]
) -> None:
"""Add items to the data system by a list of `DataRequirementItem`."""
self.add_dict({rr.key: rr.dict for rr in data_requirements})
def add(
self,
key: str,
ndof: int,
atomic: bool = False,
must: bool = False,
high_prec: bool = False,
type_sel: Optional[list[int]] = None,
repeat: int = 1,
default: float = 0.0,
dtype: Optional[np.dtype] = None,
output_natoms_for_type_sel: bool = False,
) -> None:
"""Add a data item that to be loaded.
Parameters
----------
key
The key of the item. The corresponding data is stored in `sys_path/set.*/key.npy`
ndof
The number of dof
atomic
The item is an atomic property.
If False, the size of the data should be nframes x ndof
If True, the size of data should be nframes x natoms x ndof
must
The data file `sys_path/set.*/key.npy` must exist.
If must is False and the data file does not exist, the `data_dict[find_key]` is set to 0.0
high_prec
Load the data and store in float64, otherwise in float32
type_sel
Select certain type of atoms
repeat
The data will be repeated `repeat` times.
default, default=0.
Default value of data
dtype
The dtype of data, overwrites `high_prec` if provided
output_natoms_for_type_sel : bool
If True and type_sel is True, the atomic dimension will be natoms instead of nsel
"""
for ii in self.data_systems:
ii.add(
key,
ndof,
atomic=atomic,
must=must,
high_prec=high_prec,
repeat=repeat,
type_sel=type_sel,
default=default,
dtype=dtype,
output_natoms_for_type_sel=output_natoms_for_type_sel,
)
def reduce(self, key_out, key_in) -> None:
"""Generate a new item from the reduction of another atom.
Parameters
----------
key_out
The name of the reduced item
key_in
The name of the data item to be reduced
"""
for ii in self.data_systems:
ii.reduce(key_out, key_in)
def get_data_dict(self, ii: int = 0) -> dict:
return self.data_systems[ii].get_data_dict()
def set_sys_probs(
self, sys_probs=None, auto_prob_style: str = "prob_sys_size"
) -> None:
if sys_probs is None:
if auto_prob_style == "prob_uniform":
prob_v = 1.0 / float(self.nsystems)
probs = [prob_v for ii in range(self.nsystems)]
elif auto_prob_style[:13] == "prob_sys_size":
if auto_prob_style == "prob_sys_size":
prob_style = f"prob_sys_size;0:{self.get_nsystems()}:1.0"
else:
prob_style = auto_prob_style
probs = prob_sys_size_ext(
prob_style, self.get_nsystems(), self.nbatches
)
else:
raise RuntimeError("Unknown auto prob style: " + auto_prob_style)
else:
probs = process_sys_probs(sys_probs, self.nbatches)
self.sys_probs = probs
def get_batch(self, sys_idx: Optional[int] = None) -> dict:
# batch generation style altered by Ziyao Li:
# one should specify the "sys_prob" and "auto_prob_style" params
# via set_sys_prob() function. The sys_probs this function uses is
# defined as a private variable, self.sys_probs, initialized in __init__().
# This is to optimize the (vain) efforts in evaluating sys_probs every batch.
"""Get a batch of data from the data systems.
Parameters
----------
sys_idx : int
The index of system from which the batch is get.
If sys_idx is not None, `sys_probs` and `auto_prob_style` are ignored
If sys_idx is None, automatically determine the system according to `sys_probs` or `auto_prob_style`, see the following.
This option does not work for mixed systems.
Returns
-------
dict
The batch data
"""
if not self.mixed_systems:
b_data = self.get_batch_standard(sys_idx)
else:
b_data = self.get_batch_mixed()
return b_data
def get_batch_standard(self, sys_idx: Optional[int] = None) -> dict:
"""Get a batch of data from the data systems in the standard way.
Parameters
----------
sys_idx : int
The index of system from which the batch is get.
If sys_idx is not None, `sys_probs` and `auto_prob_style` are ignored
If sys_idx is None, automatically determine the system according to `sys_probs` or `auto_prob_style`, see the following.
Returns
-------
dict
The batch data
"""
if sys_idx is not None:
self.pick_idx = sys_idx
else:
# prob = self._get_sys_probs(sys_probs, auto_prob_style)
self.pick_idx = dp_random.choice(
np.arange(self.nsystems, dtype=np.int32), p=self.sys_probs
)
b_data = self.data_systems[self.pick_idx].get_batch(
self.batch_size[self.pick_idx]
)
b_data["natoms_vec"] = self.natoms_vec[self.pick_idx]
b_data["default_mesh"] = self.default_mesh[self.pick_idx]
return b_data
def get_batch_mixed(self) -> dict:
"""Get a batch of data from the data systems in the mixed way.
Returns
-------
dict
The batch data
"""
# mixed systems have a global batch size
batch_size = self.batch_size[0]
batch_data = []
for _ in range(batch_size):
self.pick_idx = dp_random.choice(
np.arange(self.nsystems, dtype=np.int32), p=self.sys_probs
)
bb_data = self.data_systems[self.pick_idx].get_batch(1)
bb_data["natoms_vec"] = self.natoms_vec[self.pick_idx]
bb_data["default_mesh"] = self.default_mesh[self.pick_idx]
batch_data.append(bb_data)
b_data = self._merge_batch_data(batch_data)
return b_data
def _merge_batch_data(self, batch_data: list[dict]) -> dict:
"""Merge batch data from different systems.
Parameters
----------
batch_data : list of dict
A list of batch data from different systems.
Returns
-------
dict
The merged batch data.
"""
b_data = {}
max_natoms = max(bb["natoms_vec"][0] for bb in batch_data)
# natoms_vec
natoms_vec = np.zeros(2 + self.get_ntypes(), dtype=int)
natoms_vec[0:3] = max_natoms
b_data["natoms_vec"] = natoms_vec
# real_natoms_vec
real_natoms_vec = np.vstack([bb["natoms_vec"] for bb in batch_data])
b_data["real_natoms_vec"] = real_natoms_vec
# type
type_vec = np.full((len(batch_data), max_natoms), -1, dtype=int)
for ii, bb in enumerate(batch_data):
type_vec[ii, : bb["type"].shape[1]] = bb["type"][0]
b_data["type"] = type_vec
# default_mesh
default_mesh = np.mean([bb["default_mesh"] for bb in batch_data], axis=0)
b_data["default_mesh"] = default_mesh
# other data
data_dict = self.get_data_dict(0)
for kk, vv in data_dict.items():
if kk not in batch_data[0]:
continue
b_data["find_" + kk] = batch_data[0]["find_" + kk]
if not vv["atomic"]:
b_data[kk] = np.concatenate([bb[kk] for bb in batch_data], axis=0)
else:
b_data[kk] = np.zeros(
(len(batch_data), max_natoms * vv["ndof"] * vv["repeat"]),
dtype=batch_data[0][kk].dtype,
)
for ii, bb in enumerate(batch_data):
b_data[kk][ii, : bb[kk].shape[1]] = bb[kk][0]
return b_data
# ! altered by Marián Rynik
def get_test(self, sys_idx: Optional[int] = None, n_test: int = -1): # depreciated
"""Get test data from the the data systems.
Parameters
----------
sys_idx
The test dat of system with index `sys_idx` will be returned.
If is None, the currently selected system will be returned.
n_test
Number of test data. If set to -1 all test data will be get.
"""
if not hasattr(self, "test_data"):
self._load_test(ntests=n_test)
if sys_idx is not None:
idx = sys_idx
else:
idx = self.pick_idx
test_system_data = {}
for nn in self.test_data:
test_system_data[nn] = self.test_data[nn][idx]
test_system_data["natoms_vec"] = self.natoms_vec[idx]
test_system_data["default_mesh"] = self.default_mesh[idx]
return test_system_data
def get_sys_ntest(self, sys_idx=None):
"""Get number of tests for the currently selected system,
or one defined by sys_idx.
"""
if sys_idx is not None:
return self.test_size[sys_idx]
else:
return self.test_size[self.pick_idx]
def get_type_map(self) -> list[str]:
"""Get the type map."""
return self.type_map
def get_nbatches(self) -> int:
"""Get the total number of batches."""
return self.nbatches
def get_ntypes(self) -> int:
"""Get the number of types."""
return self.sys_ntypes
def get_nsystems(self) -> int:
"""Get the number of data systems."""
return self.nsystems
def get_sys(self, idx: int) -> DeepmdData:
"""Get a certain data system."""
return self.data_systems[idx]
def get_batch_size(self) -> int:
"""Get the batch size."""
return self.batch_size
def print_summary(self, name: str) -> None:
print_summary(
name,
self.nsystems,
self.system_dirs,
self.natoms,
self.batch_size,
self.nbatches,
self.sys_probs,
[ii.pbc for ii in self.data_systems],
)
def _make_auto_bs(self, rule):
bs = []
for ii in self.data_systems:
ni = ii.get_natoms()
bsi = rule // ni
if bsi * ni < rule:
bsi += 1
bs.append(bsi)
return bs
# ! added by Marián Rynik
def _make_auto_ts(self, percent):
ts = []
for ii in range(self.nsystems):
ni = self.batch_size[ii] * self.nbatches[ii]
tsi = int(ni * percent / 100)
ts.append(tsi)
return ts
def _check_type_map_consistency(self, type_map_list):
ret = []
for ii in type_map_list:
if ii is not None:
min_len = min([len(ii), len(ret)])
for idx in range(min_len):
if ii[idx] != ret[idx]:
raise RuntimeError(
f"Inconsistent type map: {ret!s} {ii!s} in different data systems. "
"If you didn't set model/type_map, please set it, "
"since the type map of the model cannot be decided by data."
)
if len(ii) > len(ret):
ret = ii
return ret
def _format_name_length(name, width):
if len(name) <= width:
return "{: >{}}".format(name, width)
else:
name = name[-(width - 3) :]
name = "-- " + name
return name
def print_summary(
name: str,
nsystems: int,
system_dirs: list[str],
natoms: list[int],
batch_size: list[int],
nbatches: list[int],
sys_probs: list[float],
pbc: list[bool],
) -> None:
"""Print summary of systems.
Parameters
----------
name : str
The name of the system
nsystems : int
The number of systems
system_dirs : list of str
The directories of the systems
natoms : list of int
The number of atoms
batch_size : list of int
The batch size
nbatches : list of int
The number of batches
sys_probs : list of float
The probabilities
pbc : list of bool
The periodic boundary conditions
"""
# width 65
sys_width = 42
log.info(
f"---Summary of DataSystem: {name:13s}-----------------------------------------------"
)
log.info("found %d system(s):" % nsystems)
log.info(
("{} ".format(_format_name_length("system", sys_width)))
+ ("%6s %6s %6s %9s %3s" % ("natoms", "bch_sz", "n_bch", "prob", "pbc"))
)
for ii in range(nsystems):
log.info(
"%s %6d %6d %6d %9.3e %3s"
% (
_format_name_length(system_dirs[ii], sys_width),
natoms[ii],
batch_size[ii],
nbatches[ii],
sys_probs[ii],
"T" if pbc[ii] else "F",
)
)
log.info(
"--------------------------------------------------------------------------------------"
)
def process_sys_probs(sys_probs, nbatch):
sys_probs = np.array(sys_probs)
type_filter = sys_probs >= 0
assigned_sum_prob = np.sum(type_filter * sys_probs)
# 1e-8 is to handle floating point error; See #1917
assert (
assigned_sum_prob <= 1.0 + 1e-8
), "the sum of assigned probability should be less than 1"
rest_sum_prob = 1.0 - assigned_sum_prob
if not np.isclose(rest_sum_prob, 0):
rest_nbatch = (1 - type_filter) * nbatch
rest_prob = rest_sum_prob * rest_nbatch / np.sum(rest_nbatch)
ret_prob = rest_prob + type_filter * sys_probs
else:
ret_prob = sys_probs
assert np.isclose(np.sum(ret_prob), 1), "sum of probs should be 1"
return ret_prob
def prob_sys_size_ext(keywords, nsystems, nbatch):
block_str = keywords.split(";")[1:]
block_stt = []
block_end = []
block_weights = []
for ii in block_str:
stt = int(ii.split(":")[0])
end = int(ii.split(":")[1])
weight = float(ii.split(":")[2])
assert weight >= 0, "the weight of a block should be no less than 0"
block_stt.append(stt)
block_end.append(end)
block_weights.append(weight)
nblocks = len(block_str)
block_probs = np.array(block_weights) / np.sum(block_weights)
sys_probs = np.zeros([nsystems], dtype=np.float64)
for ii in range(nblocks):
nbatch_block = nbatch[block_stt[ii] : block_end[ii]]
tmp_prob = [float(i) for i in nbatch_block] / np.sum(nbatch_block)
sys_probs[block_stt[ii] : block_end[ii]] = tmp_prob * block_probs[ii]
return sys_probs
def process_systems(systems: Union[str, list[str]]) -> list[str]:
"""Process the user-input systems.
If it is a single directory, search for all the systems in the directory.
Check if the systems are valid.
Parameters
----------
systems : str or list of str
The user-input systems
Returns
-------
list of str
The valid systems
"""
if isinstance(systems, str):
systems = expand_sys_str(systems)
elif isinstance(systems, list):
systems = systems.copy()
help_msg = "Please check your setting for data systems"
# check length of systems
if len(systems) == 0:
msg = "cannot find valid a data system"
log.fatal(msg)
raise OSError(msg, help_msg)
# roughly check all items in systems are valid
for ii in systems:
ii = DPPath(ii)
if not ii.is_dir():
msg = f"dir {ii} is not a valid dir"
log.fatal(msg)
raise OSError(msg, help_msg)
if not (ii / "type.raw").is_file():
msg = f"dir {ii} is not a valid data system dir"
log.fatal(msg)
raise OSError(msg, help_msg)
return systems
def get_data(
jdata: dict[str, Any], rcut, type_map, modifier, multi_task_mode=False
) -> DeepmdDataSystem:
"""Get the data system.
Parameters
----------
jdata
The json data
rcut
The cut-off radius, not used
type_map
The type map
modifier
The data modifier
multi_task_mode
If in multi task mode
Returns
-------
DeepmdDataSystem
The data system
"""
systems = jdata["systems"]
systems = process_systems(systems)
batch_size = jdata["batch_size"]
sys_probs = jdata.get("sys_probs", None)
auto_prob = jdata.get("auto_prob", "prob_sys_size")
optional_type_map = not multi_task_mode
data = DeepmdDataSystem(
systems=systems,
batch_size=batch_size,
test_size=1, # to satisfy the old api
shuffle_test=True, # to satisfy the old api
rcut=rcut,
type_map=type_map,
optional_type_map=optional_type_map,
modifier=modifier,
trn_all_set=True, # sample from all sets
sys_probs=sys_probs,
auto_prob_style=auto_prob,
)
return data