diff --git a/.github/workflows/test-python.yaml b/.github/workflows/test-python.yaml index ef21699476..d99be87a47 100644 --- a/.github/workflows/test-python.yaml +++ b/.github/workflows/test-python.yaml @@ -18,7 +18,7 @@ jobs: - name: Check Python code with Black uses: psf/black@stable with: - version: 23.9.1 + version: 24.2.0 options: --check --exclude '/*kubeflow_org_v1*|__init__.py|api_client.py|configuration.py|exceptions.py|rest.py' src: sdk/ diff --git a/examples/pytorch/image-classification/Train CNN with FashionMNIST.ipynb b/examples/pytorch/image-classification/Train-CNN-with-FashionMNIST.ipynb similarity index 100% rename from examples/pytorch/image-classification/Train CNN with FashionMNIST.ipynb rename to examples/pytorch/image-classification/Train-CNN-with-FashionMNIST.ipynb diff --git a/examples/pytorch/text-classification/Fine Tune BERT LLM.ipynb b/examples/pytorch/text-classification/Fine Tune BERT LLM.ipynb deleted file mode 100644 index bf10215ad0..0000000000 --- a/examples/pytorch/text-classification/Fine Tune BERT LLM.ipynb +++ /dev/null @@ -1,683 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fine-Tune BERT LLM for Sentiment Analysis with Kubeflow PyTorchJob" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This Notebook will fine-tune Bidirectional Encoder Representations from Transformers (BERT) model with Yelp dataset to analyze text sentiment using distributed training with [Kubeflow PyTorchJob](https://www.kubeflow.org/docs/components/training/overview/).\n", - "\n", - "Pretrained BERT model: https://huggingface.co/google-bert/bert-base-cased\n", - "\n", - "Yelp review full dataset: https://huggingface.co/datasets/yelp_review_full\n", - "\n", - "This Notebook requires:\n", - "\n", - "- At least **3 GPU** on your Kubernetes cluster to fine-tune BERT model on 3 workers.\n", - "- AWS S3 bucket to export fine-tuned model.\n", - "\n", - "This example is based on [the HuggingFace fine-tuning tutorial](https://huggingface.co/docs/transformers/en/training)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "## Install required packages\n", - "\n", - "We need to install HuggingFace packages to run this Notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "!pip install transformers datasets boto3\n", - "\n", - "!pip install git+https://github.com/kubeflow/training-operator.git#subdirectory=sdk/python\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "## Get samples from Yelp reviews dataset\n", - "\n", - "The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5.\n", - "\n", - "In total there are 650,000 training samples and 50,000 testing samples.\n", - "\n", - "We are going to use this dataset to fine-tune BERT model." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:45:19.125747Z", - "iopub.status.busy": "2024-03-10T00:45:19.125051Z", - "iopub.status.idle": "2024-03-10T00:45:21.775181Z", - "shell.execute_reply": "2024-03-10T00:45:21.774143Z", - "shell.execute_reply.started": "2024-03-10T00:45:19.125725Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'label': 4,\n", - " 'text': \"Top notch doctor in a top notch practice. Can't say I am surprised \"\n", - " 'when I was referred to him by another doctor who I think is '\n", - " 'wonderful and because he went to one of the best medical schools in '\n", - " 'the country. \\\\nIt is really easy to get an appointment. There is '\n", - " 'minimal wait to be seen and his bedside manner is great.'}\n", - "{'label': 1,\n", - " 'text': 'Average run of the mill store. Associates are young teens and they '\n", - " \"really don't know where anything is. Luckily I am able to get \"\n", - " 'around to find everything. Found my puppy treats and moved on.'}\n" - ] - } - ], - "source": [ - "from pprint import pprint\n", - "\n", - "from datasets import load_dataset\n", - "\n", - "# Test only 100 samples in the Notebook.\n", - "dataset = load_dataset(\"yelp_review_full\", split=\"train[:100]\")\n", - "\n", - "# Print some test data.\n", - "pprint(dataset[5])\n", - "pprint(dataset[30])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create script to fine-tune BERT model\n", - "\n", - "We need to wrap our fine-tuning script in a function to create Kubeflow PyTorchJob." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:37:51.012597Z", - "iopub.status.busy": "2024-03-10T00:37:51.012357Z", - "iopub.status.idle": "2024-03-10T00:37:51.021633Z", - "shell.execute_reply": "2024-03-10T00:37:51.020711Z", - "shell.execute_reply.started": "2024-03-10T00:37:51.012581Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "def train_func(parameters):\n", - " import os\n", - "\n", - " import boto3\n", - " import evaluate\n", - " import numpy as np\n", - " from datasets import load_dataset\n", - " from datasets.distributed import split_dataset_by_node\n", - " from transformers import (\n", - " AutoModelForSequenceClassification,\n", - " AutoTokenizer,\n", - " Trainer,\n", - " TrainingArguments,\n", - " )\n", - "\n", - " # [1] Download BERT model, tokenizer, and Yelp dataset.\n", - " print(\"-\" * 40)\n", - " print(\"Download BERT Model\")\n", - " model = AutoModelForSequenceClassification.from_pretrained(\n", - " \"bert-base-cased\",\n", - " num_labels=5,\n", - " )\n", - " tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n", - "\n", - " print(\"-\" * 40)\n", - " print(\"Download Yelp Review Dataset\")\n", - "\n", - " # Use only 4000 data samples to reduce tokenization and training time.\n", - " # Training samples - 3600, test samples - 400\n", - " # Remove split to take all samples: dataset = load_dataset(\"yelp_review_full\")\n", - " dataset = load_dataset(\"yelp_review_full\", split=\"train[:4000]\")\n", - " dataset = dataset.train_test_split(test_size=0.1, stratify_by_column=\"label\")\n", - "\n", - " # [2] Preprocess dataset.\n", - " def tokenize_function(examples):\n", - " return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n", - "\n", - " # Map Yelp review dataset to BERT tokenizer.\n", - " print(\"-\" * 40)\n", - " print(\"Map Yelp review dataset to BERT Tokenizer\")\n", - " tokenized_ds = dataset.map(tokenize_function, batched=True)\n", - "\n", - " # Distribute train and test datasets between PyTorch workers.\n", - " # Every worker will process chunk of training data.\n", - " # RANK and WORLD_SIZE will be set by Kubeflow Training Operator.\n", - " RANK = int(os.environ[\"RANK\"])\n", - " WORLD_SIZE = int(os.environ[\"WORLD_SIZE\"])\n", - " distributed_ds_train = split_dataset_by_node(\n", - " tokenized_ds[\"train\"],\n", - " rank=RANK,\n", - " world_size=WORLD_SIZE,\n", - " )\n", - " distributed_ds_test = split_dataset_by_node(\n", - " tokenized_ds[\"test\"],\n", - " rank=RANK,\n", - " world_size=WORLD_SIZE,\n", - " )\n", - "\n", - " # Evaluate accuracy.\n", - " metric = evaluate.load(\"accuracy\")\n", - "\n", - " def compute_metrics(eval_pred):\n", - " logits, labels = eval_pred\n", - " predictions = np.argmax(logits, axis=-1)\n", - " return metric.compute(predictions=predictions, references=labels)\n", - "\n", - " # [3] Define Training args.\n", - " training_args = TrainingArguments(\n", - " output_dir=\"test_trainer\",\n", - " evaluation_strategy=\"epoch\",\n", - " disable_tqdm=True,\n", - " log_level=\"info\",\n", - " )\n", - "\n", - " # [4] Define Trainer.\n", - " trainer = Trainer(\n", - " model=model,\n", - " args=training_args,\n", - " train_dataset=distributed_ds_train,\n", - " eval_dataset=distributed_ds_test,\n", - " compute_metrics=compute_metrics,\n", - " )\n", - "\n", - " # [5] Fine-tune model.\n", - " print(\"-\" * 40)\n", - " print(f\"Start Distributed Training. RANK: {RANK} WORLD_SIZE: {WORLD_SIZE}\")\n", - "\n", - " trainer.train()\n", - "\n", - " print(\"-\" * 40)\n", - " print(\"Training is complete\")\n", - "\n", - " # [6] Export trained model to S3 from the worker with RANK = 0.\n", - " if RANK == 0:\n", - " trainer.save_model(\"./bert\")\n", - " s3 = boto3.resource(\"s3\")\n", - " bucket = s3.Bucket(parameters[\"BUCKET\"])\n", - " bucket.upload_file(\"bert/config.json\", \"bert/config.json\")\n", - " bucket.upload_file(\"bert/model.safetensors\", \"bert/model.safetensors\")\n", - "\n", - " print(\"-\" * 40)\n", - " print(\"Model is exported to S3\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Kubeflow PyTorchJob to fine-tune BERT on GPUs\n", - "\n", - "Use `TrainingClient()` to create PyTorchJob which will fine-tune BERT on **3 workers** using **1 GPU** for each worker.\n", - "\n", - "Your Kubernetes cluster should have sufficient **GPU** resources available." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:37:52.743447Z", - "iopub.status.busy": "2024-03-10T00:37:52.743202Z", - "iopub.status.idle": "2024-03-10T00:37:52.749400Z", - "shell.execute_reply": "2024-03-10T00:37:52.747484Z", - "shell.execute_reply.started": "2024-03-10T00:37:52.743430Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import uuid\n", - "\n", - "# Make random name for PyTorchJob\n", - "job_name = \"fine-tune-bert-\" + str(uuid.uuid4())[:5]\n", - "\n", - "# Replace `BUCKET_NAME` with your AWS S3 bucket.\n", - "bucket = \"BUCKET_NAME\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:37:54.673961Z", - "iopub.status.busy": "2024-03-10T00:37:54.673715Z", - "iopub.status.idle": "2024-03-10T00:37:54.849353Z", - "shell.execute_reply": "2024-03-10T00:37:54.847915Z", - "shell.execute_reply.started": "2024-03-10T00:37:54.673944Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "from kubeflow.training import TrainingClient\n", - "\n", - "# Create PyTorchJob\n", - "TrainingClient().create_job(\n", - " name=job_name,\n", - " train_func=train_func,\n", - " parameters={\"BUCKET\": bucket},\n", - " num_workers=3, # Number of PyTorch workers to use.\n", - " resources_per_worker={\n", - " \"cpu\": \"4\",\n", - " \"memory\": \"10G\",\n", - " \"gpu\": \"1\",\n", - " },\n", - " packages_to_install=[\n", - " \"boto3\",\n", - " \"transformers\",\n", - " \"datasets\",\n", - " \"evaluate\",\n", - " \"accelerate\",\n", - " \"scikit-learn\",\n", - " ], # PIP packages will be installed during PyTorchJob runtime.\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "### Check the PyTorchJob conditions\n", - "\n", - "Use `TrainingClient()` APIs to get information about created PyTorchJob." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:37:58.701682Z", - "iopub.status.busy": "2024-03-10T00:37:58.701338Z", - "iopub.status.idle": "2024-03-10T00:37:58.747460Z", - "shell.execute_reply": "2024-03-10T00:37:58.746536Z", - "shell.execute_reply.started": "2024-03-10T00:37:58.701664Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PyTorchJob Conditions\n", - "[{'last_transition_time': datetime.datetime(2024, 3, 10, 0, 37, 54, tzinfo=tzlocal()),\n", - " 'last_update_time': datetime.datetime(2024, 3, 10, 0, 37, 54, tzinfo=tzlocal()),\n", - " 'message': 'PyTorchJob fine-tune-bert-1a883 is created.',\n", - " 'reason': 'PyTorchJobCreated',\n", - " 'status': 'True',\n", - " 'type': 'Created'}, {'last_transition_time': datetime.datetime(2024, 3, 10, 0, 37, 56, tzinfo=tzlocal()),\n", - " 'last_update_time': datetime.datetime(2024, 3, 10, 0, 37, 56, tzinfo=tzlocal()),\n", - " 'message': 'PyTorchJob fine-tune-bert-1a883 is running.',\n", - " 'reason': 'PyTorchJobRunning',\n", - " 'status': 'True',\n", - " 'type': 'Running'}]\n", - "----------------------------------------\n", - "PyTorchJob is running\n" - ] - } - ], - "source": [ - "print(\"PyTorchJob Conditions\")\n", - "print(TrainingClient().get_job_conditions(job_name))\n", - "print(\"-\" * 40)\n", - "\n", - "# Wait until PyTorchJob has Running condition.\n", - "job = TrainingClient().wait_for_job_conditions(\n", - " job_name,\n", - " expected_conditions={\"Running\"},\n", - ")\n", - "print(\"PyTorchJob is running\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Get the PyTorchJob pod names\n", - "\n", - "Since we set 3 workers, PyTorchJob will create 1 master pod and 2 worker pods to execute distributed training." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:38:02.257947Z", - "iopub.status.busy": "2024-03-10T00:38:02.257697Z", - "iopub.status.idle": "2024-03-10T00:38:02.307198Z", - "shell.execute_reply": "2024-03-10T00:38:02.306329Z", - "shell.execute_reply.started": "2024-03-10T00:38:02.257930Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['fine-tune-bert-1a883-master-0',\n", - " 'fine-tune-bert-1a883-worker-0',\n", - " 'fine-tune-bert-1a883-worker-1']" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "TrainingClient().get_job_pod_names(job_name)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "execution": { - "iopub.status.busy": "2022-09-01T20:10:25.759950Z", - "iopub.status.idle": "2022-09-01T20:10:25.760581Z", - "shell.execute_reply": "2022-09-01T20:10:25.760353Z", - "shell.execute_reply.started": "2022-09-01T20:10:25.760328Z" - }, - "tags": [] - }, - "source": [ - "### Get the PyTorchJob training logs\n", - "\n", - "Every worker processes 1200 training samples on each epoch since we distribute 3600 training samples across 3 workers." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:38:05.788903Z", - "iopub.status.busy": "2024-03-10T00:38:05.788625Z", - "iopub.status.idle": "2024-03-10T00:40:25.904118Z", - "shell.execute_reply": "2024-03-10T00:40:25.903020Z", - "shell.execute_reply.started": "2024-03-10T00:38:05.788883Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Pod fine-tune-bert-1a883-master-0]: WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Download BERT Model\n", - "[Pod fine-tune-bert-1a883-master-0]: Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", - "[Pod fine-tune-bert-1a883-master-0]: You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Download Yelp Review Dataset\n", - "Downloading readme: 100%|██████████| 6.72k/6.72k [00:00<00:00, 26.2MB/s]\n", - "Downloading data: 100%|██████████| 299M/299M [00:05<00:00, 57.4MB/s] \n", - "Downloading data: 100%|██████████| 23.5M/23.5M [00:00<00:00, 45.3MB/s]\n", - "Generating train split: 100%|██████████| 650000/650000 [00:01<00:00, 371416.73 examples/s]\n", - "Generating test split: 100%|██████████| 50000/50000 [00:00<00:00, 363106.11 examples/s]\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Map Yelp review dataset to BERT Tokenizer\n", - "Map: 100%|██████████| 3600/3600 [00:01<00:00, 2464.94 examples/s]\n", - "Map: 100%|██████████| 400/400 [00:00<00:00, 2553.52 examples/s]\n", - "Downloading builder script: 100%|██████████| 4.20k/4.20k [00:00<00:00, 16.6MB/s]\n", - "[Pod fine-tune-bert-1a883-master-0]: /opt/conda/lib/python3.10/site-packages/accelerate/state.py:306: UserWarning: OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at 16 to improve oob performance.\n", - "[Pod fine-tune-bert-1a883-master-0]: warnings.warn(\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Start Distributed Training. RANK: 0 WORLD_SIZE: 3\n", - "[Pod fine-tune-bert-1a883-master-0]: The following columns in the training set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", - "[Pod fine-tune-bert-1a883-master-0]: ***** Running training *****\n", - "[Pod fine-tune-bert-1a883-master-0]: Num examples = 1,200\n", - "[Pod fine-tune-bert-1a883-master-0]: Num Epochs = 3\n", - "[Pod fine-tune-bert-1a883-master-0]: Instantaneous batch size per device = 8\n", - "[Pod fine-tune-bert-1a883-master-0]: Total train batch size (w. parallel, distributed & accumulation) = 24\n", - "[Pod fine-tune-bert-1a883-master-0]: Gradient Accumulation steps = 1\n", - "[Pod fine-tune-bert-1a883-master-0]: Total optimization steps = 150\n", - "[Pod fine-tune-bert-1a883-master-0]: Number of trainable parameters = 108,314,117\n", - "[Pod fine-tune-bert-1a883-master-0]: [W reducer.cpp:1346] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())\n", - "[Pod fine-tune-bert-1a883-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", - "[Pod fine-tune-bert-1a883-master-0]: ***** Running Evaluation *****\n", - "[Pod fine-tune-bert-1a883-master-0]: Num examples = 134\n", - "[Pod fine-tune-bert-1a883-master-0]: Batch size = 8\n", - "[Pod fine-tune-bert-1a883-master-0]: {'eval_loss': 1.2028350830078125, 'eval_accuracy': 0.4925373134328358, 'eval_runtime': 0.5392, 'eval_samples_per_second': 248.532, 'eval_steps_per_second': 11.128, 'epoch': 1.0}\n", - "[Pod fine-tune-bert-1a883-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", - "[Pod fine-tune-bert-1a883-master-0]: ***** Running Evaluation *****\n", - "[Pod fine-tune-bert-1a883-master-0]: Num examples = 134\n", - "[Pod fine-tune-bert-1a883-master-0]: Batch size = 8\n", - "[Pod fine-tune-bert-1a883-master-0]: {'eval_loss': 0.9666597843170166, 'eval_accuracy': 0.5895522388059702, 'eval_runtime': 0.5656, 'eval_samples_per_second': 236.909, 'eval_steps_per_second': 10.608, 'epoch': 2.0}\n", - "[Pod fine-tune-bert-1a883-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", - "[Pod fine-tune-bert-1a883-master-0]: ***** Running Evaluation *****\n", - "[Pod fine-tune-bert-1a883-master-0]: Num examples = 134\n", - "[Pod fine-tune-bert-1a883-master-0]: Batch size = 8\n", - "[Pod fine-tune-bert-1a883-master-0]: {'eval_loss': 0.852095901966095, 'eval_accuracy': 0.6268656716417911, 'eval_runtime': 0.5951, 'eval_samples_per_second': 225.172, 'eval_steps_per_second': 10.082, 'epoch': 3.0}\n", - "[Pod fine-tune-bert-1a883-master-0]: Training completed. Do not forget to share your model on huggingface.co/models =)\n", - "[Pod fine-tune-bert-1a883-master-0]: {'train_runtime': 73.6766, 'train_samples_per_second': 48.862, 'train_steps_per_second': 2.036, 'train_loss': 1.166010030110677, 'epoch': 3.0}\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Training is complete\n", - "[Pod fine-tune-bert-1a883-master-0]: Saving model checkpoint to ./bert\n", - "[Pod fine-tune-bert-1a883-master-0]: Configuration saved in ./bert/config.json\n", - "[Pod fine-tune-bert-1a883-master-0]: Model weights saved in ./bert/model.safetensors\n", - "[Pod fine-tune-bert-1a883-master-0]: ----------------------------------------\n", - "[Pod fine-tune-bert-1a883-master-0]: Model is exported to S3\n" - ] - } - ], - "source": [ - "logs, _ = TrainingClient().get_job_logs(job_name, follow=True)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Download the fine-tuned model\n", - "\n", - "We can download our fine-tuned BERT model from S3 to evaluate it." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:41:32.463113Z", - "iopub.status.busy": "2024-03-10T00:41:32.462861Z", - "iopub.status.idle": "2024-03-10T00:41:34.615767Z", - "shell.execute_reply": "2024-03-10T00:41:34.615101Z", - "shell.execute_reply.started": "2024-03-10T00:41:32.463095Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import boto3\n", - "\n", - "s3 = boto3.resource(\"s3\")\n", - "bucket = s3.Bucket(bucket)\n", - "\n", - "# config.json is the model metadata.\n", - "# model.safetensors is the model weights & biases.\n", - "if not os.path.exists(\"bert\"):\n", - " os.makedirs(\"bert\")\n", - "bucket.download_file(\"bert/config.json\", \"bert/config.json\")\n", - "bucket.download_file(\"bert/model.safetensors\", \"bert/model.safetensors\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "### Test the fine-tuned BERT model\n", - "\n", - "We are going to use HuggingFace pipeline to test our model.\n", - "\n", - "We will ask for sentiment analysis task for our fine-tuned LLM." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:43:29.026194Z", - "iopub.status.busy": "2024-03-10T00:43:29.025948Z", - "iopub.status.idle": "2024-03-10T00:43:29.651226Z", - "shell.execute_reply": "2024-03-10T00:43:29.650644Z", - "shell.execute_reply.started": "2024-03-10T00:43:29.026177Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is one of the best restaurants I've ever been to.\n", - "Star: 4\n", - "Score: 0.8029219508171082\n", - "---------------------------\n", - "\n", - "\n", - "I am upset by using this service. It is very expensive and quality is bad.\n", - "Star: 1\n", - "Score: 0.5185158848762512\n", - "---------------------------\n" - ] - } - ], - "source": [ - "from transformers import AutoTokenizer, pipeline\n", - "\n", - "# During fine-tuning BERT tokenizer is not changed.\n", - "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n", - "\n", - "# Use pipeline with sentiment-analysis task to evaluate our model.\n", - "nlp = pipeline(\"sentiment-analysis\", model=\"./bert\", tokenizer=tokenizer)\n", - "\n", - "good_review = \"This is one of the best restaurants I've ever been to.\"\n", - "bad_review = \"I am upset by using this service. It is very expensive and quality is bad.\"\n", - "\n", - "print(good_review)\n", - "res = nlp(good_review)\n", - "\n", - "print(\"Star: \", res[0][\"label\"][6])\n", - "print(\"Score: \", res[0][\"score\"])\n", - "print(\"---------------------------\\n\\n\")\n", - "\n", - "\n", - "print(bad_review)\n", - "res = nlp(bad_review)\n", - "\n", - "print(\"Star: \", res[0][\"label\"][6])\n", - "print(\"Score: \", res[0][\"score\"])\n", - "print(\"---------------------------\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-01T23:44:15.511173Z", - "iopub.status.busy": "2024-03-01T23:44:15.510932Z", - "iopub.status.idle": "2024-03-01T23:44:15.539921Z", - "shell.execute_reply": "2024-03-01T23:44:15.539352Z", - "shell.execute_reply.started": "2024-03-01T23:44:15.511155Z" - }, - "tags": [] - }, - "source": [ - "## Delete the PyTorchJob\n", - "\n", - "When PyTorchJob is finished, you can delete the resource." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2024-03-10T00:43:41.129972Z", - "iopub.status.busy": "2024-03-10T00:43:41.129720Z", - "iopub.status.idle": "2024-03-10T00:43:41.157373Z", - "shell.execute_reply": "2024-03-10T00:43:41.156125Z", - "shell.execute_reply.started": "2024-03-10T00:43:41.129955Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "TrainingClient().delete_job(name=job_name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.17" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/examples/pytorch/text-classification/Fine-Tune-BERT-LLM.ipynb b/examples/pytorch/text-classification/Fine-Tune-BERT-LLM.ipynb new file mode 100644 index 0000000000..58778727c4 --- /dev/null +++ b/examples/pytorch/text-classification/Fine-Tune-BERT-LLM.ipynb @@ -0,0 +1,882 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine-Tune BERT LLM for Sentiment Analysis with Kubeflow PyTorchJob" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This Notebook will fine-tune Bidirectional Encoder Representations from Transformers (BERT) model with Yelp dataset to analyze text sentiment using distributed training with [Kubeflow PyTorchJob](https://www.kubeflow.org/docs/components/training/overview/).\n", + "\n", + "Pretrained BERT model: https://huggingface.co/google-bert/bert-base-cased\n", + "\n", + "Yelp review full dataset: https://huggingface.co/datasets/yelp_review_full\n", + "\n", + "This Notebook requires:\n", + "\n", + "- At least **3 GPU** on your Kubernetes cluster to fine-tune BERT model on 3 workers.\n", + "- AWS S3 bucket to export fine-tuned model.\n", + "\n", + "This example is based on [the HuggingFace fine-tuning tutorial](https://huggingface.co/docs/transformers/en/training)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Install required packages\n", + "\n", + "We need to install HuggingFace packages to run this Notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "!pip install transformers datasets boto3\n", + "\n", + "!pip install git+https://github.com/kubeflow/training-operator.git#subdirectory=sdk/python" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Get samples from Yelp reviews dataset\n", + "\n", + "The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5.\n", + "\n", + "In total there are 650,000 training samples and 50,000 testing samples.\n", + "\n", + "We are going to use this dataset to fine-tune BERT model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'label': 4,\n", + " 'text': \"Top notch doctor in a top notch practice. Can't say I am surprised \"\n", + " 'when I was referred to him by another doctor who I think is '\n", + " 'wonderful and because he went to one of the best medical schools in '\n", + " 'the country. \\\\nIt is really easy to get an appointment. There is '\n", + " 'minimal wait to be seen and his bedside manner is great.'}\n", + "{'label': 1,\n", + " 'text': 'Average run of the mill store. Associates are young teens and they '\n", + " \"really don't know where anything is. Luckily I am able to get \"\n", + " 'around to find everything. Found my puppy treats and moved on.'}\n" + ] + } + ], + "source": [ + "from pprint import pprint\n", + "\n", + "from datasets import load_dataset\n", + "\n", + "# Test only 100 samples in the Notebook.\n", + "dataset = load_dataset(\"yelp_review_full\", split=\"train[:100]\")\n", + "\n", + "# Print some test data.\n", + "pprint(dataset[5])\n", + "pprint(dataset[30])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create script to fine-tune BERT model\n", + "\n", + "We need to wrap our fine-tuning script in a function to create Kubeflow PyTorchJob." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def train_func(parameters):\n", + " import os\n", + "\n", + " import boto3\n", + " import evaluate\n", + " import numpy as np\n", + " from datasets import load_dataset\n", + " from datasets.distributed import split_dataset_by_node\n", + " from transformers import (\n", + " AutoModelForSequenceClassification,\n", + " AutoTokenizer,\n", + " Trainer,\n", + " TrainingArguments,\n", + " )\n", + "\n", + " # [1] Download BERT model, tokenizer, and Yelp dataset.\n", + " print(\"-\" * 40)\n", + " print(\"Download BERT Model\")\n", + " model = AutoModelForSequenceClassification.from_pretrained(\n", + " \"bert-base-cased\",\n", + " num_labels=5,\n", + " )\n", + " tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n", + "\n", + " print(\"-\" * 40)\n", + " print(\"Download Yelp Review Dataset\")\n", + "\n", + " # Use only 4000 data samples to reduce tokenization and training time.\n", + " # Training samples - 3600, test samples - 400\n", + " # Remove split to take all samples: dataset = load_dataset(\"yelp_review_full\")\n", + " dataset = load_dataset(\"yelp_review_full\", split=\"train[:4000]\")\n", + " dataset = dataset.train_test_split(test_size=0.1, stratify_by_column=\"label\")\n", + "\n", + " # [2] Preprocess dataset.\n", + " def tokenize_function(examples):\n", + " return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n", + "\n", + " # Map Yelp review dataset to BERT tokenizer.\n", + " print(\"-\" * 40)\n", + " print(\"Map Yelp review dataset to BERT Tokenizer\")\n", + " tokenized_ds = dataset.map(tokenize_function, batched=True)\n", + "\n", + " # Distribute train and test datasets between PyTorch workers.\n", + " # Every worker will process chunk of training data.\n", + " # RANK and WORLD_SIZE will be set by Kubeflow Training Operator.\n", + " RANK = int(os.environ[\"RANK\"])\n", + " WORLD_SIZE = int(os.environ[\"WORLD_SIZE\"])\n", + " distributed_ds_train = split_dataset_by_node(\n", + " tokenized_ds[\"train\"],\n", + " rank=RANK,\n", + " world_size=WORLD_SIZE,\n", + " )\n", + " distributed_ds_test = split_dataset_by_node(\n", + " tokenized_ds[\"test\"],\n", + " rank=RANK,\n", + " world_size=WORLD_SIZE,\n", + " )\n", + "\n", + " # Evaluate accuracy.\n", + " metric = evaluate.load(\"accuracy\")\n", + "\n", + " def compute_metrics(eval_pred):\n", + " logits, labels = eval_pred\n", + " predictions = np.argmax(logits, axis=-1)\n", + " return metric.compute(predictions=predictions, references=labels)\n", + "\n", + " # [3] Define Training args.\n", + " training_args = TrainingArguments(\n", + " output_dir=\"test_trainer\",\n", + " evaluation_strategy=\"epoch\",\n", + " disable_tqdm=True,\n", + " log_level=\"info\",\n", + " )\n", + "\n", + " # [4] Define Trainer.\n", + " trainer = Trainer(\n", + " model=model,\n", + " args=training_args,\n", + " train_dataset=distributed_ds_train,\n", + " eval_dataset=distributed_ds_test,\n", + " compute_metrics=compute_metrics,\n", + " )\n", + "\n", + " # [5] Fine-tune model.\n", + " print(\"-\" * 40)\n", + " print(f\"Start Distributed Training. RANK: {RANK} WORLD_SIZE: {WORLD_SIZE}\")\n", + "\n", + " trainer.train()\n", + "\n", + " print(\"-\" * 40)\n", + " print(\"Training is complete\")\n", + "\n", + " # [6] Export trained model to S3 from the worker with RANK = 0.\n", + " if RANK == 0:\n", + " trainer.save_model(\"./bert\")\n", + " s3 = boto3.resource(\"s3\")\n", + " bucket = s3.Bucket(parameters[\"BUCKET\"])\n", + " bucket.upload_file(\"bert/config.json\", \"bert/config.json\")\n", + " bucket.upload_file(\"bert/model.safetensors\", \"bert/model.safetensors\")\n", + "\n", + " print(\"-\" * 40)\n", + " print(\"Model is exported to S3\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create Kubeflow PyTorchJob to fine-tune BERT on GPUs\n", + "\n", + "Use `TrainingClient()` to create PyTorchJob which will fine-tune BERT on **3 workers** using **1 GPU** for each worker.\n", + "\n", + "Your Kubernetes cluster should have sufficient **GPU** resources available." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import uuid\n", + "from kubeflow.training import TrainingClient\n", + "\n", + "job_name = \"fine-tune-bert\"\n", + "\n", + "# Replace `kubeflow-examples` with your AWS S3 bucket.\n", + "bucket = \"kubeflow-examples\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Create PyTorchJob\n", + "TrainingClient().create_job(\n", + " name=job_name,\n", + " train_func=train_func,\n", + " parameters={\"BUCKET\": bucket},\n", + " num_workers=3, # Number of PyTorch workers to use.\n", + " resources_per_worker={\n", + " \"cpu\": \"4\",\n", + " \"memory\": \"10G\",\n", + " \"gpu\": \"1\",\n", + " },\n", + " packages_to_install=[\n", + " \"boto3\",\n", + " \"transformers\",\n", + " \"datasets\",\n", + " \"evaluate\",\n", + " \"accelerate\",\n", + " \"scikit-learn\",\n", + " ], # PIP packages will be installed during PyTorchJob runtime.\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "### Check the PyTorchJob conditions\n", + "\n", + "Use `TrainingClient()` APIs to get information about created PyTorchJob." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorchJob Conditions\n", + "[{'last_transition_time': datetime.datetime(2024, 3, 15, 16, 31, 30, tzinfo=tzutc()),\n", + " 'last_update_time': datetime.datetime(2024, 3, 15, 16, 31, 30, tzinfo=tzutc()),\n", + " 'message': 'PyTorchJob fine-tune-bert is created.',\n", + " 'reason': 'PyTorchJobCreated',\n", + " 'status': 'True',\n", + " 'type': 'Created'}, {'last_transition_time': datetime.datetime(2024, 3, 15, 16, 31, 31, tzinfo=tzutc()),\n", + " 'last_update_time': datetime.datetime(2024, 3, 15, 16, 31, 31, tzinfo=tzutc()),\n", + " 'message': 'PyTorchJob fine-tune-bert is running.',\n", + " 'reason': 'PyTorchJobRunning',\n", + " 'status': 'True',\n", + " 'type': 'Running'}]\n", + "----------------------------------------\n", + "PyTorchJob is running\n" + ] + } + ], + "source": [ + "print(\"PyTorchJob Conditions\")\n", + "print(TrainingClient().get_job_conditions(job_name))\n", + "print(\"-\" * 40)\n", + "\n", + "# Wait until PyTorchJob has Running condition.\n", + "job = TrainingClient().wait_for_job_conditions(\n", + " job_name,\n", + " expected_conditions={\"Running\"},\n", + ")\n", + "print(\"PyTorchJob is running\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the PyTorchJob pod names\n", + "\n", + "Since we set 3 workers, PyTorchJob will create 1 master pod and 2 worker pods to execute distributed training." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['fine-tune-bert-master-0',\n", + " 'fine-tune-bert-worker-0',\n", + " 'fine-tune-bert-worker-1']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "TrainingClient().get_job_pod_names(job_name)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": { + "iopub.status.busy": "2022-09-01T20:10:25.759950Z", + "iopub.status.idle": "2022-09-01T20:10:25.760581Z", + "shell.execute_reply": "2022-09-01T20:10:25.760353Z", + "shell.execute_reply.started": "2022-09-01T20:10:25.760328Z" + }, + "tags": [] + }, + "source": [ + "### Get the PyTorchJob training logs\n", + "\n", + "Every worker processes 1200 training samples on each epoch since we distribute 3600 training samples across 3 workers." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Pod fine-tune-bert-master-0]: WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\n", + "[Pod fine-tune-bert-master-0]: WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Download BERT Model\n", + "[Pod fine-tune-bert-master-0]: Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "[Pod fine-tune-bert-master-0]: You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Download Yelp Review Dataset\n", + "Downloading readme: 100%|██████████| 6.72k/6.72k [00:00<00:00, 30.2MB/s]\n", + "Downloading data: 100%|██████████| 299M/299M [00:05<00:00, 59.7MB/s] \n", + "Downloading data: 100%|██████████| 23.5M/23.5M [00:00<00:00, 51.6MB/s]\n", + "Generating train split: 100%|██████████| 650000/650000 [00:01<00:00, 368141.59 examples/s]\n", + "Generating test split: 100%|██████████| 50000/50000 [00:00<00:00, 360107.08 examples/s]\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Map Yelp review dataset to BERT Tokenizer\n", + "Map: 100%|██████████| 3600/3600 [00:01<00:00, 2452.88 examples/s]\n", + "Map: 100%|██████████| 400/400 [00:00<00:00, 2591.52 examples/s]\n", + "Downloading builder script: 100%|██████████| 4.20k/4.20k [00:00<00:00, 15.9MB/s]\n", + "[Pod fine-tune-bert-master-0]: /opt/conda/lib/python3.10/site-packages/accelerate/state.py:313: UserWarning: OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at 16 to improve oob performance.\n", + "[Pod fine-tune-bert-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-master-0]: /opt/conda/lib/python3.10/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n", + "[Pod fine-tune-bert-master-0]: dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n", + "[Pod fine-tune-bert-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Start Distributed Training. RANK: 0 WORLD_SIZE: 3\n", + "[Pod fine-tune-bert-master-0]: The following columns in the training set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-master-0]: ***** Running training *****\n", + "[Pod fine-tune-bert-master-0]: Num examples = 1,200\n", + "[Pod fine-tune-bert-master-0]: Num Epochs = 3\n", + "[Pod fine-tune-bert-master-0]: Instantaneous batch size per device = 8\n", + "[Pod fine-tune-bert-master-0]: Total train batch size (w. parallel, distributed & accumulation) = 24\n", + "[Pod fine-tune-bert-master-0]: Gradient Accumulation steps = 1\n", + "[Pod fine-tune-bert-master-0]: Total optimization steps = 150\n", + "[Pod fine-tune-bert-master-0]: Number of trainable parameters = 108,314,117\n", + "[Pod fine-tune-bert-master-0]: [W reducer.cpp:1346] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())\n", + "[Pod fine-tune-bert-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-master-0]: ***** Running Evaluation *****\n", + "[Pod fine-tune-bert-master-0]: Num examples = 134\n", + "[Pod fine-tune-bert-master-0]: Batch size = 8\n", + "[Pod fine-tune-bert-master-0]: {'eval_loss': 1.0521148443222046, 'eval_accuracy': 0.5746268656716418, 'eval_runtime': 0.5213, 'eval_samples_per_second': 257.033, 'eval_steps_per_second': 11.509, 'epoch': 1.0}\n", + "[Pod fine-tune-bert-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-master-0]: ***** Running Evaluation *****\n", + "[Pod fine-tune-bert-master-0]: Num examples = 134\n", + "[Pod fine-tune-bert-master-0]: Batch size = 8\n", + "[Pod fine-tune-bert-master-0]: {'eval_loss': 0.9855704307556152, 'eval_accuracy': 0.5895522388059702, 'eval_runtime': 0.5239, 'eval_samples_per_second': 255.763, 'eval_steps_per_second': 11.452, 'epoch': 2.0}\n", + "[Pod fine-tune-bert-master-0]: The following columns in the evaluation set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-master-0]: ***** Running Evaluation *****\n", + "[Pod fine-tune-bert-master-0]: Num examples = 134\n", + "[Pod fine-tune-bert-master-0]: Batch size = 8\n", + "[Pod fine-tune-bert-master-0]: {'eval_loss': 0.9247522354125977, 'eval_accuracy': 0.6492537313432836, 'eval_runtime': 0.527, 'eval_samples_per_second': 254.259, 'eval_steps_per_second': 11.385, 'epoch': 3.0}\n", + "[Pod fine-tune-bert-master-0]: Training completed. Do not forget to share your model on huggingface.co/models =)\n", + "[Pod fine-tune-bert-master-0]: {'train_runtime': 73.331, 'train_samples_per_second': 49.092, 'train_steps_per_second': 2.046, 'train_loss': 1.0898309326171876, 'epoch': 3.0}\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Training is complete\n", + "[Pod fine-tune-bert-master-0]: Saving model checkpoint to ./bert\n", + "[Pod fine-tune-bert-master-0]: Configuration saved in ./bert/config.json\n", + "[Pod fine-tune-bert-master-0]: Model weights saved in ./bert/model.safetensors\n", + "[Pod fine-tune-bert-master-0]: ----------------------------------------\n", + "[Pod fine-tune-bert-master-0]: Model is exported to S3\n" + ] + } + ], + "source": [ + "logs, _ = TrainingClient().get_job_logs(job_name, follow=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Download the fine-tuned model\n", + "\n", + "We can download our fine-tuned BERT model from S3 to evaluate it." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import boto3\n", + "import os\n", + "\n", + "s3 = boto3.resource(\"s3\")\n", + "bucket = s3.Bucket(bucket)\n", + "\n", + "# config.json is the model metadata.\n", + "# model.safetensors is the model weights & biases.\n", + "if not os.path.exists(\"bert\"):\n", + " os.makedirs(\"bert\")\n", + "bucket.download_file(\"bert/config.json\", \"bert/config.json\")\n", + "bucket.download_file(\"bert/model.safetensors\", \"bert/model.safetensors\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "### Test the fine-tuned BERT model\n", + "\n", + "We are going to use HuggingFace pipeline to test our model.\n", + "\n", + "We will ask for sentiment analysis task for our fine-tuned LLM." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This is one of the best restaurants I've ever been to.\n", + "Star: 4\n", + "Score: 0.806443452835083\n", + "---------------------------\n", + "\n", + "\n", + "I am upset by using this service. It is very expensive and quality is bad.\n", + "Star: 1\n", + "Score: 0.6581875085830688\n", + "---------------------------\n" + ] + } + ], + "source": [ + "from transformers import AutoTokenizer, pipeline\n", + "\n", + "# During fine-tuning BERT tokenizer is not changed.\n", + "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n", + "\n", + "# Use pipeline with sentiment-analysis task to evaluate our model.\n", + "nlp = pipeline(\"sentiment-analysis\", model=\"./bert\", tokenizer=tokenizer)\n", + "\n", + "good_review = \"This is one of the best restaurants I've ever been to.\"\n", + "bad_review = \"I am upset by using this service. It is very expensive and quality is bad.\"\n", + "\n", + "print(good_review)\n", + "res = nlp(good_review)\n", + "\n", + "print(\"Star: \", res[0][\"label\"][6])\n", + "print(\"Score: \", res[0][\"score\"])\n", + "print(\"---------------------------\\n\\n\")\n", + "\n", + "\n", + "print(bad_review)\n", + "res = nlp(bad_review)\n", + "\n", + "print(\"Star: \", res[0][\"label\"][6])\n", + "print(\"Score: \", res[0][\"score\"])\n", + "print(\"---------------------------\")" + ] + }, + { + "attachments": { + "348c13f1-f7df-4148-9c2e-268c05dc1d16.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACP4AAAN6CAYAAAAUnBVHAAAAAXNSR0IArs4c6QACJLJ0RVh0bXhmaWxlACUzQ214ZmlsZSUyMGhvc3QlM0QlMjJhcHAuZGlhZ3JhbXMubmV0JTIyJTIwbW9kaWZpZWQlM0QlMjIyMDI0LTAzLTA5VDAxJTNBMDYlM0ExOC4yMDdaJTIyJTIwYWdlbnQlM0QlMjJNb3ppbGxhJTJGNS4wJTIwKE1hY2ludG9zaCUzQiUyMEludGVsJTIwTWFjJTIwT1MlMjBYJTIwMTBfMTVfNyklMjBBcHBsZVdlYktpdCUyRjUzNy4zNiUyMChLSFRNTCUyQyUyMGxpa2UlMjBHZWNrbyklMjBDaHJvbWUlMkYxMjIuMC4wLjAlMjBTYWZhcmklMkY1MzcuMzYlMjIlMjBldGFnJTNEJTIyUk5PcVV0emlWRGhvX1VjeGFOM3QlMjIlMjBzY2FsZSUzRCUyMjElMjIlMjBib3JkZXIlM0QlMjIwJTIyJTIwdmVyc2lvbiUzRCUyMjI0LjAuMiUyMiUyMHR5cGUlM0QlMjJnb29nbGUlMjIlM0UlMEElMjAlMjAlM0NkaWFncmFtJTIwbmFtZSUzRCUyMlBhZ2UtMSUyMiUyMGlkJTNEJTIydWd5cHJtOUk2clpDMk1HbmNTaFUlMjIlM0UlMEElMjAlMjAlMjAlMjAlM0NteEdyYXBoTW9kZWwlMjBkeCUzRCUyMjE1MDklMjIlMjBkeSUzRCUyMjkyNyUyMiUyMGdyaWQlM0QlMjIxJTIyJTIwZ3JpZFNpemUlM0QlMjIxMCUyMiUyMGd1aWRlcyUzRCUyMjElMjIlMjB0b29sdGlwcyUzRCUyMjElMjIlMjBjb25uZWN0JTNEJTIyMSUyMiUyMGFycm93cyUzRCUyMjElMjIlMjBmb2xkJTNEJTIyMSUyMiUyMHBhZ2UlM0QlMjIxJTIyJTIwcGFnZVNjYWxlJTNEJTIyMSUyMiUyMHBhZ2VXaWR0aCUzRCUyMjMzMDAlMjIlMjBwYWdlSGVpZ2h0JTNEJTIyNDY4MSUyMiUyMG1hdGglM0QlMjIxJTIyJTIwc2hhZG93JTNEJTIyMCUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUzQ3Jvb3QlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMjAlMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMjElMjIlMjBwYXJlbnQlM0QlMjIwJTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00MSUyMiUyMHN0eWxlJTNEJTIyZWRnZVN0eWxlJTNEb3J0aG9nb25hbEVkZ2VTdHlsZSUzQnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMCUzQmVudHJ5WSUzRDAuNSUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JzdHJva2VXaWR0aCUzRDQlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDIlMjIlMjB0YXJnZXQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02MyUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQyJTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMnJvdW5kZWQlM0QxJTNCd2hpdGVTcGFjZSUzRHdyYXAlM0JodG1sJTNEMSUzQmRhc2hlZCUzRDElM0JmaWxsQ29sb3IlM0Rub25lJTNCc3Ryb2tlV2lkdGglM0QyJTNCc3Ryb2tlQ29sb3IlM0QlMjMwMDAwMDAlM0Jjb250YWluZXIlM0QwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjIwMTQuMDcwMDAwMDAwMDAwNiUyMiUyMHklM0QlMjIyNzM3LjY3OTk5OTk5OTk5OTQlMjIlMjB3aWR0aCUzRCUyMjI2OC45NCUyMiUyMGhlaWdodCUzRCUyMjIzNC44OCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQzJTIyJTIwdmFsdWUlM0QlMjJXb3JrZXIlMjAwJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JmaWxsQ29sb3IlM0Rub25lJTNCc3Ryb2tlV2lkdGglM0QyJTNCc3Ryb2tlQ29sb3IlM0QlMjMwMDAwMDAlM0Jjb250YWluZXIlM0QwJTNCYWxpZ24lM0RjZW50ZXIlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCZm9udFNpemUlM0QyMyUzQmhvcml6b250YWwlM0QxJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjE3MTElMjIlMjB5JTNEJTIyMjc3MCUyMiUyMHdpZHRoJTNEJTIyMjQwJTIyJTIwaGVpZ2h0JTNEJTIyNDMwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDQlMjIlMjBzdHlsZSUzRCUyMmVkZ2VTdHlsZSUzRG9ydGhvZ29uYWxFZGdlU3R5bGUlM0Jyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxMb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDAlM0JlbnRyeVklM0QwLjUlM0JlbnRyeUR4JTNEMCUzQmVudHJ5RHklM0QwJTNCc3Ryb2tlV2lkdGglM0Q0JTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQ1JTIyJTIwdGFyZ2V0JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDclMjIlMjBlZGdlJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00NSUyMiUyMHZhbHVlJTNEJTIyJTIyJTIwc3R5bGUlM0QlMjJvdXRsaW5lQ29ubmVjdCUzRDAlM0JkYXNoZWQlM0QwJTNCdmVydGljYWxMYWJlbFBvc2l0aW9uJTNEYm90dG9tJTNCdmVydGljYWxBbGlnbiUzRHRvcCUzQmFsaWduJTNEY2VudGVyJTNCaHRtbCUzRDElM0JzaGFwZSUzRG14Z3JhcGguYXdzMy51c2VyJTNCZmlsbENvbG9yJTNEJTIzRDJEM0QzJTNCZ3JhZGllbnRDb2xvciUzRG5vbmUlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyMzQwJTIyJTIweSUzRCUyMjI4ODYuMDYwMDAwMDAwMDAwNCUyMiUyMHdpZHRoJTNEJTIyMTI0LjkxJTIyJTIwaGVpZ2h0JTNEJTIyMTc0Ljg4JTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDYlMjIlMjBzdHlsZSUzRCUyMmVkZ2VTdHlsZSUzRG9ydGhvZ29uYWxFZGdlU3R5bGUlM0Jyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxMb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDAlM0JlbnRyeVklM0QwLjUlM0JlbnRyeUR4JTNEMCUzQmVudHJ5RHklM0QwJTNCc3Ryb2tlV2lkdGglM0Q0JTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQ3JTIyJTIwdGFyZ2V0JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzklMjIlMjBlZGdlJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00NyUyMiUyMHZhbHVlJTNEJTIyJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JkYXNoZWQlM0QxJTNCZmlsbENvbG9yJTNEbm9uZSUzQnN0cm9rZVdpZHRoJTNEMiUzQnN0cm9rZUNvbG9yJTNEJTIzMDAwMDAwJTNCY29udGFpbmVyJTNEMCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI1NjUuNTEwMDAwMDAwMDAwMiUyMiUyMHklM0QlMjIyODU2JTIyJTIwd2lkdGglM0QlMjI0NzQuNDklMjIlMjBoZWlnaHQlM0QlMjIyMzUlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00OCUyMiUyMHZhbHVlJTNEJTIydHJhaW4oKSUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZmlsbENvbG9yJTNEJTIzZmZiZjAwJTNCc3Ryb2tlQ29sb3IlM0QlMjMwMDAwMDAlM0Jmb250U2l6ZSUzRDI1JTNCZm9udFN0eWxlJTNEMiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI4ODAlMjIlMjB5JTNEJTIyMjkzOC41JTIyJTIwd2lkdGglM0QlMjIxMzUlMjIlMjBoZWlnaHQlM0QlMjI4MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQ5JTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMmdyb3VwJTNCZm9udFNpemUlM0QxNyUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTIwY29ubmVjdGFibGUlM0QlMjIwJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI1MTAlMjIlMjB5JTNEJTIyMjc2OCUyMiUyMHdpZHRoJTNEJTIyMTE1JTIyJTIwaGVpZ2h0JTNEJTIyMTMzJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNTAlMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIyc2hhcGUlM0RpbWFnZSUzQnZlcnRpY2FsTGFiZWxQb3NpdGlvbiUzRGJvdHRvbSUzQmxhYmVsQmFja2dyb3VuZENvbG9yJTNEZGVmYXVsdCUzQnZlcnRpY2FsQWxpZ24lM0R0b3AlM0Jhc3BlY3QlM0RmaXhlZCUzQmltYWdlQXNwZWN0JTNEMCUzQmltYWdlJTNEaHR0cHMlM0ElMkYlMkZ1cGxvYWQud2lraW1lZGlhLm9yZyUyRndpa2lwZWRpYSUyRmNvbW1vbnMlMkZ0aHVtYiUyRmMlMkZjMyUyRlB5dGhvbi1sb2dvLW5vdGV4dC5zdmclMkYxODY5cHgtUHl0aG9uLWxvZ28tbm90ZXh0LnN2Zy5wbmclM0JjbGlwUGF0aCUzRGluc2V0KDAlMjUlMjAxLjgyJTI1JTIwMTAlMjUlMjAwJTI1JTIwcm91bmQlMjA1JTI1KSUzQmZvbnRTaXplJTNEMTUlM0JpbWFnZUJhY2tncm91bmQlM0RkZWZhdWx0JTNCJTIyJTIwcGFyZW50JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDklMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIxNSUyMiUyMHdpZHRoJTNEJTIyODIuNjklMjIlMjBoZWlnaHQlM0QlMjI4MyUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTUxJTIyJTIwdmFsdWUlM0QlMjIlMjZsdCUzQmZvbnQlMjBzdHlsZSUzRCUyNnF1b3QlM0Jmb250LXNpemUlM0ElMjAxN3B4JTNCJTI2cXVvdCUzQiUyNmd0JTNCS3ViZWZsb3clMjZsdCUzQmJyJTI2Z3QlM0JQeXRob24lMjBTREslMjZsdCUzQiUyRmZvbnQlMjZndCUzQiUyMiUyMHN0eWxlJTNEJTIydGV4dCUzQmh0bWwlM0QxJTNCYWxpZ24lM0RjZW50ZXIlM0J2ZXJ0aWNhbEFsaWduJTNEbWlkZGxlJTNCcmVzaXphYmxlJTNEMCUzQnBvaW50cyUzRCU1QiU1RCUzQmF1dG9zaXplJTNEMSUzQmZpbGxDb2xvciUzRGRlZmF1bHQlM0IlMjIlMjBwYXJlbnQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00OSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMi01JTIyJTIweSUzRCUyMjgzJTIyJTIwd2lkdGglM0QlMjIxMjAlMjIlMjBoZWlnaHQlM0QlMjI1MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTUyJTIyJTIwdmFsdWUlM0QlMjIlMjZsdCUzQnVsJTIwc3R5bGUlM0QlMjZxdW90JTNCZm9udC1zaXplJTNBJTIwMjBweCUzQiUyNnF1b3QlM0IlMjZndCUzQiUyNmx0JTNCbGklMjZndCUzQk1vZGVsJTIwKGhmJTNBJTJGJTJGLi4uKSUyNmx0JTNCJTJGbGklMjZndCUzQiUyNmx0JTNCbGklMjZndCUzQkRhdGFzZXQlMjAoczMlM0ElMkYlMkYuLi4pJTI2bHQlM0IlMkZsaSUyNmd0JTNCJTI2bHQlM0JsaSUyNmd0JTNCVHJhaW5lciUyMFBhcmFtZXRlcnMlMjZsdCUzQiUyRmxpJTI2Z3QlM0IlMjZsdCUzQmxpJTI2Z3QlM0JOdW0lMjBXb3JrZXJzJTI2bHQlM0IlMkZsaSUyNmd0JTNCJTI2bHQlM0JsaSUyNmd0JTNCV29ya2VyJTIwUmVzb3VyY2VzJTI2bHQlM0IlMkZsaSUyNmd0JTNCJTI2bHQlM0IlMkZ1bCUyNmd0JTNCJTIyJTIwc3R5bGUlM0QlMjJ0ZXh0JTNCaHRtbCUzRDElM0JhbGlnbiUzRGxlZnQlM0J2ZXJ0aWNhbEFsaWduJTNEbWlkZGxlJTNCcmVzaXphYmxlJTNEMCUzQnBvaW50cyUzRCU1QiU1RCUzQmF1dG9zaXplJTNEMSUzQnN0cm9rZUNvbG9yJTNEJTIzMDAwMDAwJTNCZmlsbENvbG9yJTNEJTIzZmZiZjAwJTNCZm9udFNpemUlM0QyMCUzQnBlcmltZXRlclNwYWNpbmclM0QxJTNCcm91bmRlZCUzRDElM0Jmb250U3R5bGUlM0QyJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjYwMC41JTIyJTIweSUzRCUyMjI4OTMuNSUyMiUyMHdpZHRoJTNEJTIyMjQwJTIyJTIwaGVpZ2h0JTNEJTIyMTcwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNTMlMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIyZ3JvdXAlM0JmaWxsQ29sb3IlM0Rub25lJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlMjBjb25uZWN0YWJsZSUzRCUyMjAlMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjEwODAlMjIlMjB5JTNEJTIyMjg4OC43NSUyMiUyMHdpZHRoJTNEJTIyMTgwJTIyJTIwaGVpZ2h0JTNEJTIyMTg1LjUlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC01NCUyMiUyMHZhbHVlJTNEJTIyUHlUb3JjaEpvYiUyMiUyMHN0eWxlJTNEJTIydGV4dCUzQmh0bWwlM0QxJTNCYWxpZ24lM0RjZW50ZXIlM0J2ZXJ0aWNhbEFsaWduJTNEbWlkZGxlJTNCcmVzaXphYmxlJTNEMCUzQnBvaW50cyUzRCU1QiU1RCUzQmF1dG9zaXplJTNEMSUzQnN0cm9rZUNvbG9yJTNEbm9uZSUzQmZpbGxDb2xvciUzRG5vbmUlM0Jmb250U2l6ZSUzRDMwJTNCc3Ryb2tlV2lkdGglM0QyJTNCJTIyJTIwcGFyZW50JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNTMlMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHklM0QlMjIxMzUuNSUyMiUyMHdpZHRoJTNEJTIyMTgwJTIyJTIwaGVpZ2h0JTNEJTIyNTAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC01NSUyMiUyMHZhbHVlJTNEJTIyJTIyJTIwc3R5bGUlM0QlMjJzaGFwZSUzRGltYWdlJTNCdmVydGljYWxMYWJlbFBvc2l0aW9uJTNEYm90dG9tJTNCbGFiZWxCYWNrZ3JvdW5kQ29sb3IlM0RkZWZhdWx0JTNCdmVydGljYWxBbGlnbiUzRHRvcCUzQmFzcGVjdCUzRGZpeGVkJTNCaW1hZ2VBc3BlY3QlM0QwJTNCaW1hZ2UlM0RkYXRhJTNBaW1hZ2UlMkZzdmclMkJ4bWwlMkNQSE4yWnlCNGJXeHVjejBpYUhSMGNEb3ZMM2QzZHk1M015NXZjbWN2TWpBd01DOXpkbWNpSUdsa1BTSnpkbWN4TXpneU5pSWdkbVZ5YzJsdmJqMGlNUzR4SWlCMmFXVjNRbTk0UFNJd0lEQWdNVGd1TURNMU16TTBJREUzTGpVd01ETTNPQ0lnYUdWcFoyaDBQU0l4Tnk0MU1EQXpOemh0YlNJZ2QybGtkR2c5SWpFNExqQXpOVE16TkcxdElqNG1JM2hoT3lBZ1BHUmxabk1nYVdROUltUmxabk14TXpneU1DSXZQaVlqZUdFN0lDQW1JM2hoT3lBZ1BHMWxkR0ZrWVhSaElHbGtQU0p0WlhSaFpHRjBZVEV6T0RJeklqNG1JM2hoT3lBZ0lDQW1JM2hoT3lBZ0lDQWdJQ1lqZUdFN0lDQWdJQ0FnSUNCcGJXRm5aUzl6ZG1jcmVHMXNKaU40WVRzZ0lDQWdJQ0FnSUNZamVHRTdJQ0FnSUNBZ0lDQW1JM2hoT3lBZ0lDQWdJQ1lqZUdFN0lDQWdJQ1lqZUdFN0lDQThMMjFsZEdGa1lYUmhQaVlqZUdFN0lDQThaeUIwY21GdWMyWnZjbTA5SW5SeVlXNXpiR0YwWlNndE1DNDVPVEkyTWpZek9Dd3RNUzR4TnpReE9ERXBJaUJwWkQwaWJHRjVaWEl4SWo0bUkzaGhPeUFnSUNBOFp5QjBjbUZ1YzJadmNtMDlJbTFoZEhKcGVDZ3hMakF4TkRnNE9EY3NNQ3d3TERFdU1ERTBPRGc0Tnl3eE5pNDVNREl4TkRZc0xUSXVOams0TnpJMktTSWdhV1E5SW1jM01DSSUyQkppTjRZVHNnSUNBZ0lDQThjR0YwYUNCemRIbHNaVDBpWm1sc2JEb2pNekkyWTJVMU8yWnBiR3d0YjNCaFkybDBlVG94TzNOMGNtOXJaVHB1YjI1bE8zTjBjbTlyWlMxM2FXUjBhRG93TzNOMGNtOXJaUzF0YVhSbGNteHBiV2wwT2pRN2MzUnliMnRsTFdSaGMyaGhjbkpoZVRwdWIyNWxPM04wY205clpTMXZjR0ZqYVhSNU9qRWlJR1E5SW0wZ0xUWXVPRFE1TWpBeE5TdzBMakkzTWpRMk5qZ2dZU0F4TGpFeE9URXlOVFVzTVM0eE1EazVOamN4SURBZ01DQXdJQzB3TGpReU9EZzRNVGdzTUM0eE1EZzFNekF6SUd3Z0xUVXVPRFV5TkRBek55d3lMamM1TmpNek9UUWdZU0F4TGpFeE9URXlOVFVzTVM0eE1EazVOamN4SURBZ01DQXdJQzB3TGpZd05UVXlOQ3d3TGpjMU1qazNOVGtnYkNBdE1TNDBORE00TWpnc05pNHlPREV5T0RRMklHRWdNUzR4TVRreE1qVTFMREV1TVRBNU9UWTNNU0F3SURBZ01DQXdMakUxTVRrME15d3dMamcxTVRBeU9DQXhMakV4T1RFeU5UVXNNUzR4TURrNU5qY3hJREFnTUNBd0lEQXVNRFl6TmpJc01DNHdPRGd6TWlCc0lEUXVNRFV3T0N3MUxqQXpOalUxTlNCaElERXVNVEU1TVRJMU5Td3hMakV3T1RrMk56RWdNQ0F3SURBZ01DNDROelE1Tnprc01DNDBNVGMyTlRRZ2JDQTJMalE1TmpFd01URXNMVEF1TURBeE5TQmhJREV1TVRFNU1USTFOU3d4TGpFd09UazJOekVnTUNBd0lEQWdNQzQ0TnpRNU56ZzRMQzB3TGpReE5qa3dOaUJNSURFdU16Z3hPRGczTWl3eE5TNHhORGswTlRNZ1FTQXhMakV4T1RFeU5UVXNNUzR4TURrNU5qY3hJREFnTUNBd0lERXVOVGs0TVRrNE5pd3hOQzR5TVRBeE1EUWdUQ0F3TGpFMU1qRXlOalUzTERjdU9USTRPREUxTkNCQklERXVNVEU1TVRJMU5Td3hMakV3T1RrMk56RWdNQ0F3SURBZ0xUQXVORFV6TXprM09UUXNOeTR4TnpVNE16azJJRXdnTFRZdU16QTJOVFE1Tml3MExqTTRNRGs1TnpFZ1FTQXhMakV4T1RFeU5UVXNNUzR4TURrNU5qY3hJREFnTUNBd0lDMDJMamcwT1RJd01UVXNOQzR5TnpJME5qWTRJRm9pSUdsa1BTSndZWFJvTXpBMU5TSXZQaVlqZUdFN0lDQWdJQ0FnUEhCaGRHZ2djM1I1YkdVOUltTnZiRzl5T2lNd01EQXdNREE3Wm05dWRDMXpkSGxzWlRwdWIzSnRZV3c3Wm05dWRDMTJZWEpwWVc1ME9tNXZjbTFoYkR0bWIyNTBMWGRsYVdkb2REcHViM0p0WVd3N1ptOXVkQzF6ZEhKbGRHTm9PbTV2Y20xaGJEdG1iMjUwTFhOcGVtVTZiV1ZrYVhWdE8yeHBibVV0YUdWcFoyaDBPbTV2Y20xaGJEdG1iMjUwTFdaaGJXbHNlVHBUWVc1ek95MXBibXR6WTJGd1pTMW1iMjUwTFhOd1pXTnBabWxqWVhScGIyNDZVMkZ1Y3p0MFpYaDBMV2x1WkdWdWREb3dPM1JsZUhRdFlXeHBaMjQ2YzNSaGNuUTdkR1Y0ZEMxa1pXTnZjbUYwYVc5dU9tNXZibVU3ZEdWNGRDMWtaV052Y21GMGFXOXVMV3hwYm1VNmJtOXVaVHRzWlhSMFpYSXRjM0JoWTJsdVp6cHViM0p0WVd3N2QyOXlaQzF6Y0dGamFXNW5PbTV2Y20xaGJEdDBaWGgwTFhSeVlXNXpabTl5YlRwdWIyNWxPM2R5YVhScGJtY3RiVzlrWlRwc2NpMTBZanRrYVhKbFkzUnBiMjQ2YkhSeU8ySmhjMlZzYVc1bExYTm9hV1owT21KaGMyVnNhVzVsTzNSbGVIUXRZVzVqYUc5eU9uTjBZWEowTzJScGMzQnNZWGs2YVc1c2FXNWxPMjkyWlhKbWJHOTNPblpwYzJsaWJHVTdkbWx6YVdKcGJHbDBlVHAyYVhOcFlteGxPMlpwYkd3NkkyWm1abVptWmp0bWFXeHNMVzl3WVdOcGRIazZNVHRtYVd4c0xYSjFiR1U2Ym05dWVtVnlienR6ZEhKdmEyVTZibTl1WlR0emRISnZhMlV0ZDJsa2RHZzZNRHR6ZEhKdmEyVXRiV2wwWlhKc2FXMXBkRG8wTzNOMGNtOXJaUzFrWVhOb1lYSnlZWGs2Ym05dVpUdHRZWEpyWlhJNmJtOXVaVHRsYm1GaWJHVXRZbUZqYTJkeWIzVnVaRHBoWTJOMWJYVnNZWFJsSWlCa1BTSk5JQzAyTGpnMU1qTTBNelVzTXk0NE1UYzJNemN5SUVFZ01TNHhPREUwTXpBMExERXVNVGN4TnpZeUlEQWdNQ0F3SUMwM0xqTXdORFF5T0RRc015NDVNekk1TURRZ2JDQXROaTR4TnpnM05ESTJMREl1T1RVeE1qYzFPQ0JoSURFdU1UZ3hORE13TkN3eExqRTNNVGMyTWlBd0lEQWdNQ0F0TUM0Mk16a3lNRFlzTUM0M09UUTRPVEVnYkNBdE1TNDFNak01TVRVc05pNDJNekE0TWpneUlHRWdNUzR4T0RFME16QTBMREV1TVRjeE56WXlJREFnTUNBd0lEQXVNVFl3TVRjMUxEQXVPRGs0T1RNZ01TNHhPREUwTXpBMExERXVNVGN4TnpZeUlEQWdNQ0F3SURBdU1EWTNNellzTUM0d09USTRNU0JzSURRdU1qYzJNRGswTERVdU16RTNNak0ySUdFZ01TNHhPREUwTXpBMExERXVNVGN4TnpZeUlEQWdNQ0F3SURBdU9USXpOak1zTUM0ME5EQTROVGdnYkNBMkxqZzFOell4T0Rnc0xUQXVNREF4TlNCaElERXVNVGd4TkRNd05Dd3hMakUzTVRjMk1pQXdJREFnTUNBd0xqa3lNell6TURnc0xUQXVORFF3TVRFZ2JDQTBMakkzTkRVNU5qWXNMVFV1TXpFM09UZzFJR0VnTVM0eE9ERTBNekEwTERFdU1UY3hOell5SURBZ01DQXdJREF1TWpJNE1qZzRMQzB3TGprNU1EazVNeUJNSURBdU5UTTRPVFEwTXprc055NDJOemMxTnpNNElFRWdNUzR4T0RFME16QTBMREV1TVRjeE56WXlJREFnTUNBd0lDMHdMakV3TURJMk1UQXhMRFl1T0Rnek5ETXhNeUJNSUMwMkxqSTNPVEF3TXpjc015NDVNekl4TlRVMUlFRWdNUzR4T0RFME16QTBMREV1TVRjeE56WXlJREFnTUNBd0lDMDJMamcxTWpNME16VXNNeTQ0TVRjMk16Y3lJRm9nYlNBd0xqQXdNams1TERBdU5EVTFNRGM0T1NCaElERXVNVEU1TVRJMU5Td3hMakV3T1RrMk56RWdNQ0F3SURFZ01DNDFOREkyTlRFM0xEQXVNVEE0TlRNd015QnNJRFV1T0RVek1UVXhOamtzTWk0M09UUTROREkxSUVFZ01TNHhNVGt4TWpVMUxERXVNVEE1T1RZM01TQXdJREFnTVNBd0xqRTFNVGszT0RFeExEY3VPVEk1TURZME9DQk1JREV1TlRrNE1EVXhMREUwTGpJeE1ETTFJR0VnTVM0eE1Ua3hNalUxTERFdU1UQTVPVFkzTVNBd0lEQWdNU0F0TUM0eU1UWXpNVEl6TERBdU9UTTVNelE0SUd3Z0xUUXVNRFE1TXpBek1pdzFMakF6TnpNd05DQmhJREV1TVRFNU1USTFOU3d4TGpFd09UazJOekVnTUNBd0lERWdMVEF1T0RjME9UYzRPU3d3TGpReE5qa3dOaUJzSUMwMkxqUTVOakV3TURZc01DNHdNREUxSUdFZ01TNHhNVGt4TWpVMUxERXVNVEE1T1RZM01TQXdJREFnTVNBdE1DNDROelE1Tnprc0xUQXVOREUzTmpVeUlHd2dMVFF1TURVd09Dd3ROUzR3TXpZMU5UUWdZU0F4TGpFeE9URXlOVFVzTVM0eE1EazVOamN4SURBZ01DQXhJQzB3TGpBMk16WXlMQzB3TGpBNE9ETXlJREV1TVRFNU1USTFOU3d4TGpFd09UazJOekVnTUNBd0lERWdMVEF1TVRVeE9UUXlMQzB3TGpnMU1UQXlPQ0JzSURFdU5EUXpPREkzTEMwMkxqSTRNVEk0TlRNZ1lTQXhMakV4T1RFeU5UVXNNUzR4TURrNU5qY3hJREFnTUNBeElEQXVOakExTlRJMExDMHdMamMxTWprM05UZ2diQ0ExTGpnMU1qUXdNellzTFRJdU56azJNek01TlNCaElERXVNVEU1TVRJMU5Td3hMakV3T1RrMk56RWdNQ0F3SURFZ01DNDBNamc0T0RFNUxDMHdMakV3T0RVek1ETWdlaUlnYVdROUluQmhkR2d6TURVMExUSXRPU0l2UGlZamVHRTdJQ0FnSUR3dlp6NG1JM2hoT3lBZ0lDQThjR0YwYUNCcFpEMGljR0YwYURjME1UVWlJR1E5SW0wZ01UUXVNalk1TlRZMkxEa3VOamt6TkRRME1TQXRNQzQyT1RJM09ERXNNQ0F3TEMweExqZzBOelF4TmlCaklEQXNMVEF1TlRBNE1ETTRNeUF0TUM0ME1UVTJOamdzTFRBdU9USXpOekEyTXlBdE1DNDVNak0zTURZc0xUQXVPVEl6TnpBMk15QnNJQzB4TGpnME56UXhOaXd3SURBc0xUQXVOamt5TnpnZ1l5QXdMQzB3TGpZek56TTFPU0F0TUM0MU1UY3lOelVzTFRFdU1UVTBOak0ySUMweExqRTFORFl6TXpRc0xURXVNVFUwTmpNMklDMHdMall6TnpNMU56Z3NNQ0F0TVM0eE5UUTJNek00TERBdU5URTNNamMzSUMweExqRTFORFl6TXpnc01TNHhOVFEyTXpZZ2JDQXdMREF1TmpreU56Z2dMVEV1T0RRM05ERTJMREFnWXlBdE1DNDFNRGd3TXpnc01DQXRNQzQ1TVRrd09Ea3NNQzQwTVRVMk5qZ2dMVEF1T1RFNU1EZzVMREF1T1RJek56QTJNeUJzSURBc01TNDNOVFV3TkRVZ01DNDJPRGd4TmpRc01DQmpJREF1TmpnNE1UWXhMREFnTVM0eU5EY3dNRFVzTUM0MU5UZzROREk1SURFdU1qUTNNREExTERFdU1qUTNNREEwT1NBd0xEQXVOamc0TVRZeUlDMHdMalUxT0RnME5Dd3hMakkwTnpBd05TQXRNUzR5TkRjd01EVXNNUzR5TkRjd01EVWdiQ0F0TUM0Mk9USTNPREVzTUNBd0xERXVOelUxTURRMUlHTWdNQ3d3TGpVd09EQXpPQ0F3TGpReE5UWTJPQ3d3TGpreU16Y3dOaUF3TGpreU16Y3dOaXd3TGpreU16Y3dOaUJzSURFdU56VTFNRFExTERBZ01Dd3RNQzQyT1RJM09ERWdZeUF3TEMwd0xqWTRPREUyTVNBd0xqVTFPRGcwTXl3dE1TNHlORGN3TURVZ01TNHlORGN3TURRNExDMHhMakkwTnpBd05TQXdMalk0T0RFMk1qUXNNQ0F4TGpJME56QXdORFFzTUM0MU5UZzRORFFnTVM0eU5EY3dNRFEwTERFdU1qUTNNREExSUd3Z01Dd3dMalk1TWpjNE1TQXhMamMxTlRBME5Td3dJR01nTUM0MU1EZ3dNemdzTUNBd0xqa3lNemN3Tml3dE1DNDBNVFUyTmpnZ01DNDVNak0zTURZc0xUQXVPVEl6TnpBMklHd2dNQ3d0TVM0NE5EYzBNVFlnTUM0Mk9USTNPREVzTUNCaklEQXVOak0zTXpVNExEQWdNUzR4TlRRMk16VXNMVEF1TlRFM01qYzJJREV1TVRVME5qTTFMQzB4TGpFMU5EWXpOQ0F3TEMwd0xqWXpOek0xT0NBdE1DNDFNVGN5Tnpjc0xURXVNVFUwTmpNek9TQXRNUzR4TlRRMk16VXNMVEV1TVRVME5qTXpPU0I2SWlCemRIbHNaVDBpWm1sc2JEb2pabVptWm1abU8yWnBiR3d0YjNCaFkybDBlVG94TzNOMGNtOXJaUzEzYVdSMGFEb3dMalEyTVRnMU16WTRJaTglMkJKaU40WVRzZ0lEd3ZaejRtSTNoaE96d3ZjM1puUGclM0QlM0QlM0IlMjIlMjBwYXJlbnQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC01MyUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjI1JTIyJTIwd2lkdGglM0QlMjIxMzAlMjIlMjBoZWlnaHQlM0QlMjIxMzAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC01NiUyMiUyMHN0eWxlJTNEJTIyZWRnZVN0eWxlJTNEb3J0aG9nb25hbEVkZ2VTdHlsZSUzQnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMCUzQmVudHJ5WSUzRDAuNSUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JzdHJva2VXaWR0aCUzRDQlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNTclMjIlMjB0YXJnZXQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC00MiUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTU3JTIyJTIwdmFsdWUlM0QlMjJTdG9yYWdlJTIwSW5pdGlhbGl6ZXIlMjZsdCUzQmJyJTI2Z3QlM0JJbml0Q29udGFpbmVyJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JmaWxsQ29sb3IlM0QlMjNkYWU4ZmMlM0JzdHJva2VDb2xvciUzRCUyMzZjOGViZiUzQmZvbnRTaXplJTNEMjAlM0Jmb250U3R5bGUlM0QyJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjE3NTcuNSUyMiUyMHklM0QlMjIyODE1LjEyJTIyJTIwd2lkdGglM0QlMjIxMzUlMjIlMjBoZWlnaHQlM0QlMjI4MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTU4JTIyJTIwc3R5bGUlM0QlMjJlZGdlU3R5bGUlM0RvcnRob2dvbmFsRWRnZVN0eWxlJTNCcm91bmRlZCUzRDAlM0JvcnRob2dvbmFsTG9vcCUzRDElM0JqZXR0eVNpemUlM0RhdXRvJTNCaHRtbCUzRDElM0JlbnRyeVglM0QwJTNCZW50cnlZJTNEMC41JTNCZW50cnlEeCUzRDAlM0JlbnRyeUR5JTNEMCUzQnN0cm9rZVdpZHRoJTNENCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjBzb3VyY2UlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC01OSUyMiUyMHRhcmdldCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTY2JTIyJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNTklMjIlMjB2YWx1ZSUzRCUyMlRyYWluZXIlMjBDb250YWluZXIlMjIlMjBzdHlsZSUzRCUyMnJvdW5kZWQlM0QxJTNCd2hpdGVTcGFjZSUzRHdyYXAlM0JodG1sJTNEMSUzQmZpbGxDb2xvciUzRCUyM2RhZThmYyUzQnN0cm9rZUNvbG9yJTNEJTIzNmM4ZWJmJTNCZm9udFNpemUlM0QyMCUzQmZvbnRTdHlsZSUzRDIlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyMTc1Ni4zOTAwMDAwMDAwMDAzJTIyJTIweSUzRCUyMjMwNzAlMjIlMjB3aWR0aCUzRCUyMjEzNSUyMiUyMGhlaWdodCUzRCUyMjgwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNjAlMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIyc2hhcGUlM0RpbWFnZSUzQnZlcnRpY2FsTGFiZWxQb3NpdGlvbiUzRGJvdHRvbSUzQmxhYmVsQmFja2dyb3VuZENvbG9yJTNEZGVmYXVsdCUzQnZlcnRpY2FsQWxpZ24lM0R0b3AlM0Jhc3BlY3QlM0RmaXhlZCUzQmltYWdlQXNwZWN0JTNEMCUzQmltYWdlJTNEaHR0cHMlM0ElMkYlMkZtaXJvLm1lZGl1bS5jb20lMkZ2MiUyRnJlc2l6ZSUzQWZpdCUzQTI1NiUyRjEqeFpFV0lOaUR5UTdpb1V0b0JlblFUQS5wbmclM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyMTY2NC45NzAwMDAwMDAwMDAzJTIyJTIweSUzRCUyMjI3MjUuMTIlMjIlMjB3aWR0aCUzRCUyMjkyLjUzJTIyJTIwaGVpZ2h0JTNEJTIyOTAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02MSUyMiUyMHZhbHVlJTNEJTIyRGF0YXNldCUyMFByb3ZpZGVyJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JmaWxsQ29sb3IlM0QlMjNmZmYyY2MlM0JzdHJva2VDb2xvciUzRCUyM2Q2YjY1NiUzQmZvbnRTaXplJTNEMjAlM0Jmb250U3R5bGUlM0QyJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjIwODIuNTQlMjIlMjB5JTNEJTIyMjg3MCUyMiUyMHdpZHRoJTNEJTIyMTM1JTIyJTIwaGVpZ2h0JTNEJTIyODAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02MiUyMiUyMHZhbHVlJTNEJTIyTW9kZWwlMjBQcm92aWRlciUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZmlsbENvbG9yJTNEJTIzZmZmMmNjJTNCc3Ryb2tlQ29sb3IlM0QlMjNkNmI2NTYlM0Jmb250U2l6ZSUzRDIwJTNCZm9udFN0eWxlJTNEMiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIyMDgxLjA0JTIyJTIweSUzRCUyMjI3NjglMjIlMjB3aWR0aCUzRCUyMjEzNSUyMiUyMGhlaWdodCUzRCUyMjgwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNjMlMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZGFzaGVkJTNEMSUzQmZpbGxDb2xvciUzRG5vbmUlM0JzdHJva2VXaWR0aCUzRDIlM0JzdHJva2VDb2xvciUzRCUyMzAwMDAwMCUzQmNvbnRhaW5lciUzRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyMjMzMy41OSUyMiUyMHklM0QlMjIyNzM3LjY4JTIyJTIwd2lkdGglM0QlMjIzMDYuNDElMjIlMjBoZWlnaHQlM0QlMjIyMzQuODglMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02NCUyMiUyMHZhbHVlJTNEJTIyUzMlMjBCdWNrZXQlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGh0dHBzJTNBJTJGJTJGc3RhdGljLTAwLmljb25kdWNrLmNvbSUyRmFzc2V0cy4wMCUyRnN0b3JhZ2UtYW1hem9uczMtYnVja2V0LWljb24tNDk1eDUxMi1yZDUxOWl4eS5wbmclM0Jmb250U2l6ZSUzRDIwJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjI0NTMuMzMlMjIlMjB5JTNEJTIyMjg0OCUyMiUyMHdpZHRoJTNEJTIyNjcuNjglMjIlMjBoZWlnaHQlM0QlMjI3MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTY2JTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGRhdGElM0FpbWFnZSUyRnN2ZyUyQnhtbCUyQ1BITjJaeUI0Yld4dWN6MGlhSFIwY0RvdkwzZDNkeTUzTXk1dmNtY3ZNakF3TUM5emRtY2lJSFpwWlhkQ2IzZzlJakFnTUNBek5USWdOVGtpSUdacGJHdzlJbTV2Ym1VaUlHaGxhV2RvZEQwaU5Ua2lJSGRwWkhSb1BTSXpOVElpUGlZamVHRTdJQ0E4Y0dGMGFDQmtQU0pOTmpRdU1EQXpJRFF6TGpNM01tRTFMamd6TkNBMUxqZ3pOQ0F3SURBZ01DMHVPQzB4TGpjMU4yTXVNRGM0TFM0eU9ETXVNVE0zTFM0MU55NHhOell0TGpnMkxqSTFPQzB4TGpnME5TMHVNemcyTFRNdU5UTXpMVEV1TlRrNUxUUXVPRFF0TGpZMU55MHVOekV6TFRFdU16WXlMVEV1TVRnMExUSXVNVEE0TFRFdU5EY3pMalE1TFRJdU1EZ3VOek00TFRRdU1qRXVOek01TFRZdU16UTNZVEk1TGpFeUlESTVMakV5SURBZ01DQXdMUzR6TWpVdE5DNHlPQ0F5Tnk0NU1pQXlOeTQ1TWlBd0lEQWdNQzB4TGpnNU55MDJMalkyTVNBeU9DNHlPU0F5T0M0eU9TQXdJREFnTUMweExqZzNOeTB6TGpZeU55QXlOUzR4TURrZ01qVXVNVEE1SURBZ01DQXdMVEV1TlRJMUxUSXVNalFnTWpFdU16YzNJREl4TGpNM055QXdJREFnTUMwdU9EUXRNUzR3TmpRZ01qZ3VNRE0wSURJNExqQXpOQ0F3SURBZ01DMHpMamd6TnkwekxqZ3hJREkxTGpNNE1pQXlOUzR6T0RJZ01DQXdJREF0TVM0d05qUXRMamd6TlVFeU9DNHpNVFVnTWpndU16RTFJREFnTUNBd0lETXlMakV4T0NBd1F6RTJMalE1TVNBd0lETXVPREkxSURFeUxqVTNPQ0F6TGpneU5TQXlPQzR3T1Raak1DQXlMakUyTkM0eU5USWdOQzR6TWk0M05USWdOaTQwTWpZdExqWTNNUzR5T1MweExqTXhOQzQzTkMweExqa3hJREV1TXprekxURXVNakUwSURFdU16QTJMVEV1T0RVNElESXVPVGc0TFRFdU5pQTBMamd6TWk0d016a3VNamt6TGpBNU9DNDFPRE11TVRjMkxqZzJPR0UxTGpnME5DQTFMamcwTkNBd0lEQWdNQzB1T0NBeExqYzFOMk10TGpNM01pQXhMalF3TnkwdU1qVWdNaTQyTnpZdU1qSTBJRE11TnpnNExTNDFNVFVnTVM0ME5UUXRMak00TmlBekxqQXdNaTR5T0RRZ05DNHpORGN1TkRnNExqazRNeUF4TGpFNE55QXhMamMwTkNBeUxqQTBOeUF5TGpReU15QXhMakF5TkM0NE1EZ2dNaTR6TURRZ01TNDBPVFFnTXk0NE5TQXlMakUxTXlBeExqZzBNeTQzT0NBMExqQTVNeUF4TGpVeE5DQTFMakV4TmlBeExqYzRNeUF5TGpZME15NDJPQ0ExTGpFM055QXhMakV4SURjdU56UTJJREV1TVRNeElETXVOall1TURNMElEWXVPREV0TGpneUlEa3VNRFkzTFRNdU1EQTRJREV1TVRBNExqRXpOU0F5TGpJeU5DNHlNRE1nTXk0ek5ERXVNakF5WVRJNUxqTXlJREk1TGpNeUlEQWdNQ0F3SURNdU5UTXRMakl5WXpJdU1qVWdNaTR5SURVdU5ERTBJRE11TURZeklEa3VNRGczSURNdU1ESTRJREl1TlRZNExTNHdNaUExTGpFd01pMHVORFV4SURjdU56TTVMVEV1TVRNeUlERXVNRE10TGpJMk9TQXpMakkzT1MweExqQXdNaUExTGpFeU15MHhMamM0TXlBeExqVTBOUzB1TmpZZ01pNDRNall0TVM0ek5EWWdNeTQ0TlRZdE1pNHhOVEl1T0RVMExTNDJPQ0F4TGpVMU1pMHhMalEwSURJdU1EUXRNaTQwTWpOaE5TNDFOQ0ExTGpVMElEQWdNQ0F3SUM0eU9URXROQzR6TkRkakxqUTNMVEV1TVRFeUxqVTVNaTB5TGpNNE5DNHlNVGt0TXk0M09WcHRMVEl1TmpJeklETXVOamswWXk0MU1pNDVOemt1TlRVeklESXVNRGcwTGpBNU5TQXpMakV4TkMwdU5qazFJREV1TlRZdE1pNDBNaUF5TGpjNUxUVXVOemN6SURRdU1URmhORFF1TWpFM0lEUTBMakl4TnlBd0lEQWdNUzAwTGpBeElERXVNelZqTFRJdU56VTJMamN4TFRVdU1qVWdNUzR3TnkwM0xqUXdPQ0F4TGpBM0xUTXVOVGMwSURBdE5pNHlNek10TGprM09TMDNMamt5TFRJdU9URXpZVEkyTGpjek55QXlOaTQzTXpjZ01DQXdJREV0T0M0Mk1qSXVNRFZqTFRFdU5qZzVJREV1T1RBeExUUXVNek16SURJdU9EWTBMVGN1T0RjM0lESXVPRFkwTFRJdU1UVTVJREF0TkM0Mk5USXRMak0yTFRjdU5EQTVMVEV1TURjdExqQXhOeTB1TURBMUxURXVPVEkxTFM0MU15MDBMakF4TFRFdU16VXhMVE11TXpVeExURXVNekl0TlM0d056Z3RNaTQxTkRndE5TNDNOekl0TkM0eE1TMHVORFU0TFRFdU1ETXRMalF5TlMweUxqRXpOUzR3T1RRdE15NHhNVFF1TURRNExTNHdPUzR4TFM0eE9DNHhOVFV0TGpJMk5XRXpMamt6TlNBekxqa3pOU0F3SURBZ01TMHVOVE0zTFRNdU1Ua3hJRE11TlRjeUlETXVOVGN5SURBZ01DQXhJREV1TWpFdE1TNDRPU0F6TGpreE55QXpMamt4TnlBd0lEQWdNUzB1TlRNM0xURXVORGc1WXkwdU1UWTJMVEV1TVRRMkxqSXhOeTB5TGpJNUlERXVNRGM0TFRNdU1qSXpMalkzTWkwdU56STJJREV1TmpJdE1TNHhNallnTWk0Mk55MHhMakV5Tm1ndU1ESTVZVEkxTGpnNU15QXlOUzQ0T1RNZ01DQXdJREV0TVM0eE9URXROeTQzT0Rkak1DMHhOQzQwTURFZ01URXVOelUzTFRJMkxqQTNPQ0F5Tmk0eU5qRXRNall1TURjNGN6STJMakkyTVNBeE1TNDJOelVnTWpZdU1qWXhJREkyTGpBM09HRXlOUzQ0TnpZZ01qVXVPRGMySURBZ01DQXhMVEV1TVRrNUlEY3VPREEzWXk0eE1qY3RMakF4TXk0eU5URXRMakF4T1M0ek56TXRMakF4T1NBeExqQTFJREFnTWlBdU5DQXlMalkzSURFdU1USTJMamcyTWk0NU16SWdNUzR5TkRVZ01pNHdOemNnTVM0d056Z2dNeTR5TWpOaE15NDVNVGtnTXk0NU1Ua2dNQ0F3SURFdExqVXpOeUF4TGpRNE9DQXpMalUzSURNdU5UY2dNQ0F3SURFZ01TNHlNU0F4TGpnNU1TQXpMamt5TWlBekxqa3lNaUF3SURBZ01TMHVOVE0ySURNdU1UbGpMakExTlM0d09EWXVNVEEzTGpFM05DNHhOVFF1TWpZMVdpSWdabWxzYkQwaUkyWm1aaUl2UGlZamVHRTdJQ0E4Y0dGMGFDQmtQU0pOTmpFdU1qSTJJRFEyTGpnd01tRXpMamt6TkNBekxqa3pOQ0F3SURBZ01DQXVOVE0zTFRNdU1Ua3hJRE11TlRjMElETXVOVGMwSURBZ01DQXdMVEV1TWpFdE1TNDRPV011TWpjNExTNDBOVFl1TkRZdExqazJNaTQxTXpjdE1TNDBPRGt1TVRZMkxURXVNVFEyTFM0eU1UY3RNaTR5T1MweExqQTNPUzB6TGpJeU15MHVOamN0TGpjeU5pMHhMall5TFRFdU1USTJMVEl1TmpjdE1TNHhNall0TGpFeU1pQXdMUzR5TkRZdU1EQTNMUzR6TnpNdU1ERTVZVEkxTGpnNE1pQXlOUzQ0T0RJZ01DQXdJREFnTVM0eE9UY3ROeTQ0TURaak1DMHhOQzQwTURJdE1URXVOelUzTFRJMkxqQTNPQzB5Tmk0eU5pMHlOaTR3TnpndE1UUXVOVEF6SURBdE1qWXVNallnTVRFdU5qYzFMVEkyTGpJMklESTJMakEzT0dFeU5TNDRPVFlnTWpVdU9EazJJREFnTUNBd0lERXVNVGtnTnk0M09EZG9MUzR3TWpoakxURXVNRFVnTUMweUlDNDBMVEl1TmpjZ01TNHhNalV0TGpnMk1pNDVNekl0TVM0eU5EVWdNaTR3TnpndE1TNHdOemdnTXk0eU1qTmhNeTQ1TWlBekxqa3lJREFnTUNBd0lDNDFNemNnTVM0ME9Ea2dNeTQxTnlBekxqVTNJREFnTUNBd0xURXVNakVnTVM0NE9TQXpMamt5TmlBekxqa3lOaUF3SURBZ01DQXVOVE0zSURNdU1Ua3lJRE11TlRjMUlETXVOVGMxSURBZ01DQXdMUzR4TlRVdU1qWTFZeTB1TlRFNUxqazNPUzB1TlRVeUlESXVNRGcwTFM0d09UUWdNeTR4TVRRdU5qazFJREV1TlRZZ01pNDBNaUF5TGpjNUlEVXVOemN6SURRdU1URmhORFF1TXpNMElEUTBMak16TkNBd0lEQWdNQ0EwTGpBeElERXVNelZqTWk0M05UWXVOekVnTlM0eU5TQXhMakEzSURjdU5EQTRJREV1TURjZ015NDFORFFnTUNBMkxqRTRPQzB1T1RZeUlEY3VPRGMzTFRJdU9EWTBJREl1T0RVNExqUTFJRFV1TnpjdU5ETTBJRGd1TmpJeUxTNHdORGtnTVM0Mk9EY2dNUzQ1TXpRZ05DNHpORFlnTWk0NU1UUWdOeTQ1TWlBeUxqa3hOQ0F5TGpFMU9TQXdJRFF1TmpVeUxTNHpOaUEzTGpRd09TMHhMakEzWVRRMExqUTVJRFEwTGpRNUlEQWdNQ0F3SURRdU1ERXRNUzR6TlRGak15NHpOVEV0TVM0ek1pQTFMakEzT0MweUxqVTFJRFV1TnpjeUxUUXVNVEV1TkRVNExURXVNRE11TkRJMUxUSXVNVE0xTFM0d09UUXRNeTR4TVRRdExqQTBOeTB1TURreExTNHhMUzR4T0MwdU1UVTFMUzR5TmpWYWJTMHpOQzQyT1RJZ05DNHdOamRqTFM0eE5EWXVNalV6TFM0ek1ERXVOUzB1TkRZM0xqYzBZVFF1TnpJNUlEUXVOekk1SURBZ01DQXhMVEV1TmpjM0lERXVORGhqTFRFdU1qYzBMalk1TFRJdU9EZzNMamt6TFRRdU5USTFMamt6TFRJdU5UZzRJREF0TlM0eU5ERXRMall3TVMwMkxqY3lPQzB1T1RnMExTNHdOelF0TGpBeE9TMDVMakV4TlMweUxqVTFOUzAzTGprM0xUUXVOekUwTGpFNU1pMHVNell6TGpVeExTNDFNRGd1T1RBNExTNDFNRGdnTVM0Mk1USWdNQ0EwTGpVME55QXlMak00TXlBMUxqZ3dPQ0F5TGpNNE15NHlPRElnTUNBdU5EZ3hMUzR4TVRrdU5UWXlMUzQwTVM0MU16Z3RNUzQ1TVRRdE9DNHhOeTB5TGpjeE9TMDNMalF6TnkwMUxqUTVMakV6TFM0ME9USXVORGd0TGpZNUxqazNOQzB1TmprZ01pNHhNekV0TGpBd01TQTJMamt4TkNBekxqY3lJRGN1T1RFMElETXVOekl1TURjM0lEQWdMakV6TWkwdU1ESXlMakUyTWkwdU1EWTViQzR3TVRNdExqQXlNV011TkRjdExqYzNMakl0TVM0ek15MHpMakF4TnkwekxqSTRObXd0TGpNd09TMHVNVGczWXkwekxqVTBMVEl1TVRJM0xUWXVNREl6TFRNdU5EQTNMVFF1TmpFdE5DNDVNelV1TVRZeUxTNHhOell1TXpreUxTNHlOVFF1TmpjeUxTNHlOVFF1TXpNeUlEQWdMamN6TkM0eE1TQXhMakUzTnk0eU9UVWdNUzQ0TmprdU56Z3pJRFF1TkRZZ01pNDVNVGdnTlM0MU5ESWdNeTQ0TkRrdU1UY3VNVFEzTGpNMExqSTVOUzQxTURndU5EUTFJREFnTUNBeExqTTNJREV1TkRFMUlESXVNVGs0SURFdU5ERTFZUzQxTURVdU5UQTFJREFnTUNBd0lDNDBOak10TGpJMll5NDFPRGN0TGprNE15MDFMalExT0MwMUxqVXpNaTAxTGpjNU9TMDNMalF4TFM0eU15MHhMakkzTGpFMk15MHhMamt4TlM0NE9TMHhMamt4TlM0ek5EWWdNQ0F1TnpZNExqRTBOaUF4TGpJek15NDBOQ0F4TGpRME5TNDVNU0EwTGpJek5TQTFMalkzSURVdU1qVTJJRGN1TlRJekxqTTBNeTQyTWk0NU1qY3VPRGd6SURFdU5EVTBMamc0TXlBeExqQTBOU0F3SURFdU9EWXlMVEV1TURNeUxqQTVOaTB5TGpNME15MHlMalkxTlMweExqazNNaTB4TGpjeU15MDFMakU1TmkwdU5EVTJMVFV1TXprMVlURXVNRFFnTVM0d05DQXdJREFnTVNBdU1UWXpMUzR3TVRKak1TNHhOVElnTUNBeExqWTJJREV1T1RjeElERXVOallnTVM0NU56RnpNUzQwT1NBekxqY3hOU0EwTGpBME9TQTJMakkxTkdNeUxqTXlNU0F5TGpNd05TQXlMalkwTmlBMExqRTVOaUF4TGpJNU15QTJMalUxTlZwdE9DNHlOelF1TkRNMUxTNHhNekl1TURFMkxTNHlNamN1TURJMkxTNHpOVGd1TURNMUxTNHhNVFl1TURFdExqRXdOeTR3TVMwdU1UVXVNREV4TFM0eE5qZ3VNREV5TFM0eE5qWXVNREV4TFM0d016Y3VNREF5TFM0eE16RXVNREE0TFM0d05UWXVNREF6TFM0eE5UVXVNREEzTFM0eE9DNHdNRGd0TGpFMk5TNHdNRFl0TGpFd09TNHdNRE5vTFM0d05UWnNMUzR4TURJdU1EQXlhQzB1TURVMGJDMHVNVEF5TGpBd01TMHVNVFF1TURBeWFDMHVNVGt6WXkwdU1UVXpJREF0TGpNd05TMHVNREF4TFM0ME5UY3RMakF3Tkd3dExqRXlNeTB1TURBekxTNHhNRFV0TGpBd015MHVNVE10TGpBd05DMHVNVFl5TFM0d01EWXRMakUwTmkwdU1EQTJMUzR3TXpndExqQXdNaTB1TVRNNUxTNHdNRGN0TGpFeE5TMHVNREEzTFM0d09TMHVNREExWVRJMUxqWXpJREkxTGpZeklEQWdNQ0F4TFM0ek16Z3RMakF5TTJ3dExqRXhPUzB1TURFdExqRTBPQzB1TURFellURTNMakE1TlNBeE55NHdPVFVnTUNBd0lERXRMalEyTmkwdU1EUTFhQzB1TURBMVl6RXVOREl0TXk0eE5EWXVOekF5TFRZdU1EZzBMVEl1TVRZNExUZ3VPVE14TFRFdU9EZ3lMVEV1T0RZM0xUTXVNVE0wTFRRdU5qSXpMVE11TXprMExUVXVNakk0TFM0MU1qVXRNUzQzT1RJdE1TNDVNVGN0TXk0M09ETXROQzR5TWpndE15NDNPRE10TGpFNU5TQXdMUzR6T1M0d01UWXRMalU0TXk0d05EWXRNUzR3TVRNdU1UVTRMVEV1T0RrNExqY3pOeTB5TGpVeU9TQXhMall3T0MwdU5qZ3lMUzQ0TkRNdE1TNHpORFV0TVM0MU1UTXRNUzQ1TkRVdE1TNDRPVEV0TGprd05TMHVOVGN0TVM0NE1EY3RMamcxT1MweUxqWTROaTB1T0RVNUxURXVNRGszSURBdE1pNHdOemd1TkRRNExUSXVOell4SURFdU1qWnNMUzR3TVRndU1ESXRMakF6T0MwdU1UWXRMakF3TWkwdU1EQTRZVEl5TGpRNE5DQXlNaTQwT0RRZ01DQXdJREV0TGpNeU55MHhMalkzWXpBdExqQXdNeUF3TFM0d01EY3RMakF3TWkwdU1ERnNMUzR3TWkwdU1USTRZVEl3TGpBeUlESXdMakF5SURBZ01DQXhMUzR3TlRNdExqTTNObXd0TGpBeU15MHVNVGN4TFM0d01qRXRMakUzTWkwdU1ERTVMUzR4TmpNdExqQXdNaTB1TURFMFlUSTBMak14TmlBeU5DNHpNVFlnTUNBd0lERXRMakEyTlMwdU5qWTNiQzB1TURBM0xTNHdPRFV0TGpBeExTNHhORFpoTlM0eE16a2dOUzR4TXprZ01DQXdJREV0TGpBd09TMHVNVEpzTFM0d01ESXRMakF5T0dFeE5pNHdPRFlnTVRZdU1EZzJJREFnTUNBeExTNHdNaTB1TXpNMWJDMHVNREE1TFM0eE56Vk1PQzR6TnpZZ01qbHNMUzR3TURJdExqQTBOeTB1TURBMExTNHhOQzB1TURBMExTNHhNbU13TFM0d05Ea3RMakF3TWkwdU1EazJMUzR3TURNdExqRTBOR3d0TGpBd01pMHVNVFV4WXpBdExqQTFJREF0TGpFdExqQXdNaTB1TVRWMkxTNHhOVEpET0M0ek5pQXhOUzR4T0NBeE9DNDVNRE1nTkM0M01TQXpNUzQ1TVNBMExqY3hjekl6TGpVMUlERXdMalEzSURJekxqVTFJREl6TGpNNE5YWXVNekF5YkMwdU1EQXpMakUxWXpBZ0xqQTBNeTB1TURBeUxqQTROQzB1TURBekxqRXlOaUF3SUM0d016Y3RMakF3TWk0d056UXRMakF3TXk0eE1TQXdJQzR3TkRjdExqQXdNeTR3T1RRdExqQXdOQzR4TkRKMkxqQXdNMnd0TGpBd055NHhOalF0TGpBd05pNHhORFF0TGpBd01pNHdNelF0TGpBd09DNHhOVE5qTFM0d01Ua3VNekk0TFM0d05EUXVOalUxTFM0d056VXVPVGd6ZGk0d01ETmpMUzR3TURVdU1EVTBMUzR3TVM0eE1EZ3RMakF4Tnk0eE5qSnNMUzR3TVRRdU1USTJMUzR3TWpjdU1qUTRMUzR3TVRZdU1USTJMUzR3TWk0eE5EZ3RMakF5TWk0eE5qRXRMakF5Tmk0eE9DMHVNREl5TGpFME1pMHVNREkxTGpFMllUY3VNVGcySURjdU1UZzJJREFnTUNBeExTNHdNamd1TVRac0xTNHdNamd1TVRVNVlURTRMakUxSURFNExqRTFJREFnTUNBeExTNHhOVFV1TnpreWJDMHVNRE0wTGpFMU55MHVNRE0xTGpFMU4yTXRMalkyTXkwdU5qUXRNUzQxTkMwdU9UZzRMVEl1TlRBNUxTNDVPRGd0TGpnM09DQXdMVEV1TnpneExqSTRPQzB5TGpZNE5TNDROVGN0TGpZdU16YzVMVEV1TWpZeklERXVNRFE1TFRFdU9UUTJJREV1T0RreExTNDJNekl0TGpnM0xURXVOVEUzTFRFdU5EUTVMVEl1TlRJNUxURXVOakEzWVRNdU56YzBJRE11TnpjMElEQWdNQ0F3TFM0MU9ETXRMakEwTm1NdE1pNHpNVElnTUMwekxqY3dNaUF4TGprNU1TMDBMakl5T0NBekxqYzRNeTB1TWpZeExqWXdOUzB4TGpVeE5DQXpMak0yTFRNdU16azNJRFV1TWpNdE1pNDROamdnTWk0NE16Z3RNeTQxT1RFZ05TNDNOalF0TWk0eE9UUWdPQzQ0T1RaYWJUSTBMak14TWkwMkxqSTVOeTB1TURBNUxqQXlOMkV4TGpZM015QXhMalkzTXlBd0lEQWdNUzB1TVRVM0xqTXdOMk10TGpBMU1pNHdOemN0TGpFeExqRTFMUzR4TnpFdU1qSXRMakF4TkM0d01UWXRMakF5T0M0d016SXRMakEwTkM0d05EZGhNaTR5TlRnZ01pNHlOVGdnTUNBd0lERXRMakEyT1M0d04yTXRMalF4T0M0ME1USXRNUzR3TlRVdU56Y3pMVEV1TnpjMklERXVNVEEwTFM0d09ESXVNRE0zTFM0eE5qVXVNRGMwTFM0eU5Ea3VNVEZzTFM0d09ETXVNRE0zWVRjdU1qYzFJRGN1TWpjMUlEQWdNQ0F4TFM0eE55NHdOek1nT0M0M05qRWdPQzQzTmpFZ01DQXdJREV0TGpFM0xqQTNNV3d0TGpFM05DNHdOekZqTFM0ME1EWXVNVFkyTFM0NE1qRXVNekkwTFRFdU1qSTJMalE0YkMwdU1UYzBMakEyTnkwdU1UY3VNRFkyWVRNMUxqRTVJRE0xTGpFNUlEQWdNQ0F3TFM0ek16Z3VNVE16YkMwdU1UWTFMakEyTmkwdU1UWXlMakEyTmkwdU1EZ3VNRE16TFM0eE5UY3VNRFkyWXkweExqRTVNaTQxTURndE1pNHdOU0F4TGpBeU5TMHhMamczSURFdU5qWTJZUzQyTlRZdU5qVTJJREFnTUNBd0lDNHhNemt1TWpVM1l5NHlNVEl1TWpFNUxqVTVOeTR4T0RRZ01TNHdPRE11TURFdU1EWTVMUzR3TWpRdU1UTTNMUzR3TlM0eU1EUXRMakEzTjJ3dU1EUXpMUzR3TVRoakxqRXhMUzR3TkRjdU1qSTVMUzR3T1RrdU16UTVMUzR4TlRac0xqQTVMUzR3TkROakxqVTVOaTB1TWprZ01TNHlOeTB1TmpjNElERXVPVE00TFRFdU1ETXlMakkyT0MwdU1UUXpMalUwTFM0eU9DNDRNVFF0TGpRd09TNDJNek10TGpJNU5pQXhMakl5T0MwdU5UQTJJREV1TnpBM0xTNDFNRFl1TWpJMUlEQWdMalF5TXk0d05EWXVOVGc0TGpFMU1Xd3VNREk0TGpBeE9HRXVPRGs0TGpnNU9DQXdJREFnTVNBdU1qa3pMak0wWXk0eU16WXVORFExTGpBek9DNDVNRGN0TGpReU5TQXhMak0yTFM0ME5EVXVORE0wTFRFdU1UTTJMamcyTFRFdU9USXlJREV1TWpVMWJDMHVNVGMzTGpBNE4yTXRNaTR6TkNBeExqRTBNUzAxTGpRd05DQXlMVFV1TkRRMklESXVNREV4TFM0NE1UY3VNakV0TVM0NU9EUXVORGcyTFRNdU15NDJPVE5zTFM0eE9UVXVNRE10TGpBek1pNHdNRFZoTWpFdU9ESWdNakV1T0RJZ01DQXdJREV0TGpnNU55NHhNVGRzTFM0d01qZ3VNREF6WVRJeExqVXpJREl4TGpVeklEQWdNQ0F4TFRFdU5qWTFMakV5TldndExqQXdPR010TGpJd01TNHdNRGN0TGpRd01pNHdNVEV0TGpZd05DNHdNVEZvTFM0eU16SmhNVFF1TkRjZ01UUXVORGNnTUNBd0lERXRMamt5TFM0d05ERmpMUzR3TURZZ01DMHVNREUwSURBdExqQXlNUzB1TURBeVlURXlMak0ySURFeUxqTTJJREFnTUNBeExURXVNVEUxTFM0eE5ESnNMUzR4TURNdExqQXhPUzB1TURBM0xTNHdNREpoT0M0eU1TQTRMakl4SURBZ01DQXhMUzR6TWpJdExqQTJOeUEyTGpJMU55QTJMakkxTnlBd0lEQWdNUzB1TVRnMkxTNHdORFJzTFM0d016Y3RMakF4TFM0d09TMHVNREl6TFM0d01UWXRMakF3TkMwdU1EazJMUzR3TWpndExqRXdOQzB1TURNdExqQXhNaTB1TURBMExTNHdPUzB1TURJM1lUVXVOemtnTlM0M09TQXdJREFnTVMwdU1UQXpMUzR3TXpOc0xTNHdPRE10TGpBeU55MHVNRFl4TFM0d01qSmhOaTQ0TURVZ05pNDRNRFVnTUNBd0lERXRMakUzTmkwdU1EWTBiQzB1TURVMkxTNHdNakV0TGpBME5TMHVNREU0WVRjdU1qYzRJRGN1TWpjNElEQWdNQ0F4TFM0eU5qTXRMakV4YkMwdU1EVTNMUzR3TWprdExqQXhMUzR3TURSaE5TNDFNREVnTlM0MU1ERWdNQ0F3SURFdExqRTRMUzR3T0Rac0xTNHdNVE10TGpBd05pMHVNRFUzTFM0d00yRTFMakF5TlNBMUxqQXlOU0F3SURBZ01TMHVNams0TFM0eE5qaHNMUzR3TlRRdExqQXpNMkV5TGprM0lESXVPVGNnTUNBd0lERXRMakE0TFM0d05Xd3RMakEyT1MwdU1EUTNMUzR3TnpVdExqQTFMUzR3TkRVdExqQXpNbUV6TGpNM09DQXpMak0zT0NBd0lEQWdNUzB1TVRNNUxTNHhNRFJzTFM0d056SXRMakExTldFMExqZzJNeUEwTGpnMk15QXdJREFnTVMwdU1EZzJMUzR3TjJ3dExqQTNMUzR3TmkwdU1EQXlMUzR3TURKaE15NDVNRElnTXk0NU1ESWdNQ0F3SURFdExqRTBOeTB1TVRNemJDMHVNREF5TFM0d01ETmhNaTQxT1RjZ01pNDFPVGNnTUNBd0lERXRMakEzTXkwdU1EY3liQzB1TURjeUxTNHdOekl0TGpBM0xTNHdOelV0TGpBMk5pMHVNRGMwTFM0d01EY3RMakF3T0dFekxqYzFOeUF6TGpjMU55QXdJREFnTVMwdU16RTFMUzQwTURWc0xTNHdNemd0TGpBMU4yRTJMams0SURZdU9UZ2dNQ0F3SURFdExqRTFMUzR5TWpVZ05TNDNNRFlnTlM0M01EWWdNQ0F3SURFdExqRXdOUzB1TVRZMWJDMHVNRFkwTFM0eE1EVXRMakF3T0MwdU1ERTBMUzR3TmkwdU1UQXhZUzQ1TVRndU9URTRJREFnTUNBeExTNHdNekl0TGpBMU5Xd3RMakF6TWkwdU1EVTRMUzR3TVRndExqQXpMUzR3TVRFdExqQXlZVFF1T0RJMUlEUXVPREkxSURBZ01DQXhMUzR3TmpFdExqRXhNMnd0TGpBeU9DMHVNRFV0TGpBeU9DMHVNRFV5TFM0d01qZ3RMakExTTJFNExqUTBJRGd1TkRRZ01DQXdJREV0TGpFNU9DMHVOREl5YkMwdU1ESXlMUzR3TlROakxTNHdNVFV0TGpBek5DMHVNREk0TFM0d05qa3RMakEwTWkwdU1UQXpZVFV1TWpFMklEVXVNakUySURBZ01DQXhMUzR5TmkwdU9EWTBZeTB1TURBMExTNHdNVGN0TGpBd09DMHVNRE0wTFM0d01TMHVNRFZoTXk0MU5ESWdNeTQxTkRJZ01DQXdJREV0TGpBME5pMHVNams0YkMwdU1EQTFMUzR3TldFekxqVXhJRE11TlRFZ01DQXdJREV0TGpBeE5pMHVNVGszYkMwdU1EQXlMUzR3TldFeUxqUTNJREl1TkRjZ01DQXdJREV0TGpBd01pMHVNRGs0WXkwdU1ERTRMVEV1TXpFNExqWTFOQzB5TGpVNE5pQXlMakE1TFRRdU1ERXlJREl1TlRZdE1pNDFNemdnTkM0d05TMDJMakkxTXlBMExqQTFMVFl1TWpVemN5NHdOQzB1TVRVMkxqRXlNeTB1TXpoaE5DNHhNelFnTkM0eE16UWdNQ0F3SURFZ0xqSXdNUzB1TkRZMmJDNHdNVEl0TGpBeU5HTXVNRFV4TFM0eE1ESXVNVEE0TFM0eU1ESXVNVFk1TFM0emJDNHdORE10TGpBMk4yRXlMakkwTXlBeUxqSTBNeUF3SURBZ01TQXVNak16TFM0eU9UZHNMakF6TnkwdU1ETTRZVEV1TXpNZ01TNHpNeUF3SURBZ01TQXVOVEE1TFM0ek5ESnNMakF5TkMwdU1EQTRZVEV1TVRRZ01TNHhOQ0F3SURBZ01TQXVNVEEyTFM0d01qaHNMakF4TFM0d01ESmhMamsxTXk0NU5UTWdNQ0F3SURFZ0xqRXlNaTB1TURFMmFDNHdNRFJzTGpBMk5TMHVNREF5WVM0M09UUXVOemswSURBZ01DQXhJQzR4TmpRdU1ERXlZeTR5TXk0d016Y3VORFV1TVRjekxqWXpPUzR6T0RSaE1pNHdPVEVnTWk0d09URWdNQ0F3SURFZ0xqSTVPQzQwTkRac0xqQXpPUzR3T0dFekxqQTVOQ0F6TGpBNU5DQXdJREFnTVNBdU1qSTBMamN6TlNBekxqVXlOeUF6TGpVeU55QXdJREFnTVNBdU1EUTJMamN5TjJNdExqQXhOeTQwTFM0eExqYzVOUzB1TWpRMUlERXVNVGRzTFM0d05ERXVNVEF6WVRNdU1qVTRJRE11TWpVNElEQWdNQ0F4TFM0eE56UXVNelU0YkMwdU1EVTRMakV3TW1NdExqQTFMakE0TlMwdU1UQTBMakUyT1MwdU1UWXlMakkxTW13dExqQXpOUzR3TldNdExqRXpPQzR4T1MwdU1qa3VNelk1TFM0ME5UZ3VOVE16WVRRdU56Z3lJRFF1TnpneUlEQWdNQ0F4TFM0MU1qZ3VORFUwWXkwdU1UZzNMakV6T0MwdU16WXlMakk1TFM0MU1qUXVORFUyTFM0ME5qY3VORGcyTFM0MU56WXVPVEUyTFM0ME56RWdNUzR5TkRKaExqZ3hMamd4SURBZ01DQXdJQzR4TnpZdU1qazFiQzR3TVRjdU1ERTNMakF4Tnk0d01UZGhMamc0TkM0NE9EUWdNQ0F3SURBZ0xqQTFNeTR3TkRkc0xqQXhPUzR3TVRWakxqQTBOUzR3TXpVdU1Ea3pMakEyTmk0eE5ETXVNRGt6YkM0d05EUXVNREl6WXk0d05UUXVNREkyTGpFeExqQTBPQzR4TmpZdU1EWTJiQzR3TkRndU1ERTFMakF5TGpBd05TNHdNamt1TURBNExqQXlNeTR3TURZdU1ESTJMakF3TlM0d01qWXVNREEyTGpBeU5TNHdNRFF1TURVMUxqQXdPQzR3TVRndU1EQXpMakF6TWk0d01ETXVNREl1TURBeUxqQXpNeTR3TURKb0xqQXhPV3d1TURNMExqQXdNbWd1TVRBNGJDNHdNeTB1TURBeUxqQXpOaTB1TURBeUxqQTBNeTB1TURBMExqQTBMUzR3TURWaE1TNDFOek1nTVM0MU56TWdNQ0F3SURBZ0xqTTVMUzR4TURKc0xqQTFMUzR3TW1FeExqUTRPQ0F4TGpRNE9DQXdJREFnTUNBdU1qUXRMakV6WXk0d056RXRMakEwTmk0eE16a3RMakE1T0M0eU1ERXRMakUxTld3dU1EUTBMUzR3TkRGaExqUXdOaTQwTURZZ01DQXdJREFnTGpBeU1TMHVNREl4YkM0d05ERXRMakEwTTJNdU1TMHVNVEE0TGpFNE5pMHVNakk0TGpJMU55MHVNelUzWVRjd0xqUTVNU0EzTUM0ME9URWdNQ0F3SURFZ01TNDVNVEV0TXk0eU5EUnNMakE1TVMwdU1UUTFMakE1TXkwdU1UUTJMakV6T1MwdU1qRTRMakEwTmkwdU1EY3lZeTR4TlRVdExqSTBNUzR6TVRJdExqUTRMalEzTWkwdU56RTRiQzR3T1RVdExqRTBZeTR4T1MwdU1qZ3VNemd0TGpVMU1pNDFOamd0TGpneGJDNHdPVE10TGpFeU9XTXVNakExTFM0eU9DNDBNVGN0TGpVMU5DNDJNemd0TGpneU1Xd3VNRGc0TFM0eE1EUmpMakF4TlMwdU1ERTRMakF5T0MwdU1ETTFMakEwTkMwdU1EVXliQzR3T0RZdExqQTVPUzR3TkRNdExqQTBPQzR3T0RNdExqQTVNeTR3TkRJdExqQTBObUUzTGpFM0lEY3VNVGNnTUNBd0lERWdMakV5TXkwdU1USTRiQzR3T0MwdU1EZ3hZeTR4TlRndExqRTJMak16TWkwdU16QTBMalV5TFM0ME1qaHNMakEwTXkwdU1ESTRZeTR3TkRFdExqQXlPQzR3T0RRdExqQTFOQzR4TWprdExqQTNOeTQzTXpRdExqUXhOQ0F4TGpNME1pMHVORFExSURFdU5qa3pMUzR3T1RjdU1qRXlMakl4TGpNeU9TNDFOaTR6TWpJZ01TNHdORFZzTFM0d01ERXVNRFkxZGk0d01qUmhMamM1Tmk0M09UWWdNQ0F3SURFdExqQXdOQzR3Tmpkak1DQXVNREk0TFM0d01ETXVNRFUxTFM0d01EWXVNRGd6YkMwdU1EQTNMakEzTXkwdU1EQXlMakF5TW1FeExqSTRJREV1TWpnZ01DQXdJREV0TGpBd09DNHdOalZqTUNBdU1EQTJJREFnTGpBeE15MHVNREF6TGpBeWJDMHVNREV5TGpBNE4yRXhMak16TXlBeExqTXpNeUF3SURBZ01TMHVNREUwTGpBNGJDMHVNREE0TGpBME4yRXhMakkwTnlBeExqSTBOeUF3SURBZ01TMHVNRE11TVROakxTNHdNalV1TURndExqQTFOQzR4TlRjdExqQTRPUzR5TXpOaE15NHpOemtnTXk0ek56a2dNQ0F3SURFdExqSTJMalEyTnlBM0xqQXpJRGN1TURNZ01DQXdJREV0TGpReE55NDFOemhzTFM0d05EZ3VNRFpoTVRVdU5qWWdNVFV1TmpZZ01DQXdJREV0TGpVek5TNDJNamhzTFM0d05UZ3VNRFkxWXkwdU1EYzVMakE0TnkwdU1UVTRMakUzTkMwdU1qUXVNall5YkMwdU1EWXVNRFkyTFM0eE1qVXVNVE15WXkwdU1EUXVNRFExTFM0d09ETXVNRGt0TGpFeU5pNHhNelJzTFM0eE1qZ3VNVE0wTFM0eE15NHhNelF0TGpFekxqRXpOUzB1TWpZMExqSTNZeTB4TGpJMklERXVNamd6TFRJdU5UZzRJREl1TlRZekxUTXVNRE0zSURNdU16WmhNUzQySURFdU5pQXdJREFnTUMwdU1EZ3hMakUyWXkwdU1EWTBMakUwTlMwdU1Ea3hMakkzTFM0d056TXVNemRoTGpJNExqSTRJREFnTUNBd0lDNHdNelV1TURrekxqVTRMalU0SURBZ01DQXdJQzR4TkRRdU1UWTBMalV5T0M0MU1qZ2dNQ0F3SURBZ0xqTXhPQzR3T1Rab0xqQXpOV3d1TURNMkxTNHdNRE11TURNM0xTNHdNRFF1TURNdExqQXdOQzR3TVRJdExqQXdNeTR3TWpndExqQXdOUzR3TURjdExqQXdNaTR3TXkwdU1EQTJMakF4TWkwdU1EQXpZUzQ1TURNdU9UQXpJREFnTUNBd0lDNHdNekl0TGpBd09Xd3VNRE01TFM0d01URmhNUzQxTmpnZ01TNDFOamdnTUNBd0lEQWdMakk0TXkwdU1URTBiQzR3TkRFdExqQXlZeTR4TFM0d05URXVNVGszTFM0eE1EY3VNamt4TFM0eE5qZHNMakEwTWkwdU1ESTRZUzQyTkRNdU5qUXpJREFnTUNBd0lDNHdOREV0TGpBeU4yd3VNRFF4TFM0d01qZ3VNREl5TFM0d01UVXVNRFl0TGpBME1XTXVNRFUyTFM0d016Z3VNVEE0TFM0d056Z3VNVFl0TGpFeE4yd3VNREExTFM0d01EUXVNRGd6TFM0d05qUmpMakV4TkMwdU1Ea3VNakl5TFM0eE9DNHpNaTB1TWpZMWJDNHdOall0TGpBMU5pNHdNRFl0TGpBd05pNHdNelF0TGpBekxqSXhNUzB1TVRrekxqQXlOUzB1TURJMExqQTFPQzB1TURVMUxqQXpOUzB1TURNMExqQXhNeTB1TURFeUxqQXdNeTB1TURBekxqQXpOaTB1TURNM0xqQXlNeTB1TURJekxqQXdNeTB1TURBeUxqQXhNUzB1TURFdU1ERTBMUzR3TVRNdU1EQTBMUzR3TURRdU1ERXhMUzR3TVM0d05qUXRMakExTlM0d016VXRMakF6TW1NdU1ESXRMakF4Tmk0d016Z3RMakF6TXk0d05UWXRMakExYkM0d05ESXRMakF6Tnk0d01qTXRMakF5TGpBME5TMHVNRE00TGpBMk5TMHVNRFU0TGpBek5TMHVNRE11TkRnNExTNDBNVFl1TURjNExTNHdOalV1TVRJM0xTNHhNRGN1TVRNeExTNHhNRGhqTGpFM0xTNHhOREV1TXpVMUxTNHlPUzQxTlMwdU5EUTJiQzR4TWpjdExqRXdNbUUxT1M0MU9EY2dOVGt1TlRnM0lEQWdNQ0F4SUM0ME56TXRMak0yT0NBek1TNHhOemNnTXpFdU1UYzNJREFnTUNBeElERXVNVFk1TFM0NE5td3VNVEU1TFM0d09ETXVNalV0TGpFM0xqQTNOaTB1TURWakxqRTBPQzB1TVRBeExqTXRMakU1T1M0ME5USXRMakk1Tkd3dU1EYzFMUzR3TkRjdU1EYzFMUzR3TkRjdU1qSTBMUzR4TXpZdU1EYzFMUzR3TkRRdU1UUTRMUzR3T0RVdU1UUTJMUzR3T0RRdU1ETXRMakF4TlM0eE1UVXRMakEyTXk0eE5ETXRMakEzTmk0d056SXRMakF6Tmk0d05qa3RMakF6TlM0d056SXRMakF6TldFMkxqWTNPQ0EyTGpZM09DQXdJREFnTVNBdU5qQTNMUzR5Tm13dU1USTNMUzR3TkRVdU1URXhMUzR3TXpVdU1ERXpMUzR3TURRdU1EVTNMUzR3TVRjdU1EQTJMUzR3TURGakxqQTBMUzR3TVRJdU1EZ3RMakF5TVM0eE1UZ3RMakF6YUM0d01ETmhNaTR6TnprZ01pNHpOemtnTUNBd0lERWdMalE1TVMwdU1EWTFhQzR3TWpaakxqQXpOQ0F3SUM0d05qZ3VNREF5TGpFd01TNHdNRFl1TURFMUlEQWdMakF6TGpBd015NHdORFl1TURBMWFDNHdNRFpzTGpBME5TNHdNRGRqTGpBeE5DNHdNRE11TURNdU1EQTFMakEwTXk0d01EbG9MakF3TldFdU9ERTBMamd4TkNBd0lEQWdNU0F1TXpZdU1UZzFiQzR3TVM0d01EZ3VNREUxTGpBeE5pNHdNVFV1TURFMllURXVOeUF4TGpjZ01DQXdJREVnTGpNd05pNDBOREZzTGpBeE1pNHdNamhoTVM0d01UVWdNUzR3TVRVZ01DQXdJREVnTGpBeE15NDNPRGdnTVM0ME5DQXhMalEwSURBZ01DQXhMUzR4TURVdU1qSWdNaTQxTVRjZ01pNDFNVGNnTUNBd0lERXRMak0wTWk0ME5EaHNMUzR3TWpndU1ETmhOQzR4TlRNZ05DNHhOVE1nTUNBd0lERXRMakV5T1M0eE0yd3RMakEyTVM0d05UY3RMakEyTkM0d05Ua3RMakF6TXk0d01qbGhOaTR5TmpNZ05pNHlOak1nTUNBd0lERXRMalF1TXpJMklERXpMakkxTlNBeE15NHlOVFVnTUNBd0lERXRMamt3TVM0Mk0yTXRMakk0Tmk0eE9EWXRMalUzTkM0ek5qY3RMamcyTmk0MU5EUXRMall4TVM0ek56TXRNUzR5T0RrdU56Y3lMVEl1TURFeElERXVNakEzYkMwdU1UZzRMakV4TW1NdExqSXdOQzR4TWpRdExqTTVPQzR5TkRNdExqVTRMak0xTm13dExqQTVNUzR3TlRjdExqRTNOQzR4TVMwdU16UTBMakl5TFM0d09USXVNRFl4TFM0eE16VXVNRGc0TFM0d05EUXVNREk0TFM0eE16UXVNRGt0TGpBM01TNHdORGt0TGpBNE15NHdOVGN0TGpBM09DNHdOVE5oTVRjdU15QXhOeTR6SURBZ01DQXdMUzR6Tmk0eU5td3RMakEwTWk0d016SmhPQzR6TWpFZ09DNHpNakVnTUNBd0lEQXRMalExTmk0ek4yd3RMakF6T1M0d016WXRMakEyTkM0d05pMHVNRFF6TGpBMExTNHdNaTR3TW1FekxqWXpJRE11TmpNZ01DQXdJREF0TGpFekxqRXpOMnd0TGpBeUxqQXlNMkV4TGprMElERXVPVFFnTUNBd0lEQXRMakV5TGpFMU1td3RMakF4Tmk0d01qSmhNUzR6TVRRZ01TNHpNVFFnTUNBd0lEQXRMakE1TWk0eE5UUnNMUzR3TVRVdU1ETXhMUzR3TVM0d01qTXRMakF3Tnk0d01UVXRMakF3TlM0d01UUXRMakF3Tnk0d01UbGhMamM1TGpjNUlEQWdNQ0F3TFM0d05DNHhOakZzTFM0d01ETXVNREl0TGpBd01pNHdNVGQyTGpBNU9HTXdJQzR3TURnZ01DQXVNREUyTGpBd01pNHdNalJzTGpBd01pNHdNVFV1TURBekxqQXlOUzR3TURZdU1ETTBkaTR3TURGc0xqQXdOeTR3TXpJdU1EQTVMakF6TkdFdU9ESXlMamd5TWlBd0lEQWdNQ0F1TURJeExqQTJObXd1TURFMUxqQXpPQzR3TURNdU1EQTNMakF4TVM0d01qVXVNREUyTGpBek5XTXVNREUzTGpBek5TNHdNelV1TURjdU1EVTFMakV3TTJ3dU1ESXVNRE0yTGpBeU1TNHdNelZoTGpFek5pNHhNellnTUNBd0lEQWdMakF4TXk0d01UWnNMakF3Tnk0d01EZ3VNREE0TGpBd055NHdNRGd1TURBMllTNHhOVE11TVRVeklEQWdNQ0F3SUM0d016Z3VNREpzTGpBeU1pNHdNRFZqTGpFNExqQTBMalUwT0MwdU1UQTNJREV1TURNM0xTNHpOak11TURJNExTNHdNVFV1TURVNUxTNHdNeTR3T0RndExqQTBOMnd1TVRVdExqQTRMakEzTWkwdU1EUmpMakExTWkwdU1ESTRMakV3TlMwdU1EWXVNVFU1TFM0d09Xd3VNRGs0TFM0d05UVmpMalkwT0MwdU16Y2dNUzQwTWkwdU9EUTFJREl1TWpJdE1TNHpNV3d1TWpJMUxTNHhNeTR4TlRFdExqQTVOV0V5TlM0eU5UWWdNalV1TWpVMklEQWdNQ0F4SURFdU1qQXlMUzQyTld3dU1UUTRMUzR3TnpWaE1USXVOekUySURFeUxqY3hOaUF3SURBZ01TQXVPRFUxTFM0ek9Xd3VNVEEwTFM0d05ESXVNREV6TFM0d01EVmpMalUxTVMwdU1qRTNJREV1TURVeExTNHpOU0F4TGpRMU5pMHVNelV1TURnM0xTNHdNREl1TVRjMUxqQXdOaTR5TmpFdU1ESm9MakF3TTJNdU1ESTNMakF3TlM0d05UTXVNREV1TURjNExqQXhOMmd1TURBMVlTNDRNVFV1T0RFMUlEQWdNQ0F4SUM0ME1Ua3VNalF6TGpnNU1pNDRPVElnTUNBd0lERWdMakU0TWk0ek1td3VNREkzTGpBNE9HTXVNRFkyTGpJek5DNHdOaTQwT0RJdExqQXhPUzQzTVRKYUlpQm1hV3hzUFNJalJrWTVSREF3SWk4JTJCSmlONFlUc2dJRHh3WVhSb0lHTnNhWEF0Y25Wc1pUMGlaWFpsYm05a1pDSWdaRDBpVFRVMUxqUTFOU0F5T0M0eU5EZDJMUzR4TlRGak1DMHhNaTQ1TVRZdE1UQXVOVFF0TWpNdU16ZzFMVEl6TGpVME5pMHlNeTR6T0RWVE9DNHpOVGtnTVRVdU1UZ2dPQzR6TlRrZ01qZ3VNRGsyZGk0eE5URmpMakF3TWk0d05TNHdNREl1TVM0d01ESXVNVFZzTGpBd01TNHhNVEl1TURBeExqQTBMakF3TVM0d05UVXVNREF5TGpBNE9DNHdNRE11TVRJdU1EQTFMakUwTVM0d01ESXVNRFEzTGpBd05pNHhORFoyTGpBd04yd3VNREE0TGpFM2RpNHdNRFZzTGpBeExqRTNOQzR3TVM0eE5qRXVNREF5TGpBeExqQXdPUzR4TXpoMkxqQXhNbXd1TURFeExqRXpOQzR3TURFdU1EQTRMakF3Tmk0d056ZGpMakF4T1M0eU1qTXVNRFF1TkRRMUxqQTJOUzQyTmpkc0xqQXdNaTR3TVRRdU1ERTVMakUyTXk0d01pNHhOekl1TURFMkxqRXhOaTR3TURjdU1EVTBZeTR3TVRjdU1USTJMakF6TlM0eU5USXVNRFUwTGpNM04yd3VNREF5TGpBd09DNHdNVGd1TVRFNVlUSXlMalVnTWpJdU5TQXdJREFnTUNBdU16TWdNUzQyT0RKMkxqQXdOMnd1TURFdU1EUXhMakF5T1M0eE1Ua3VNREUzTFM0d01tTXVOamcwTFM0NE1USWdNUzQyTmpVdE1TNHlOaUF5TGpjMk1pMHhMakkyTGpnNElEQWdNUzQzT0RFdU1qa2dNaTQyT0RZdU9EVTRMall1TXpjNUlERXVNall5SURFdU1EUTVJREV1T1RRMUlERXVPRGt5TGpZek1TMHVPRGN4SURFdU5URTJMVEV1TkRVZ01pNDFNamt0TVM0Mk1EaGhNeTQ0SURNdU9DQXdJREFnTVNBdU5UZ3pMUzR3TkRaak1pNHpNU0F3SURNdU56QXlJREV1T1RreElEUXVNakk0SURNdU56Z3pMakkyTGpZd05TQXhMalV4TWlBekxqTTJJRE11TkNBMUxqSXlOU0F5TGpnM0lESXVPRFE0SURNdU5UZzRJRFV1TnpnMUlESXVNVFk0SURndU9UTXhhQzR3TURWakxqQTVOaTR3TVRFdU1UazBMakF5TVM0eU9URXVNRE5zTGpFM05TNHdNVFl1TURJdU1EQXlMakV5T0M0d01TNHhNVGt1TURGakxqRXhNaTR3TURrdU1qSTFMakF4Tnk0ek16Z3VNREkwYkM0d09TNHdNRFV1TURjdU1EQTBMakEwTlM0d01ETXVNVE01TGpBd055NHdNemd1TURBeUxqRTBOaTR3TURZdU1UWXlMakF3Tmk0eE15NHdNRFJvTGpBeU1tTXVNREkzTGpBd01pNHdOVFV1TURBekxqQTRNeTR3TUROb0xqQXpZeTR4T0RNdU1EQTFMak0yTmk0d01EY3VOVFV1TURBM2FDNHhPVFJzTGpFek9TMHVNREF5TGpFd01pMHVNREF4YUM0d05UUnNMakEwTnkwdU1EQXlhQzR4TVRGc0xqRXhMUzR3TURRdU1UWXpMUzR3TURVdU1UZ3RMakF3T0M0eE5UWXRMakF3Tnk0d05UWXRMakF3TkM0d09ESXRMakF3TkM0d05Ea3RMakF3TXk0d016Y3RMakF3TWk0eE5qWXRMakF4TVM0eE5qY3RMakF4TWk0eE5URXRMakF4TWk0eE1EY3RMakF4TGpFeE5pMHVNREZqTGpFNU5pMHVNREUzTGpNNUxTNHdNemN1TlRnMUxTNHdObXd1TVRNeUxTNHdNVFpqTFRFdU16azRMVE11TVRNekxTNDJOelF0Tmk0d05UZ2dNaTR4T0RRdE9DNDRPVFFnTVM0NE9EUXRNUzQ0TnlBekxqRXpOaTAwTGpZeU5TQXpMak01TnkwMUxqSXpMalV5TmkweExqYzVNaUF4TGpreE55MHpMamM0TXlBMExqSXlPQzB6TGpjNE15NHhPVFVnTUNBdU16a3VNREUxTGpVNE5DNHdORFlnTVM0d01URXVNVFU0SURFdU9EazJMamN6TmlBeUxqVXlPU0F4TGpZd055NDJPREl0TGpnME1pQXhMak0wTlMweExqVXhNeUF4TGprME5TMHhMamc1TVM0NU1EUXRMalUyT1NBeExqZ3dOeTB1T0RVNElESXVOamcxTFM0NE5UZ3VPVFk1SURBZ01TNDRORFl1TXpRNUlESXVOVEE1TGprNE9Xd3VNRE0xTFM0eE5UY3VNRE0wTFM0eE5UWXVNRE0yTFM0eE56SmhNekF1TVRjMUlETXdMakUzTlNBd0lEQWdNQ0F1TVRJdExqWXlNV3d1TURBNUxTNHdOVGd1TURFNExTNHhNREpqTGpBeExTNHdOVE11TURJdExqRXdOaTR3TWpndExqRTJiQzR3TURNdExqQXlMakF5TWkwdU1UUXVNREl5TFM0eE5ERjJMUzR3TURKakxqQXhOaTB1TVRBMExqQXpMUzR5TURrdU1EUTFMUzR6TVROc0xqQXdNeTB1TURJMkxqQXlMUzR4TkRndU1ERTJMUzR4TWpZdU1ESTRMUzR5TkRndU1ERXRMakV1TURBekxTNHdNall1TURFM0xTNHhOakoyTFM0d01EUnNMakF4TWkwdU1USTRZeTR3TWpJdExqSTBNeTR3TkMwdU5EZzRMakExTmkwdU56TXpiQzR3TURjdExqRXlNWFl0TGpBd01td3VNREE0TFM0eE5USXVNREF5TFM0d016TmpMakF3TlMwdU1UQXpMakF4TFM0eU1EVXVNREV6TFM0ek1EaDJMUzR3TUROc0xqQXdNUzB1TURSaE1pNHlPQ0F5TGpJNElEQWdNQ0F3SUM0d01ETXRMakV3TW5ZdExqQXhOR011TURBeUxTNHdNekl1TURBekxTNHdOalF1TURBekxTNHdPVGRzTGpBd01TMHVNREkzTGpBd01pMHVNRGszZGkwdU1ESTRZeTR3TURJdExqQTBMakF3TXkwdU1EZ3lMakF3TXkwdU1USXpkaTB1TVRVeFdrMHlOaTR3TmpnZ05URXVOakE0WXpFdU9EWTFMVEl1TnpFMklERXVOek15TFRRdU56VTBMUzQ0TWpZdE55NHlPVFF0TWk0MU5pMHlMalUwTFRRdU1EUTVMVFl1TWpVMExUUXVNRFE1TFRZdU1qVTBjeTB1TlRVMkxUSXVNVFUzTFRFdU9ESXpMVEV1T1RVNVl5MHhMakkyT0M0eE9UZ3RNaTR4T1RnZ015NDBNakl1TkRVMklEVXVNemsxSURJdU5qVTFJREV1T1RjMExTNDFNamdnTXk0ek1USXRNUzQxTlNBeExqUTJMVEV1TURJeExURXVPRFV5TFRNdU9ERXROaTQyTVRNdE5TNHlOVGN0Tnk0MU1qTXRNUzQwTkRZdExqa3hMVEl1TkRZekxTNDBMVEl1TVRJeUlERXVORGMyTGpFM0xqa3pNaUF4TGpjME5DQXlMalV5TWlBekxqSXhOU0EwTGpBd09DQXhMalE1TXlBeExqVXdOeUF5TGpnNElESXVPVEEySURJdU5UZ3pJRE11TkRBeExTNDFPRGd1T1RnMExUSXVOall0TVM0eE5UVXRNaTQyTmkweExqRTFOVk0zTGpVME9DQXpOeTR6SURZdU1UTTJJRE00TGpneU9HTXRNUzR6TURJZ01TNDBNRGd1TnpBMklESXVOakExSURNdU9DQTBMalExYkM0NE1TNDBPRFZqTXk0MU5DQXlMakV5T0NBekxqZ3hOaUF5TGpZNUlETXVNekV6SURNdU5EazFMUzR4T0RVdU1qazNMVEV1TXpjdExqUXhMVEl1T0RJM0xURXVNamM0TFRJdU5EZzFMVEV1TkRneExUVXVOell0TXk0ME16UXROaTR5TWpNdE1TNDJPRFl0TGpRZ01TNDFNVE1nTWk0d01TQXlMalEwSURRdU1UazFJRE11TWpnZ01TNDRNakV1TnpBeElETXVORGczSURFdU16UXlJRE11TWpReElESXVNakV4TFM0eU5UTXVPVEF5TFRFdU5qTXVNVFV0TXk0eE16UXRMalkzTWkweExqWTRPUzB1T1RJekxUTXVOVFF0TVM0NU16UXROQzR4TkRVdExqYzVNeTB4TGpFME5DQXlMakUxTnlBM0xqZzVOaUEwTGpZNU5pQTNMamszSURRdU56RTFJREl1T1RJeUxqYzFNaUF4TUM0ek5DQXlMak0wTmlBeE1pNDVNekl0TVM0ME1qZGFiVEV5TGpBeE5DQXdZeTB4TGpnMk5TMHlMamN4TmkweExqY3pNaTAwTGpjMU5DNDRNall0Tnk0eU9UUWdNaTQxTmkweUxqVTBJRFF1TURRNUxUWXVNalUwSURRdU1EUTVMVFl1TWpVMGN5NDFOVFl0TWk0eE5UY2dNUzQ0TWpNdE1TNDVOVGxqTVM0eU5qZ3VNVGs0SURJdU1UazRJRE11TkRJeUxTNDBOVFlnTlM0ek9UVXRNaTQyTlRVZ01TNDVOelF1TlRJNElETXVNekV5SURFdU5UVWdNUzQwTmlBeExqQXlNaTB4TGpnMU1pQXpMamd4TFRZdU5qRXpJRFV1TWpVMUxUY3VOVEl6SURFdU5EUTNMUzQ1TVNBeUxqUTJOQzB1TkNBeUxqRXlNeUF4TGpRM05pMHVNVGN1T1RNeUxURXVOelEwSURJdU5USXlMVE11TWpFMklEUXVNREE0TFRFdU5Ea3lJREV1TlRBM0xUSXVPRGM0SURJdU9UQTJMVEl1TlRneUlETXVOREF4TGpVNE9DNDVPRFFnTWk0Mk5qRXRNUzR4TlRZZ01pNDJOakV0TVM0eE5UWnpOaTQwT0RjdE5TNDROaklnTnk0NUxUUXVNek0xWXpFdU15QXhMalF3T0MwdU56QTNJREl1TmpBMUxUTXVPQ0EwTGpRMUxTNHlOekV1TVRZeUxTNDFOREl1TXpJekxTNDRNVEl1TkRnMkxUTXVOVFFnTWk0eE1qY3RNeTQ0TVRVZ01pNDJPRGt0TXk0ek1USWdNeTQwT1RRdU1UZzFMakk1TnlBeExqTTNMUzQwTVNBeUxqZ3lOeTB4TGpJM09DQXlMalE0TlMweExqUTRNU0ExTGpjMkxUTXVORE0wSURZdU1qSXpMVEV1TmpnMkxqUWdNUzQxTVRNdE1pNHdNU0F5TGpRMExUUXVNVGsxSURNdU1qZ3RNUzQ0TWpFdU56QXhMVE11TkRnM0lERXVNelF5TFRNdU1qUXlJREl1TWpFeExqSTFOQzQ1TURJZ01TNDJNeTR4TlNBekxqRXpOQzB1TmpjeUlERXVOamc0TFM0NU1qTWdNeTQxTkMweExqa3pOU0EwTGpFME5TMHVOemt6SURFdU1UUTBJREl1TVRVNExUY3VPRGszSURRdU5qazFMVGN1T1RjZ05DNDNNVE10TWk0NU1qRXVOelUxTFRFd0xqTTBJREl1TXpVdE1USXVPVE10TVM0ME1qUmFJaUJtYVd4c0xYSjFiR1U5SW1WMlpXNXZaR1FpSUdacGJHdzlJaU5HUmtReU1VVWlMejRtSTNoaE95QWdQSEJoZEdnZ1kyeHBjQzF5ZFd4bFBTSmxkbVZ1YjJSa0lpQmtQU0pOTXprdU5UVTJJREl4TGpjell5NHpOamd1TVRNdU5qUXhMalV5TWk0NUxqZzVOaTR6TlRJdU5UQTFMalkzT1M0NU56UWdNUzR4T0M0M01XRXpMak0zTmlBekxqTTNOaUF3SURBZ01DQXhMak01TkMweExqTTNPU0F6TGpNME5pQXpMak0wTmlBd0lEQWdNQzB4TGpBNU5TMDBMak00TmlBekxqUXdNeUF6TGpRd015QXdJREFnTUMwMUxqQXhOeUF4TGpVZ015NHpORGNnTXk0ek5EY2dNQ0F3SURBZ0xqRXpOaUF5TGpnM00yTXVNak15TGpRek5DNDNORGd1TWpNZ01TNHlPVEl1TURFekxqUXlOeTB1TVRjdU9EY3lMUzR6TkRZZ01TNHlNUzB1TWpJM1dtMHRNVFV1T1RZMElEQmpMUzR6TmpjdU1UTXRMalkwTGpVeU1pMHVPUzQ0T1RZdExqTTFNUzQxTURVdExqWTNPQzQ1TnpRdE1TNHhPQzQzTVdFekxqTTNNaUF6TGpNM01pQXdJREFnTVMweExqWXRNUzQ0TXlBekxqTTBNeUF6TGpNME15QXdJREFnTVNBdU1EVTBMVEl1TkRJMFl5NHpNaTB1Tnpjekxqa3lMVEV1TkNBeExqWTRMVEV1TnpVNVlUTXVOREVnTXk0ME1TQXdJREFnTVNBMExqQTNNaTQ1TURJZ015NHpORFVnTXk0ek5EVWdNQ0F3SURFZ0xqTTNPQ0F6TGpjeVl5MHVNak16TGpRek15MHVOelE1TGpJeU9TMHhMakk1TXk0d01UTXRMalF5TnkwdU1UY3RMamczTVMwdU16UTNMVEV1TWpFdExqSXlOMXB0TVRNdU5EazFJREUwTGpReU4yTXlMalV6TFRFdU9UZ2dNeTQwTmkwMUxqSXhNaUF6TGpRMkxUY3VNakF6SURBdE1TNDFOek10TVM0d05qY3RNUzR3TnpndE1pNDNOek10TGpJek9Xd3RMakE1Tnk0d05EZGpMVEV1TlRZM0xqYzNNUzB6TGpZMU1pQXhMamM1TnkwMUxqazBNaUF4TGpjNU4zTXROQzR6TnpVdE1TNHdNall0TlM0NU5ESXRNUzQzT1RkakxURXVOell5TFM0NE5qY3RNaTQ0TmpjdE1TNDBNUzB5TGpnMk55NHhPVE1nTUNBeUxqQTFOQzQ1T0RrZ05TNDBNallnTXk0M01ETWdOeTR6T0RWaE5TNDROakVnTlM0NE5qRWdNQ0F3SURFZ01TNDBPREV0TVM0NE9ESWdOUzQ1TURjZ05TNDVNRGNnTUNBd0lERWdNaTR4TVRVdE1TNHhNemRqTGpJM01TMHVNRGd1TlRVdU16Z3lMamd6Tmk0NE5UY3VNamMyTGpRMU55NDFOVGN1T1RJMUxqZzBOQzQ1TWpVdU16QTFJREFnTGpZd05TMHVORFl4TGpnNU9DMHVPVEV4TGpNd05pMHVORGN1TmpBMUxTNDVNamt1T0RrMExTNDRNemRoTlM0NE9EVWdOUzQ0T0RVZ01DQXdJREVnTXk0ek9TQXlMamd3TWxvaUlHWnBiR3d0Y25Wc1pUMGlaWFpsYm05a1pDSWdabWxzYkQwaUl6TXlNelF6UkNJdlBpWWplR0U3SUNBOGNHRjBhQ0JrUFNKTk16Y3VNRGczSURNMkxqRTFObU10TVM0ek1UZ2dNUzR3TXpJdE15NHdOeUF4TGpjeU15MDFMak0xTVNBeExqY3lNeTB5TGpFME5DQXdMVE11T0RJdExqWXhMVFV1TVRBNExURXVOVFJoTlM0NE5UWWdOUzQ0TlRZZ01DQXdJREVnTVM0ME9ESXRNUzQ0T0RFZ05TNDVNRFlnTlM0NU1EWWdNQ0F3SURFZ01pNHhNVFl0TVM0eE16aGpMalV6TWkwdU1UVTRJREV1TURrMklERXVOemd5SURFdU5qZ2dNUzQzT0RJdU5qSTBJREFnTVM0eU1qWXRNUzQ1TWpjZ01TNDNPUzB4TGpjME9HRTFMamc0TnlBMUxqZzROeUF3SURBZ01TQXpMak01SURJdU9EQXlXaUlnWm1sc2JEMGlJMFpHTXpJelJDSXZQaVlqZUdFN0lDQThjR0YwYUNCamJHbHdMWEoxYkdVOUltVjJaVzV2WkdRaUlHUTlJazB4Tnk0MU5ESWdNalF1TlROaE1pNHlNRGtnTWk0eU1Ea2dNQ0F3SURFdE1pNHdOamN1TWpBeUlESXVNVGswSURJdU1UazBJREFnTUNBeExURXVNVGt5TFRFdU1UZzBJREl1TVRjeUlESXVNVGN5SURBZ01DQXhJQzR5TURRdE1pNHdOVElnTWk0eUlESXVNaUF3SURBZ01TQXVPVGc1TFM0NE1EWWdNaTR5TVRjZ01pNHlNVGNnTUNBd0lERWdNaTQwTGpRM05TQXlMakU0TXlBeUxqRTRNeUF3SURBZ01TQXVORGMzSURJdU16ZzBZeTB1TVRZMkxqUXRMalEwT1M0M05DMHVPREV4TGprNE1WcHRNekV1TlRFeUlEQmhNaTR5TVNBeUxqSXhJREFnTUNBeExUSXVNRFkyTGpJd01pQXlMakU1TnlBeUxqRTVOeUF3SURBZ01TMHhMakU1TXkweExqRTROQ0F5TGpFM09DQXlMakUzT0NBd0lEQWdNU0F1T1RBMExUSXVOekV6SURJdU1qRWdNaTR5TVNBd0lEQWdNU0F6TGpJNU1pQXhMalExSURJdU1UZ2dNaTR4T0NBd0lEQWdNUzB1T1RNM0lESXVNalExV2lJZ1ptbHNiQzF5ZFd4bFBTSmxkbVZ1YjJSa0lpQm1hV3hzUFNJalJrWkJSREF6SWk4JTJCSmlONFlUc2dJRHh3WVhSb0lHUTlJazA0T0M0ek9EUWdORFZXTWpBdU56RXlTRGd3TGpFMWRpMDFMamN3TkdneU15NHlOeloyTlM0M01EUm9MVGd1TWpNMFZqUTFhQzAyTGpnd09GcHRNVGN1TWpNMUlEQldNakl1TVRnMGFEVXVOVEpzTGpRMklEUXVNREF5YUM0eE9EUmpMamd5T0MweExqVXpNeUF4TGpneU5TMHlMalkyT0NBeUxqazVMVE11TkRBMElERXVNVFkxTFM0M05qY2dNaTR6TXpFdE1TNHhOU0F6TGpRNU5pMHhMakUxTGpZME5DQXdJREV1TVRneExqQTBOaUF4TGpZeExqRXpPR0V6TGpZeElETXVOakVnTUNBd0lERWdNUzR4TURRdU16SXliQzB4TGpFd05DQTFMamcwTW1FNExqUXdOU0E0TGpRd05TQXdJREFnTUMweExqRTVOaTB1TWpjMklEY3VPVEkySURjdU9USTJJREFnTUNBd0xURXVNamc0TFM0d09USmpMUzQ0TlRrZ01DMHhMamMyTXk0ek1qSXRNaTQzTVRRdU9UWTJMUzQ1TWk0Mk1UTXRNUzQyT0RjZ01TNDJPRGN0TWk0eklETXVNakpXTkRWb0xUWXVOell5V20weU1pNDNOelV1TlRVeVl5MHlMakE0TlNBd0xUTXVOelF4TFM0Mk5pMDBMamsyT0MweExqazNPQzB4TGpJeU5pMHhMak0xTFRFdU9EUXRNaTQ1T1MweExqZzBMVFF1T1RJeUlEQXRNaTR6T1RJZ01TNHdNVEl0TkM0eU5qTWdNeTR3TXpZdE5TNDJNVElnTWk0d01qUXRNUzR6TlNBMUxqSTVMVEl1TWpVMElEa3VOems0TFRJdU56RTBMUzR3TmpFdE1TNHdNVEl0TGpNMk9DMHhMamd4TFM0NU1pMHlMak01TWkwdU5USXhMUzQyTVRNdE1TNDBNUzB1T1RJdE1pNDJOamd0TGpreUxTNDVOU0F3TFRFdU9URTJMakU0TkMweUxqZzVPQzQxTlRJdExqazRNUzR6TmpndE1pNHdNalF1T0RjMExUTXVNVEk0SURFdU5URTRiQzB5TGpRek9DMDBMalEyTW1FeU1pNDFOU0F5TWk0MU5TQXdJREFnTVNBMExqWXRNaTR4TmpJZ01UWXVNVGc0SURFMkxqRTRPQ0F3SURBZ01TQTFMakUxTWkwdU9ESTRZekl1T1RFMElEQWdOUzR4TlRJdU9EUXpJRFl1TnpFMklESXVOVE1nTVM0MU5qUWdNUzQyT0RjZ01pNHpORFlnTkM0eU56Z2dNaTR6TkRZZ055NDNOelJXTkRWb0xUVXVOVEpzTFM0ME5pMHlMak0wTm1ndExqRTROR0V4TXk0M05qUWdNVE11TnpZMElEQWdNQ0F4TFRNdU1EZ3lJREl1TVRFMll5MHhMakEzTXk0MU1qRXRNaTR5TlRRdU56Z3lMVE11TlRReUxqYzRNbHB0TWk0ekxUVXVNalEwWXk0M05qY2dNQ0F4TGpReU5pMHVNVFk1SURFdU9UYzRMUzQxTURaaE1UQXVNVFk1SURFd0xqRTJPU0F3SURBZ01DQXhMamMwT0MweExqUXlObll0TkM0d01ESmpMVEl1TXpreUxqTXdOeTAwTGpBME9DNDNPVGN0TkM0NU5qZ2dNUzQwTnpJdExqa3lMalkwTkMweExqTTRJREV1TkRFdE1TNHpPQ0F5TGpNZ01DQXVOek0yTGpJeklERXVNamc0TGpZNUlERXVOalUyTGpRNU1TNHpNemNnTVM0eE16VXVOVEEySURFdU9UTXlMalV3TmxwTk1UUTJMamt3TWlBME5WWXlNaTR4T0RSb05TNDFNbXd1TkRZZ01pNDRPVGhvTGpFNE5HRXhOeTQxTkRnZ01UY3VOVFE0SURBZ01DQXhJRE11TWpJdE1pNHpPVEpqTVM0eE9UWXRMamN3TlNBeUxqVTJNUzB4TGpBMU9DQTBMakE1TkMweExqQTFPQ0F5TGpRNE5DQXdJRFF1TWpjNExqZ3lPQ0ExTGpNNE1pQXlMalE0TkNBeExqRXpOU0F4TGpZeU5TQXhMamN3TWlBekxqZzJOQ0F4TGpjd01pQTJMamN4TmxZME5XZ3ROaTQzTmpKV016RXVOekEyWXpBdE1TNDJOVFl0TGpJekxUSXVOemt0TGpZNUxUTXVOREEwTFM0ME1qa3RMall4TXkweExqRXpOUzB1T1RJdE1pNHhNVFl0TGpreUxTNDROVGtnTUMweExqVTVOUzR5TFRJdU1qQTRMalU1T0MwdU5qRXpMak0yT0MweExqSTRPQzQ1TURVdE1pNHdNalFnTVM0Mk1WWTBOV2d0Tmk0M05qSmFiVE16TGpBMExqVTFNbU10TVM0MU1ESWdNQzB6TGpBMU1TMHVNamt4TFRRdU5qUTJMUzQ0TnpRdE1TNDFOalF0TGpVNE15MHlMamt5T0MweExqTTFMVFF1TURrMExUSXVNMnd6TGpBek5pMDBMakl6TW1NeExqQTBNeTQzTmpjZ01pNHdOQ0F4TGpNMk5TQXlMams1SURFdU56azBMams0TWk0ek9Ua2dNUzQ1TkRndU5UazRJREl1T0RrNExqVTVPQ0F4TGpBeE1pQXdJREV1TnpRNExTNHhOamtnTWk0eU1EZ3RMalV3Tmk0ME5pMHVNelk0TGpZNUxTNDRORE11TmprdE1TNDBNallnTUMwdU5USXhMUzR5TXkwdU9UVXRMalk1TFRFdU1qZzRMUzQwTWprdExqTXpOeTB1T1RrMkxTNDJORFF0TVM0M01ESXRMamt5WVRVMkxqRTRNaUExTmk0eE9ESWdNQ0F3SURBdE1pNHlOVFF0TGpreUlERTVMak14SURFNUxqTXhJREFnTUNBeExUSXVOell0TVM0ek9DQTNMamd4TXlBM0xqZ3hNeUF3SURBZ01TMHlMakkxTkMweUxqRXhObU10TGpZeE15MHVPRGt0TGpreUxURXVPVFl6TFM0NU1pMHpMakl5SURBdE1pNHhNVFl1TnprNExUTXVPRE16SURJdU16a3lMVFV1TVRVeUlERXVOakkyTFRFdU16RTVJRE11TnpReUxURXVPVGM0SURZdU16UTRMVEV1T1RjNElERXVOelE0SURBZ015NHlPREl1TXpBM0lEUXVOaTQ1TWlBeExqTTFMalU0TXlBeUxqVWdNUzR5TkRJZ015NDBOU0F4TGprM09Hd3RNeTR3TXpZZ05DNHdORGhqTFM0M09UY3RMall4TXkweExqVTVOQzB4TGpBNE9TMHlMak01TWkweExqUXlObUUyTGpBNU5DQTJMakE1TkNBd0lEQWdNQzB5TGpNNU1pMHVOVEEyWXkweExqYzBPQ0F3TFRJdU5qSXlMalU1T0MweUxqWXlNaUF4TGpjNU5DQXdJQzQzTXpZdU5ETWdNUzR6TURNZ01TNHlPRGdnTVM0M01ESXVPRGt1TXpZNElERXVPVEUzTGpjMk55QXpMakE0TWlBeExqRTVObUV4TlM0d01TQXhOUzR3TVNBd0lEQWdNU0F5TGpnMU1pQXhMak16TkNBMkxqYzFNaUEyTGpjMU1pQXdJREFnTVNBeUxqTTBOaUF5TGpFeE5tTXVOalEwTGpnMU9TNDVOallnTVM0NU9UTXVPVFkySURNdU5EQTBJREFnTWk0d05UVXRMamM1TnlBekxqZ3dNeTB5TGpNNU1pQTFMakkwTkMweExqVTVOQ0F4TGpReExUTXVPVEkxSURJdU1URTJMVFl1T1RreUlESXVNVEUyV2sweE9UUXVOemN4SURRMVZqSTNMalEzTkdndE15NHdNelpXTWpJdU5EWnNNeTR3TXpZdExqSXpkaTB4TGpJME1tTXdMVEV1TmpJMUxqSTNOaTB6TGpBNU55NDRNamd0TkM0ME1UWXVOVFV5TFRFdU16RTVJREV1TkRReExUSXVNemMzSURJdU5qWTRMVE11TVRjMElERXVNakkzTFM0M09UY2dNaTQ0TmpjdE1TNHhPVFlnTkM0NU1qSXRNUzR4T1RZdU9UVXhJREFnTVM0NE1qVXVNRGt5SURJdU5qSXlMakkzTmk0M09UY3VNVGcwSURFdU5EUXhMak0yT0NBeExqa3pNaTQxTlRKc0xURXVNalF5SURRdU9UWTRZVFV1TnpjeUlEVXVOemN5SURBZ01DQXdMVEV1TVRrMkxTNHpNaklnTlM0eE1UVWdOUzR4TVRVZ01DQXdJREF0TVM0eE5TMHVNVE00WXkwdU9ESTRJREF0TVM0ME56SXVNall0TVM0NU16SXVOemd5TFM0ME5pNDBPUzB1TmprZ01TNHpNVGt0TGpZNUlESXVORGcwZGpFdU16aG9OQzR3T1RSMk5TNHlPV2d0TkM0d09UUldORFZvTFRZdU56WXlXbTB5TXk0NE56WXVOVFV5WXkweExqa3pNaUF3TFRNdU56VTJMUzQwTmkwMUxqUTNOQzB4TGpNNExURXVOamcyTFM0NU5TMHpMakExTVMweUxqTXhOUzAwTGpBNU5DMDBMakE1TkMweExqQTBNaTB4TGpneExURXVOVFkwTFRNdU9UY3hMVEV1TlRZMExUWXVORGcySURBdE1pNDFORFV1TlRJeUxUUXVOekEzSURFdU5UWTBMVFl1TkRnMklERXVNRFF6TFRFdU56YzVJREl1TkRBNExUTXVNVEk0SURRdU1EazBMVFF1TURRNFlURXhMakV6TkNBeE1TNHhNelFnTUNBd0lERWdOUzQwTnpRdE1TNDBNalpqTVM0NU16SWdNQ0F6TGpjME1pNDBOelVnTlM0ME1qZ2dNUzQwTWpZZ01TNDJPRGN1T1RJZ015NHdOVElnTWk0eU55QTBMakE1TkNBMExqQTBPQ0F4TGpBME15QXhMamMzT1NBeExqVTJOQ0F6TGprMElERXVOVFkwSURZdU5EZzJJREFnTWk0MU1UVXRMalV5TVNBMExqWTNOeTB4TGpVMk5DQTJMalE0TmkweExqQTBNaUF4TGpjM09TMHlMalF3TnlBekxqRTBNeTAwTGpBNU5DQTBMakE1TkdFeE1TNHhOVGtnTVRFdU1UVTVJREFnTUNBeExUVXVOREk0SURFdU16aGFiVEF0TlM0ME56UmpNUzR6T0NBd0lESXVOREl6TFM0MU9ETWdNeTR4TWpndE1TNDNORGd1TnpBMkxURXVNVGsySURFdU1EVTRMVEl1TnpjMUlERXVNRFU0TFRRdU56TTRJREF0TVM0NU9UTXRMak0xTWkwekxqVTNNeTB4TGpBMU9DMDBMamN6T0MwdU56QTFMVEV1TVRZMUxURXVOelE0TFRFdU56UTRMVE11TVRJNExURXVOelE0TFRFdU5ERWdNQzB5TGpRMk9DNDFPRE10TXk0eE56UWdNUzQzTkRndExqWTNOQ0F4TGpFMk5TMHhMakF4TWlBeUxqYzBOUzB4TGpBeE1pQTBMamN6T0NBd0lERXVPVFl6TGpNek9DQXpMalUwTWlBeExqQXhNaUEwTGpjek9DNDNNRFlnTVM0eE5qVWdNUzQzTmpRZ01TNDNORGdnTXk0eE56UWdNUzQzTkRoYVRUSXpOQzR6TmpVZ05EVldNakl1TVRnMGFEVXVOVEpzTGpRMklEUXVNREF5YUM0eE9EUmpMamd5T0MweExqVXpNeUF4TGpneU5TMHlMalkyT0NBeUxqazVMVE11TkRBMElERXVNVFkxTFM0M05qY2dNaTR6TXpFdE1TNHhOU0F6TGpRNU5pMHhMakUxTGpZME5DQXdJREV1TVRneExqQTBOaUF4TGpZeExqRXpPR0V6TGpZeElETXVOakVnTUNBd0lERWdNUzR4TURRdU16SXliQzB4TGpFd05DQTFMamcwTW1FNExqUXdOU0E0TGpRd05TQXdJREFnTUMweExqRTVOaTB1TWpjMklEY3VPVEkySURjdU9USTJJREFnTUNBd0xURXVNamc0TFM0d09USmpMUzQ0TlRrZ01DMHhMamMyTXk0ek1qSXRNaTQzTVRRdU9UWTJMUzQ1TWk0Mk1UTXRNUzQyT0RjZ01TNDJPRGN0TWk0eklETXVNakpXTkRWb0xUWXVOell5V20weE9DNHpNamdnTUZZeU1pNHhPRFJvTlM0MU1td3VORFlnTWk0NU5EUm9MakU0TkdFeE55NHpPRElnTVRjdU16Z3lJREFnTUNBeElETXVNRE0yTFRJdU5ETTRZekV1TURjekxTNDNNRFVnTWk0ek5qRXRNUzR3TlRnZ015NDROalF0TVM0d05UZ2dNUzQyTWpVZ01DQXlMamt5T1M0ek16Y2dNeTQ1TVNBeExqQXhNaUF4TGpBeE1pNDJORFFnTVM0NE1Ea2dNUzQxT0NBeUxqTTVNaUF5TGpnd05tRXhPQzQxTnpnZ01UZ3VOVGM0SURBZ01DQXhJRE11TWpJdE1pNDJOamhqTVM0eE16VXRMamMyTnlBeUxqUTFNeTB4TGpFMUlETXVPVFUyTFRFdU1UVWdNaTQwTlRNZ01DQTBMakkwTnk0NE1qZ2dOUzR6T0RJZ01pNDBPRFFnTVM0eE5qVWdNUzQyTWpVZ01TNDNORGdnTXk0NE5qUWdNUzQzTkRnZ05pNDNNVFpXTkRWb0xUWXVOell5VmpNeExqY3dObU13TFRFdU5qVTJMUzR5TXkweUxqYzVMUzQyT1MwekxqUXdOQzB1TkRJNUxTNDJNVE10TVM0eE16VXRMamt5TFRJdU1URTJMUzQ1TWkweExqRXpOU0F3TFRJdU5ETTRMamN6Tmkwekxqa3hJREl1TWpBNFZqUTFhQzAyTGpjMk1sWXpNUzQzTURaak1DMHhMalkxTmkwdU1qTXRNaTQzT1MwdU5qa3RNeTQwTURRdExqUXlPUzB1TmpFekxURXVNVE0xTFM0NU1pMHlMakV4TmkwdU9USXRNUzR4TXpVZ01DMHlMalF5TXk0M016WXRNeTQ0TmpRZ01pNHlNRGhXTkRWb0xUWXVOell5V20wME9TNDJOVFF1TlRVeVl5MHlMakUzT0NBd0xUUXVNVFF0TGpRM05TMDFMamc0T0MweExqUXlOaTB4TGpjME9DMHVPVFV0TXk0eE1qZ3RNaTR6TVRVdE5DNHhOQzAwTGpBNU5DMHhMakF4TWkweExqYzNPUzB4TGpVeE9DMHpMamt5TlMweExqVXhPQzAyTGpRMElEQXRNaTQwT0RRdU5UQTJMVFF1TmpFMUlERXVOVEU0TFRZdU16azBJREV1TURReUxURXVOemM1SURJdU16a3lMVE11TVRReklEUXVNRFE0TFRRdU1EazBJREV1TmpVMkxTNDVPREVnTXk0ek9EZ3RNUzQwTnpJZ05TNHhPVGd0TVM0ME56SWdNaTR4TnpjZ01DQXpMamszTVM0ME9TQTFMak00TWlBeExqUTNNaUF4TGpRME1TNDVOU0F5TGpVeE5DQXlMakkxTkNBekxqSXlJRE11T1RFdU56TTJJREV1TmpJMUlERXVNVEEwSURNdU5EZ2dNUzR4TURRZ05TNDFOallnTUNBdU5UZ3pMUzR3TXpFZ01TNHhOalV0TGpBNU1pQXhMamMwT0dFeE1pNDVOeUF4TWk0NU55QXdJREFnTVMwdU1UZzBJREV1TWpReWFDMHhNeTQyTmpKakxqTXdOaUF4TGpZMU5pNDVPVFlnTWk0NE9ETWdNaTR3TnlBekxqWTRJREV1TURjekxqYzJOeUF5TGpNMk1TQXhMakUxSURNdU9EWTBJREV1TVRVZ01TNDJNalVnTUNBekxqSTJOaTB1TlRBMklEUXVPVEl5TFRFdU5URTRiREl1TWpVMElEUXVNRGswWVRFMExqa3hOU0F4TkM0NU1UVWdNQ0F3SURFdE15NDVNU0F4TGpnNE5tTXRNUzQwTkRJdU5EWXRNaTQ0TXpjdU5qa3ROQzR4T0RZdU5qbGFiUzAxTGpBMkxURTBMalEwTkdnNExqSXpOR013TFRFdU1qVTNMUzR6TURjdE1pNHlPRFV0TGpreUxUTXVNRGd5TFM0MU9ETXRMamd5T0MweExqVTBPUzB4TGpJME1pMHlMamc1T0MweExqSTBNaTB4TGpBME15QXdMVEV1T1RjNExqTTJPQzB5TGpnd05pQXhMakV3TkMwdU9ESTRMamN3TlMweExqTTJOU0F4TGpjM09TMHhMall4SURNdU1qSmFUVE14TlM0NU5ETWdORFZXTWpJdU1UZzBhRFV1TlRKc0xqUTJJRFF1TURBeWFDNHhPRFJqTGpneU9DMHhMalV6TXlBeExqZ3lOUzB5TGpZMk9DQXlMams1TFRNdU5EQTBJREV1TVRZMUxTNDNOamNnTWk0ek16RXRNUzR4TlNBekxqUTVOaTB4TGpFMUxqWTBOQ0F3SURFdU1UZ3hMakEwTmlBeExqWXhMakV6T0dFekxqWXhJRE11TmpFZ01DQXdJREVnTVM0eE1EUXVNekl5YkMweExqRXdOQ0ExTGpnME1tRTRMalF3TlNBNExqUXdOU0F3SURBZ01DMHhMakU1TmkwdU1qYzJJRGN1T1RJMklEY3VPVEkySURBZ01DQXdMVEV1TWpnNExTNHdPVEpqTFM0NE5Ua2dNQzB4TGpjMk15NHpNakl0TWk0M01UUXVPVFkyTFM0NU1pNDJNVE10TVM0Mk9EY2dNUzQyT0RjdE1pNHpJRE11TWpKV05EVm9MVFl1TnpZeVdtMHlOQzQyT0RVdU5UVXlZeTB4TGpVd015QXdMVE11TURVeExTNHlPVEV0TkM0Mk5EWXRMamczTkMweExqVTJOQzB1TlRnekxUSXVPVEk1TFRFdU16VXROQzR3T1RRdE1pNHpiRE11TURNMkxUUXVNak15WXpFdU1EUXpMamMyTnlBeUxqQXpPU0F4TGpNMk5TQXlMams1SURFdU56azBMams0TVM0ek9Ua2dNUzQ1TkRjdU5UazRJREl1T0RrNExqVTVPQ0F4TGpBeE1pQXdJREV1TnpRNExTNHhOamtnTWk0eU1EZ3RMalV3Tmk0ME5pMHVNelk0TGpZNUxTNDRORE11TmprdE1TNDBNallnTUMwdU5USXhMUzR5TXkwdU9UVXRMalk1TFRFdU1qZzRMUzQwTWprdExqTXpOeTB1T1RrM0xTNDJORFF0TVM0M01ESXRMamt5WVRVMkxqYzVNeUExTmk0M09UTWdNQ0F3SURBdE1pNHlOVFF0TGpreUlERTVMak14SURFNUxqTXhJREFnTUNBeExUSXVOell0TVM0ek9DQTNMamdnTnk0NElEQWdNQ0F4TFRJdU1qVTBMVEl1TVRFMll5MHVOakV6TFM0NE9TMHVPVEl0TVM0NU5qTXRMamt5TFRNdU1qSWdNQzB5TGpFeE5pNDNPVGN0TXk0NE16TWdNaTR6T1RJdE5TNHhOVElnTVM0Mk1qVXRNUzR6TVRrZ015NDNOREV0TVM0NU56Z2dOaTR6TkRndE1TNDVOemdnTVM0M05EZ2dNQ0F6TGpJNE1TNHpNRGNnTkM0Mkxqa3lJREV1TXpRNUxqVTRNeUF5TGpRNU9TQXhMakkwTWlBekxqUTFJREV1T1RjNGJDMHpMakF6TmlBMExqQTBPR010TGpjNU55MHVOakV6TFRFdU5UazFMVEV1TURnNUxUSXVNemt5TFRFdU5ESTJZVFl1TURrM0lEWXVNRGszSURBZ01DQXdMVEl1TXpreUxTNDFNRFpqTFRFdU56UTRJREF0TWk0Mk1qSXVOVGs0TFRJdU5qSXlJREV1TnprMElEQWdMamN6Tmk0ME1qa2dNUzR6TURNZ01TNHlPRGdnTVM0M01ESXVPRGc1TGpNMk9DQXhMamt4Tnk0M05qY2dNeTR3T0RJZ01TNHhPVFpoTVRVdU1ESWdNVFV1TURJZ01DQXdJREVnTWk0NE5USWdNUzR6TXpRZ05pNDNOVElnTmk0M05USWdNQ0F3SURFZ01pNHpORFlnTWk0eE1UWmpMalkwTkM0NE5Ua3VPVFkySURFdU9Ua3pMamsyTmlBekxqUXdOQ0F3SURJdU1EVTFMUzQzT1RjZ015NDRNRE10TWk0ek9USWdOUzR5TkRRdE1TNDFPVFVnTVM0ME1TMHpMamt5TlNBeUxqRXhOaTAyTGprNU1pQXlMakV4TmxvaUlHWnBiR3c5SWlNeE1qRXlNVElpTHo0bUkzaGhPend2YzNablBnJTNEJTNEJTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjIwNDklMjIlMjB5JTNEJTIyMzA3OS42ODk5OTk5OTk5OTk2JTIyJTIwd2lkdGglM0QlMjIzNTIlMjIlMjBoZWlnaHQlM0QlMjI1OSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTY3JTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMmdyb3VwJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlMjBjb25uZWN0YWJsZSUzRCUyMjAlMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjEzNzAlMjIlMjB5JTNEJTIyMjc3Mi4wNSUyMiUyMHdpZHRoJTNEJTIyMjQwJTIyJTIwaGVpZ2h0JTNEJTIyMTY2LjEzMDAwMDAwMDAwMDElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02OCUyMiUyMHZhbHVlJTNEJTIyV29ya2VyJTIwMSUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZmlsbENvbG9yJTNEbm9uZSUzQnN0cm9rZVdpZHRoJTNEMiUzQnN0cm9rZUNvbG9yJTNEJTIzMDAwMDAwJTNCY29udGFpbmVyJTNEMCUzQmFsaWduJTNEY2VudGVyJTNCdmVydGljYWxBbGlnbiUzRHRvcCUzQmZvbnRTaXplJTNEMjMlM0IlMjIlMjBwYXJlbnQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02NyUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIwd2lkdGglM0QlMjIyNDAlMjIlMjBoZWlnaHQlM0QlMjIxNjYuMTMlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02OSUyMiUyMHZhbHVlJTNEJTIyVHJhaW5lciUyNmx0JTNCYnIlMjZndCUzQkNvbnRhaW5lciUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZmlsbENvbG9yJTNEJTIzZGFlOGZjJTNCc3Ryb2tlQ29sb3IlM0QlMjM2YzhlYmYlM0Jmb250U2l6ZSUzRDIwJTNCZm9udFN0eWxlJTNEMiUyMiUyMHBhcmVudCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTY3JTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyNTIuNSUyMiUyMHklM0QlMjI1OS41JTIyJTIwd2lkdGglM0QlMjIxMzUlMjIlMjBoZWlnaHQlM0QlMjI4MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTcwJTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGh0dHBzJTNBJTJGJTJGbWlyby5tZWRpdW0uY29tJTJGdjIlMkZyZXNpemUlM0FmaXQlM0EyNTYlMkYxKnhaRVdJTmlEeVE3aW9VdG9CZW5RVEEucG5nJTNCJTIyJTIwcGFyZW50JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNjclMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjItNDAuMDMwMDAwMDAwMDAwMiUyMiUyMHklM0QlMjItNDAuNSUyMiUyMHdpZHRoJTNEJTIyOTIuNTMlMjIlMjBoZWlnaHQlM0QlMjI5MCUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTcxJTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMmdyb3VwJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHZlcnRleCUzRCUyMjElMjIlMjBjb25uZWN0YWJsZSUzRCUyMjAlMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjEzNzguNSUyMiUyMHklM0QlMjIzMDMzLjg3JTIyJTIwd2lkdGglM0QlMjIyNDAlMjIlMjBoZWlnaHQlM0QlMjIxNjYuMTMwMDAwMDAwMDAwMSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTcyJTIyJTIwdmFsdWUlM0QlMjJXb3JrZXIlMjAyJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JmaWxsQ29sb3IlM0Rub25lJTNCc3Ryb2tlV2lkdGglM0QyJTNCc3Ryb2tlQ29sb3IlM0QlMjMwMDAwMDAlM0Jjb250YWluZXIlM0QwJTNCYWxpZ24lM0RjZW50ZXIlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCZm9udFNpemUlM0QyMyUzQiUyMiUyMHBhcmVudCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTcxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB3aWR0aCUzRCUyMjI0MCUyMiUyMGhlaWdodCUzRCUyMjE2Ni4xMyUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTczJTIyJTIwdmFsdWUlM0QlMjJUcmFpbmVyJTI2bHQlM0JiciUyNmd0JTNCQ29udGFpbmVyJTIyJTIwc3R5bGUlM0QlMjJyb3VuZGVkJTNEMSUzQndoaXRlU3BhY2UlM0R3cmFwJTNCaHRtbCUzRDElM0JmaWxsQ29sb3IlM0QlMjNkYWU4ZmMlM0JzdHJva2VDb2xvciUzRCUyMzZjOGViZiUzQmZvbnRTaXplJTNEMjAlM0Jmb250U3R5bGUlM0QyJTIyJTIwcGFyZW50JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjI1Mi41JTIyJTIweSUzRCUyMjU5LjUlMjIlMjB3aWR0aCUzRCUyMjEzNSUyMiUyMGhlaWdodCUzRCUyMjgwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzQlMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIyc2hhcGUlM0RpbWFnZSUzQnZlcnRpY2FsTGFiZWxQb3NpdGlvbiUzRGJvdHRvbSUzQmxhYmVsQmFja2dyb3VuZENvbG9yJTNEZGVmYXVsdCUzQnZlcnRpY2FsQWxpZ24lM0R0b3AlM0Jhc3BlY3QlM0RmaXhlZCUzQmltYWdlQXNwZWN0JTNEMCUzQmltYWdlJTNEaHR0cHMlM0ElMkYlMkZtaXJvLm1lZGl1bS5jb20lMkZ2MiUyRnJlc2l6ZSUzQWZpdCUzQTI1NiUyRjEqeFpFV0lOaUR5UTdpb1V0b0JlblFUQS5wbmclM0IlMjIlMjBwYXJlbnQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC03MSUyMiUyMHZlcnRleCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMi00MC4wMzAwMDAwMDAwMDAyJTIyJTIweSUzRCUyMi00MC41JTIyJTIwd2lkdGglM0QlMjI5Mi41MyUyMiUyMGhlaWdodCUzRCUyMjkwJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzUlMjIlMjBzdHlsZSUzRCUyMmVkZ2VTdHlsZSUzRG9ydGhvZ29uYWxFZGdlU3R5bGUlM0Jyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxMb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRC0wLjAwOCUzQmVudHJ5WSUzRDAuMTk4JTNCZW50cnlEeCUzRDAlM0JlbnRyeUR5JTNEMCUzQmVudHJ5UGVyaW1ldGVyJTNEMCUzQnN0YXJ0QXJyb3clM0RjbGFzc2ljJTNCc3RhcnRGaWxsJTNEMSUzQnN0cm9rZVdpZHRoJTNENCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjBzb3VyY2UlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02OCUyMiUyMHRhcmdldCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTQzJTIyJTIwZWRnZSUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIwcmVsYXRpdmUlM0QlMjIxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzYlMjIlMjBzdHlsZSUzRCUyMmVkZ2VTdHlsZSUzRG9ydGhvZ29uYWxFZGdlU3R5bGUlM0Jyb3VuZGVkJTNEMCUzQm9ydGhvZ29uYWxMb29wJTNEMSUzQmpldHR5U2l6ZSUzRGF1dG8lM0JodG1sJTNEMSUzQmVudHJ5WCUzRDAuMDA4JTNCZW50cnlZJTNEMC44MDclM0JlbnRyeUR4JTNEMCUzQmVudHJ5RHklM0QwJTNCZW50cnlQZXJpbWV0ZXIlM0QwJTNCc3RhcnRBcnJvdyUzRGNsYXNzaWMlM0JzdGFydEZpbGwlM0QxJTNCc3Ryb2tlV2lkdGglM0Q0JTNCJTIyJTIwcGFyZW50JTNEJTIyMSUyMiUyMHNvdXJjZSUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTcyJTIyJTIwdGFyZ2V0JTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNDMlMjIlMjBlZGdlJTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjByZWxhdGl2ZSUzRCUyMjElMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC03NyUyMiUyMHN0eWxlJTNEJTIyZWRnZVN0eWxlJTNEb3J0aG9nb25hbEVkZ2VTdHlsZSUzQnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMC41MzUlM0JlbnRyeVklM0QxLjAxNyUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JlbnRyeVBlcmltZXRlciUzRDAlM0JzdGFydEFycm93JTNEY2xhc3NpYyUzQnN0YXJ0RmlsbCUzRDElM0JzdHJva2VXaWR0aCUzRDQlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzIlMjIlMjB0YXJnZXQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC02OCUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTc4JTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGh0dHBzJTNBJTJGJTJGcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSUyRmt1YmVybmV0ZXMlMkZjb21tdW5pdHklMkZkNmVkZjRjZGZmMWFmMDRkOWE4NGMxOWJjZDQ0YTVmN2E0M2IyYTk0JTJGaWNvbnMlMkZzdmclMkZyZXNvdXJjZXMlMkZsYWJlbGVkJTJGcHZjLnN2ZyUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIxNTk4LjI3OTk5OTk5OTk5OTclMjIlMjB5JTNEJTIyMzM1MCUyMiUyMHdpZHRoJTNEJTIyMTEyLjcyJTIyJTIwaGVpZ2h0JTNEJTIyMTA5LjQxJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzklMjIlMjB2YWx1ZSUzRCUyMiUyMiUyMHN0eWxlJTNEJTIycm91bmRlZCUzRDElM0J3aGl0ZVNwYWNlJTNEd3JhcCUzQmh0bWwlM0QxJTNCZGFzaGVkJTNEMSUzQmZpbGxDb2xvciUzRG5vbmUlM0JzdHJva2VXaWR0aCUzRDIlM0JzdHJva2VDb2xvciUzRCUyMzAwMDAwMCUzQmNvbnRhaW5lciUzRDAlM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214R2VvbWV0cnklMjB4JTNEJTIyMTMxMCUyMiUyMHklM0QlMjIyNjgwJTIyJTIwd2lkdGglM0QlMjI2NzAlMjIlMjBoZWlnaHQlM0QlMjI1ODAlMjIlMjBhcyUzRCUyMmdlb21ldHJ5JTIyJTIwJTJGJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDJTJGbXhDZWxsJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhDZWxsJTIwaWQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC04MCUyMiUyMHN0eWxlJTNEJTIyZWRnZVN0eWxlJTNEb3J0aG9nb25hbEVkZ2VTdHlsZSUzQnJvdW5kZWQlM0QwJTNCb3J0aG9nb25hbExvb3AlM0QxJTNCamV0dHlTaXplJTNEYXV0byUzQmh0bWwlM0QxJTNCZW50cnlYJTNEMC41MTMlM0JlbnRyeVklM0QxLjAwNSUzQmVudHJ5RHglM0QwJTNCZW50cnlEeSUzRDAlM0JlbnRyeVBlcmltZXRlciUzRDAlM0JzdHJva2VXaWR0aCUzRDQlM0JzdGFydEFycm93JTNEY2xhc3NpYyUzQnN0YXJ0RmlsbCUzRDElM0IlMjIlMjBwYXJlbnQlM0QlMjIxJTIyJTIwc291cmNlJTNEJTIyRGgyc0tIQ0llMnNQY19QaWdiSjgtNzglMjIlMjB0YXJnZXQlM0QlMjJEaDJzS0hDSWUyc1BjX1BpZ2JKOC03OSUyMiUyMGVkZ2UlM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHJlbGF0aXZlJTNEJTIyMSUyMiUyMGFzJTNEJTIyZ2VvbWV0cnklMjIlMjAlMkYlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0MlMkZteENlbGwlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteENlbGwlMjBpZCUzRCUyMkRoMnNLSENJZTJzUGNfUGlnYko4LTgzJTIyJTIwdmFsdWUlM0QlMjIlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGRhdGElM0FpbWFnZSUyRnN2ZyUyQnhtbCUyQ1BITjJaeUI0Yld4dWN6MGlhSFIwY0RvdkwzZDNkeTUzTXk1dmNtY3ZNakF3TUM5emRtY2lJR1pwYkd3OUltNXZibVVpSUdobGFXZG9kRDBpTWpVMklpQjNhV1IwYUQwaU1UUTBPU0lnZG1sbGQwSnZlRDBpTUNBd0lERTBORGtnTWpVMklqNG1JM2hoT3lBZ1BIQmhkR2dnWm1sc2JEMGlkMmhwZEdVaUlHUTlJazB5TXpBdU56SXhJREUzTWk0M1F6SXpNQzR4T0RNZ01UY3dMalkzTXlBeU1qa3VNekV6SURFMk9DNDNOU0F5TWpndU1UUTJJREUyTnk0d01EaERNakk0TGpNNU5pQXhOall1TURreElESXlPQzQxT0RjZ01UWTFMakUxT1NBeU1qZ3VOekUwSURFMk5DNHlNVGRETWpJNUxqVTBNeUF4TlRndU1qUXhJREl5Tnk0ME56RWdNVFV5TGpjM0lESXlNeTQxTmpjZ01UUTRMalV6TjBNeU1qRXVORFV5SURFME5pNHlNalVnTWpFNUxqRTROU0F4TkRRdU5qazRJREl4Tmk0M09EUWdNVFF6TGpjMk1VTXlNVGd1TXpZZ01UTTNMakF4T0NBeU1Ua3VNVFUzSURFek1DNHhNVGNnTWpFNUxqRTJNU0F4TWpNdU1Ua3pRekl4T1M0eE5qRWdNVEl3TGpBeklESXhPQzQ1T0RJZ01URTJMamt6TWlBeU1UZ3VOamd5SURFeE15NDRPRU15TVRndU5USTJJREV4TWk0ek5UWWdNakU0TGpNek55QXhNVEF1T0RNMklESXhPQzR4TVRVZ01UQTVMak15UXpJeE55NDBNamdnTVRBMExqZzBOeUF5TVRZdU5EQTRJREV3TUM0ME16RWdNakUxTGpBMk5DQTVOaTR4TVVNeU1UUXVNVGd6SURrekxqSTNNRGNnTWpFekxqRTJOQ0E1TUM0ME56WWdNakV5TGpBeElEZzNMamN6TmtNeU1UQXVNamd4SURnekxqWTNPRElnTWpBNExqSTJNaUEzT1M0M05TQXlNRFV1T1RZNUlEYzFMams0TWtNeU1EUXVORFkxSURjekxqUTNOU0F5TURJdU9ESTNJRGN4TGpBMU1EZ2dNakF4TGpBMk1pQTJPQzQzTWtNeU1EQXVNVGszSURZM0xqVTBNeUF4T1RrdU1qazJJRFkyTGpNNU16Z2dNVGs0TGpNMU9DQTJOUzR5TnpSRE1UazFMalU0SURZeExqZzVPQ0F4T1RJdU5UWXhJRFU0TGpjeU56Y2dNVGc1TGpNeU5TQTFOUzQzT0RoRE1UZzRMakkxSURVMExqYzVPVGNnTVRnM0xqRTBOU0ExTXk0NE5EVXpJREU0Tmk0d01TQTFNaTQ1TWpaRE1UZzBMamc1TXlBMU1TNDVPVFF6SURFNE15NDNOVEVnTlRFdU1Ea3lOeUF4T0RJdU5UZzJJRFV3TGpJeU1rTXhPREF1TWpReElEUTRMalEzTmpZZ01UYzNMamd4T0NBME5pNDRNemt5SURFM05TNHpNalFnTkRVdU16RTFRekUyTVM0MU5ETWdNell1T1RRMUlERTBOUzR6T0RJZ016SXVNVFExSURFeU9DNHhNRGtnTXpJdU1UUTFRemMzTGpneE55QXpNaTR4TkRVZ016Y3VNRFUzSURjeUxqa3dOeUF6Tnk0d05UY2dNVEl6TGpFNU5rTXpOeTR3TlRVZ01UTXdMakl3T0NBek55NDROamNnTVRNM0xqRTVOaUF6T1M0ME56Y2dNVFEwTGpBeVF6TTNMak14TnlBeE5EUXVPVFU0SURNMUxqSTBOeUF4TkRZdU5ESWdNek11TXpJM0lERTBPQzQxTXpWRE1qa3VOREkwSURFMU1pNDNOallnTWpjdU16VXhJREUxT0M0eU1UY2dNamd1TVRnZ01UWTBMakU1TTBNeU9DNHpNRFlnTVRZMUxqRTBNaUF5T0M0ME9UVWdNVFkyTGpBNE1pQXlPQzQzTkRjZ01UWTNMakF3TmtNeU55NDFPREV4SURFMk9DNDNORGtnTWpZdU56RXhOeUF4TnpBdU5qY3pJREkyTGpFM05DQXhOekl1TjBNeU5DNDVOelFnTVRjM0xqSTJNU0F5TlM0ek5qa2dNVGd4TGpNM05DQXlOaTQ0T1RRZ01UZzBMamszT0VNeU5TNHlNellnTVRnNUxqWTRPQ0F5TlM0Mk5TQXhPVFF1TnpBMElESTNMamd3T1NBeE9Ua3VNRFkxUXpJNUxqTTNPU0F5TURJdU1qVWdNekV1TmpJMklESXdOQzQzTVRRZ016UXVNemsySURJd05pNDVNVFpETXpjdU5qZzVJREl3T1M0MU16UWdOREV1T0RFeElESXhNUzQzTlRnZ05EWXVOemd6SURJeE15NDRPVEpETlRJdU56RTFJREl4Tmk0ME1qSWdOVGt1T1RVMklESXhPQzQzT1RrZ05qTXVNalE1SURJeE9TNDJOekZETnpFdU56VTFJREl5TVM0NE56TWdOemt1T1RFeElESXlNeTR5TmprZ09EZ3VNVGMzSURJeU15NHpNemRET1RrdU9UVTBJREl5TXk0ME5EWWdNVEV3TGpBNU5pQXlNakF1TmpjM0lERXhOeTR6TlRjZ01qRXpMalU1UXpFeU1DNDVNalFnTWpFMExqQXlOeUF4TWpRdU5URTFJREl4TkM0eU5EWWdNVEk0TGpFd09TQXlNVFF1TWpRMFF6RXpNUzQ1TURZZ01qRTBMakl6TmlBeE16VXVOams1SURJeE15NDVPVGNnTVRNNUxqUTJOeUF5TVRNdU5USTVRekUwTmk0M01URWdNakl3TGpZMk1TQXhOVFl1T0RreUlESXlNeTQwTlRVZ01UWTRMamN4TWlBeU1qTXVNelF6UXpFM05pNDVOemNnTWpJekxqSTNOeUF4T0RVdU1UTXpJREl5TVM0NE9ERWdNVGt6TGpZeE55QXlNVGt1TmpjMlF6RTVOaTQ1TXpJZ01qRTRMamd3TkNBeU1EUXVNVGNnTWpFMkxqUXlOeUF5TVRBdU1UQTFJREl4TXk0NE9UZERNakUxTGpBM055QXlNVEV1TnpZZ01qRTVMakU1T1NBeU1Ea3VOVE0ySURJeU1pNDFNVFFnTWpBMkxqa3lNa015TWpVdU1qWXpJREl3TkM0M01Ua2dNakkzTGpVd09DQXlNREl1TWpVMklESXlPUzR3TnprZ01UazVMakEzTVVNeU16RXVNallnTVRrMExqY3dPU0F5TXpFdU5qVXlJREU0T1M0Mk9UTWdNak13TGpBeE55QXhPRFF1T1RnelF6SXpNUzQxTWpjZ01UZ3hMak0zT1NBeU16RXVPVElnTVRjM0xqSTFOeUF5TXpBdU56SXhJREUzTWk0M1drMHlNakl1TWpneElERTROQzQyTnpORE1qSXpMamsxTWlBeE9EY3VPRFEwSURJeU5DNHdOVGtnTVRreExqUXlOeUF5TWpJdU5UZzFJREU1TkM0M05qUkRNakl3TGpNME9TQXhPVGt1T0RJeElESXhOQzQzT1RVZ01qQXpMamd3TlNBeU1EUXVNREE0SURJd09DNHdPREpETVRrM0xqTWdNakV3TGpjME1pQXhPVEV1TVRVNElESXhNaTQwTkRNZ01Ua3hMakV3TkNBeU1USXVORFU0UXpFNE1pNHlNeklnTWpFMExqYzFPU0F4TnpRdU1qQTRJREl4TlM0NU1qZ2dNVFkzTGpJMk1pQXlNVFV1T1RJNFF6RTFOUzQzTmlBeU1UVXVPVEk0SURFME55NHlNREVnTWpFeUxqYzFOQ0F4TkRFdU56Y3pJREl3Tmk0ME9EWkRNVE15TGpVNU5DQXlNRGd1TURVZ01USXpMakl5TWlBeU1EZ3VNVEF6SURFeE5DNHdNallnTWpBMkxqWTBORU14TURndU5Ua3hJREl4TWk0NE1EZ2dNVEF3TGpBNE1TQXlNVFV1T1RJNElEZzRMalkzTmlBeU1UVXVPVEk0UXpneExqY3lPU0F5TVRVdU9USTRJRGN6TGpjd05pQXlNVFF1TnpVNUlEWTBMamd6TXlBeU1USXVORFU0UXpZMExqYzNPU0F5TVRJdU5EUXpJRFU0TGpZek9TQXlNVEF1TnpReUlEVXhMamt5T1NBeU1EZ3VNRGd5UXpReExqRTBNeUF5TURNdU9EQTFJRE0xTGpVNE55QXhPVGt1T0RJMElETXpMak0xTWlBeE9UUXVOelkwUXpNeExqZzNPQ0F4T1RFdU5ESTNJRE14TGprNE5TQXhPRGN1T0RRMElETXpMalkxTmlBeE9EUXVOamN6UXpNekxqZ3hJREU0TkM0ek56Z2dNek11T1RjMklERTROQzR3T1RFZ016UXVNVFV6SURFNE15NDRNVE5ETXpNdU1UVXhOaUF4T0RJdU16QTVJRE15TGpRM09Ua2dNVGd3TGpZeElETXlMakU0TWlBeE56Z3VPREkzUXpNeExqZzRORElnTVRjM0xqQTBOU0F6TVM0NU5qY2dNVGMxTGpJeUlETXlMalF5TlNBeE56TXVORGN5UXpNekxqQTRPU0F4TnpBdU9UUTVJRE0wTGpRMklERTJPQzQ0TlRFZ016WXVNekl5SURFMk55NHpORFJETXpVdU5ESTFJREUyTlM0NE55QXpOQzQ0TXpZMUlERTJOQzR5TXlBek5DNDFPVElnTVRZeUxqVXlNa016TkM0d05UWWdNVFU0TGpnd09DQXpOUzR5T0RrZ01UVTFMakVnTXpndU1EWXlJREUxTWk0d056WkROREF1TWpJeUlERTBPUzQzTWpNZ05ETXVNamMxSURFME9DNDBNamdnTkRZdU5qVTFJREUwT0M0ME1qaElORFl1TnpRMVF6UTBMakU1TmpVZ01UUXdMakkxT1NBME1pNDVNRFEwSURFek1TNDNOU0EwTWk0NU1UTWdNVEl6TGpFNU0wTTBNaTQ1TVRNZ056WXVOVEl5SURnd0xqYzBPU0F6T0M0Mk9ETWdNVEkzTGpReU55QXpPQzQyT0RORE1UYzBMakV3TkNBek9DNDJPRE1nTWpFeExqazBJRGMyTGpVeE9DQXlNVEV1T1RRZ01USXpMakU1TTBNeU1URXVPVFEzSURFek1TNDNOek1nTWpFd0xqWTBOaUF4TkRBdU16QTBJREl3T0M0d09ERWdNVFE0TGpRNU1rTXlNRGd1TkRnNUlERTBPQzQwTlRJZ01qQTRMamc0T1NBeE5EZ3VORE15SURJd09TNHlPRElnTVRRNExqUXpNVU15TVRJdU5qWXlJREUwT0M0ME16RWdNakUxTGpjeE5pQXhORGt1TnpJMklESXhOeTQ0TnpRZ01UVXlMakEzT1VNeU1qQXVOalEzSURFMU5TNHhJREl5TVM0NE9ERWdNVFU0TGpneE1TQXlNakV1TXpRMElERTJNaTQxTWpWRE1qSXhMakVnTVRZMExqSXpNeUF5TWpBdU5URXhJREUyTlM0NE56TWdNakU1TGpZeE5TQXhOamN1TXpRM1F6SXlNUzQwTnpjZ01UWTRMamcxTkNBeU1qSXVPRFE1SURFM01DNDVOVElnTWpJekxqVXhNaUF4TnpNdU5EYzFRekl5TXk0NU55QXhOelV1TWpJeklESXlOQzR3TlRNZ01UYzNMakEwT0NBeU1qTXVOelUxSURFM09DNDRNekZETWpJekxqUTFPQ0F4T0RBdU5qRXpJREl5TWk0M09EWWdNVGd5TGpNeE1pQXlNakV1TnpnMElERTRNeTQ0TVRaRE1qSXhMamsyTVNBeE9EUXVNRGt4SURJeU1pNHhNamtnTVRnMExqTTNPQ0F5TWpJdU1qZ3hJREU0TkM0Mk56TmFJaTglMkJKaU40WVRzZ0lEeHdZWFJvSUdacGJHdzlJaU5HUmpsRU1EQWlJR1E5SWsweU1qRXVOemcwSURFNE15NDRNVFpETWpJeUxqYzROaUF4T0RJdU16RXlJREl5TXk0ME5UZ2dNVGd3TGpZeE15QXlNak11TnpVMklERTNPQzQ0TXpGRE1qSTBMakExTXlBeE56Y3VNRFE0SURJeU15NDVOeUF4TnpVdU1qSXpJREl5TXk0MU1USWdNVGN6TGpRM05VTXlNakl1T0RRNElERTNNQzQ1TlRJZ01qSXhMalEzTmlBeE5qZ3VPRFUwSURJeE9TNDJNVFVnTVRZM0xqTTBOME15TWpBdU5URXlJREUyTlM0NE56TWdNakl4TGpFZ01UWTBMakl6TXlBeU1qRXVNelEwSURFMk1pNDFNalZETWpJeExqZzRNU0F4TlRndU9ERXhJREl5TUM0Mk5EZ2dNVFUxTGpFd015QXlNVGN1T0RjMElERTFNaTR3TnpsRE1qRTFMamN4TmlBeE5Ea3VOekkySURJeE1pNDJOaklnTVRRNExqUXpNU0F5TURrdU1qZ3lJREUwT0M0ME16RkRNakE0TGpnNE9TQXhORGd1TkRNeElESXdPQzQwT0RrZ01UUTRMalExTWlBeU1EZ3VNRGd4SURFME9DNDBPVEpETWpFd0xqWTBNeUF4TkRBdU16QTBJREl4TVM0NU5ESWdNVE14TGpjM05DQXlNVEV1T1RNeklERXlNeTR4T1RWRE1qRXhMamt6TXlBM05pNDFNak14SURFM05DNHdPVGNnTXpndU5qZzFNU0F4TWpjdU5ESTBJRE00TGpZNE5URkRPREF1TnpVZ016Z3VOamcxTVNBME1pNDVNRGs1SURjMkxqVXhPVEVnTkRJdU9UQTVPU0F4TWpNdU1UazFRelF5TGprd01UVWdNVE14TGpjMU1pQTBOQzR4T1RNMklERTBNQzR5TmpFZ05EWXVOelF5SURFME9DNDBNMGcwTmk0Mk5URTVRelF6TGpJM01Ua2dNVFE0TGpReklEUXdMakl4T1NBeE5Ea3VOekkwSURNNExqQTJJREUxTWk0d056ZERNelV1TWpnM0lERTFOUzR3T1RnZ016UXVNRFV5T1NBeE5UZ3VPREVnTXpRdU5UZzVPU0F4TmpJdU5USXpRek0wTGpnek5EWWdNVFkwTGpJek1TQXpOUzQwTWpNeElERTJOUzQ0TnpJZ016WXVNekU1T1NBeE5qY3VNelEyUXpNMExqUTFOemtnTVRZNExqZzFNaUF6TXk0d09EWWdNVGN3TGprMUlETXlMalF5TWlBeE56TXVORGN6UXpNeExqazJORElnTVRjMUxqSXlNaUF6TVM0NE9ERTNJREUzTnk0d05EY2dNekl1TVRjNU9TQXhOemd1T0RORE16SXVORGM0TVNBeE9EQXVOakV5SURNekxqRTFNREVnTVRneUxqTXhNaUF6TkM0eE5URTVJREU0TXk0NE1UWkRNek11T1Rjek9TQXhPRFF1TURrMElETXpMamd3T1RrZ01UZzBMak00TVNBek15NDJOVFE1SURFNE5DNDJOelpETXpFdU9UZzBPU0F4T0RjdU9EUTNJRE14TGpnM055QXhPVEV1TkRNZ016TXVNelV5SURFNU5DNDNOamRETXpVdU5UZzRJREU1T1M0NE1qUWdOREV1TVRReE9TQXlNRE11T0RBNElEVXhMamt5T0RrZ01qQTRMakE0TlVNMU9DNDJNelU1SURJeE1DNDNORFVnTmpRdU56YzVJREl4TWk0ME5EWWdOalF1T0RNeklESXhNaTQwTmpGRE56TXVOekExSURJeE5DNDNOaklnT0RFdU56STVJREl4TlM0NU16RWdPRGd1TmpjMUlESXhOUzQ1TXpGRE1UQXdMakE0TVNBeU1UVXVPVE14SURFd09DNDFPVEVnTWpFeUxqZ3hNU0F4TVRRdU1ESTJJREl3Tmk0Mk5EZERNVEl6TGpJeU1pQXlNRGd1TVRBMklERXpNaTQxT1RRZ01qQTRMakExTWlBeE5ERXVOemN6SURJd05pNDBPRGxETVRRM0xqSXdNU0F5TVRJdU56VTNJREUxTlM0M05pQXlNVFV1T1RNeElERTJOeTR5TmpJZ01qRTFMamt6TVVNeE56UXVNakE0SURJeE5TNDVNekVnTVRneUxqSXpNaUF5TVRRdU56WXlJREU1TVM0eE1ETWdNakV5TGpRMk1VTXhPVEV1TVRVNElESXhNaTQwTkRZZ01UazNMakk1T0NBeU1UQXVOelExSURJd05DNHdNRGdnTWpBNExqQTROVU15TVRRdU56azFJREl3TXk0NE1EZ2dNakl3TGpNMUlERTVPUzQ0TWpRZ01qSXlMalU0TlNBeE9UUXVOelkzUXpJeU5DNHdOVGtnTVRreExqUXpJREl5TXk0NU5USWdNVGczTGpnME55QXlNakl1TWpneElERTROQzQyTnpaRE1qSXlMakV5T1NBeE9EUXVNemM1SURJeU1TNDVOakVnTVRnMExqQTVNU0F5TWpFdU56ZzBJREU0TXk0NE1UWmFUVEV4TUM0eE16Y2dNVGsyTGprNU4wTXhNRGt1TmpZNUlERTVOeTQ0TVRVZ01UQTVMakUyT0NBeE9UZ3VOakUwSURFd09DNDJNelVnTVRrNUxqTTVNVU14TURjdU1qTWdNakF4TGpRME9DQXhNRFV1TXpneUlESXdNeTR3TWlBeE1ETXVNak0zSURJd05DNHhPRGhET1RrdU1UTTJPU0F5TURZdU5ESTBJRGt6TGprME55QXlNRGN1TWpBMUlEZzRMalkzTlNBeU1EY3VNakExUXpnd0xqTTBOaUF5TURjdU1qQTFJRGN4TGpnd09DQXlNRFV1TWpVMklEWTNMakF5TXlBeU1EUXVNREUxUXpZMkxqYzROeUF5TURNdU9UVTBJRE0zTGpZNE9TQXhPVFV1TnpNMUlEUXhMak0zTXlBeE9EZ3VOek01UXpReExqazVNeUF4T0RjdU5UWXlJRFF6TGpBeE1qa2dNVGczTGpBNU1pQTBOQzR5T1RjNUlERTROeTR3T1RKRE5Ea3VORGcwT1NBeE9EY3VNRGt5SURVNExqa3lPVGtnTVRrMExqZ3hOaUEyTWk0NU9EZzVJREU1TkM0NE1UWkROak11T0RrMU9TQXhPVFF1T0RFMklEWTBMalV6TlRrZ01UazBMalF6SURZMExqYzVOamtnTVRrekxqUTRPRU0yTmk0MU1qWTVJREU0Tnk0eU9EUWdNemd1TlRBek9TQXhPRFF1TmpjMklEUXdMamcyTXprZ01UYzFMalk1TWtNME1TNHlOems1SURFM05DNHhNRElnTkRJdU5ERWdNVGN6TGpRMU5pQTBNeTQ1T1RnZ01UY3pMalExTmtNMU1DNDROVFlnTVRjekxqUTFOU0EyTmk0eU5EZ2dNVGcxTGpVeE5pQTJPUzQwTmpjZ01UZzFMalV4TmtNMk9TNDNNVFFnTVRnMUxqVXhOaUEyT1M0NE9UQTVJREU0TlM0ME5ETWdOamt1T1RnMk9TQXhPRFV1TWpreFF6Y3dMakF3TURrZ01UZzFMakkyT0NBM01DNHdNVFVnTVRnMUxqSTBOaUEzTUM0d01qZ2dNVGcxTGpJeU1rTTNNUzQxTXprZ01UZ3lMamN5TnlBM01DNDJOekU1SURFNE1DNDVNVE1nTmpBdU16SXdPU0F4TnpRdU5UY3pURFU1TGpNeU5qa2dNVGN6TGprMk9FTTBOeTQ1TXpVNUlERTJOeTR3TnpRZ016a3VPVFF3T1NBeE5qSXVPVEkxSURRMExqUTROemtnTVRVM0xqazNOVU0wTlM0d01UQTVJREUxTnk0ME1EUWdORFV1TnpVeU9TQXhOVGN1TVRVeElEUTJMalkxTXprZ01UVTNMakUxTVVNME55NDNNakU1SURFMU55NHhOVEVnTkRrdU1ERTBPU0F4TlRjdU5UQTRJRFV3TGpRek9Ea2dNVFU0TGpFd09FTTFOaTQwTlRRNUlERTJNQzQyTkRVZ05qUXVOemt6SURFMk55NDFOalFnTmpndU1qYzJJREUzTUM0MU9ERkROamd1T0RJek9TQXhOekV1TURVM0lEWTVMak0yT0RNZ01UY3hMalV6T0NBMk9TNDVNRGc1SURFM01pNHdNakpETmprdU9UQTRPU0F4TnpJdU1ESXlJRGMwTGpNeE9TQXhOell1TmpBNElEYzJMams0TlNBeE56WXVOakE0UXpjM0xqVTVPU0F4TnpZdU5qQTRJRGM0TGpFeE9Ua2dNVGMyTGpNMk5pQTNPQzQwTnpJNUlERTNOUzQzTmpoRE9EQXVNelkwSURFM01pNDFPQ0EyTUM0NU1EazVJREUxTnk0NE16Z2dOVGt1T0RFeU9TQXhOVEV1TnpVMVF6VTVMakEyT0RrZ01UUTNMall6TkNBMk1DNHpNelE1SURFME5TNDFORFlnTmpJdU5qYzBPU0F4TkRVdU5UUTJRell6TGpjNE56a2dNVFExTGpVME5pQTJOUzR4TkRVNUlERTBOaTR3TWlBMk5pNDJORFE1SURFME5pNDVOekZETnpFdU1qazBPU0F4TkRrdU9USXlJRGd3TGpJM01qa2dNVFkxTGpNMUlEZ3pMalUxT1RrZ01UY3hMak0xTWtNNE5DNDJOakU1SURFM015NHpOak1nT0RZdU5UUXlPU0F4TnpRdU1qRXpJRGc0TGpJek56a2dNVGMwTGpJeE0wTTVNUzQyTURBNUlERTNOQzR5TVRNZ09UUXVNakk1T1NBeE56QXVPRGNnT0RndU5UUTFPU0F4TmpZdU5qSXlRemd3TGpBd01qa2dNVFl3TGpJeklEZ3pMakF3TVNBeE5Ea3VOemd5SURnM0xqQTNPQ0F4TkRrdU1UTTVRemczTGpJMU1pQXhORGt1TVRFeElEZzNMalF5TnprZ01UUTVMakE1TnlBNE55NDJNREk1SURFME9TNHdPVGRET1RFdU16RXdPU0F4TkRrdU1EazNJRGt5TGprME5Ua2dNVFUxTGpRNE5pQTVNaTQ1TkRVNUlERTFOUzQwT0RaRE9USXVPVFExT1NBeE5UVXVORGcySURrM0xqY3pPVGtnTVRZM0xqVXlOQ0F4TURVdU9UYzFJREUzTlM0M05UTkRNVEV6TGpRME55QXhPRE11TWpJeUlERXhOQzQwT1RFZ01UZzVMak0xTVNBeE1UQXVNVE0zSURFNU5pNDVPVGRhVFRFek5pNDNOallnTVRrNExqUXdOMHd4TXpZdU16TTVJREU1T0M0ME5UaE1NVE0xTGpZeE1TQXhPVGd1TlRReFF6RXpOUzR5TWpnZ01UazRMalU0TVNBeE16UXVPRFEwSURFNU9DNDJNVGtnTVRNMExqUTFPU0F4T1RndU5qVTBUREV6TkM0d09EUWdNVGs0TGpZNE9Fd3hNek11TnpReElERTVPQzQzTVRkTU1UTXpMakkxTlNBeE9UZ3VOelUyVERFek1pNDNNVGdnTVRrNExqYzVOVXd4TXpJdU1UZ3lJREU1T0M0NE0wd3hNekl1TURZeklERTVPQzQ0TXpoRE1UTXhMamt5TXlBeE9UZ3VPRFEySURFek1TNDNPRE1nTVRrNExqZzFOU0F4TXpFdU5qUXhJREU1T0M0NE5qSk1NVE14TGpRMk1pQXhPVGd1T0RjeVF6RXpNUzR5T1RZZ01UazRMamc0TVNBeE16RXVNVE1nTVRrNExqZzRPU0F4TXpBdU9UWXlJREU1T0M0NE9UWk1NVE13TGpNNE1TQXhPVGd1T1RJeFRERXlPUzQ0TlRRZ01UazRMamt6T1V3eE1qa3VOVEF5SURFNU9DNDVORGxJTVRJNUxqTXlNME14TWprdU1qRXpJREU1T0M0NU5Ea2dNVEk1TGpFd05DQXhPVGd1T1RVMUlERXlPQzQ1T1RRZ01UazRMamsxTmtneE1qZ3VPREpETVRJNExqY3hJREU1T0M0NU5UWWdNVEk0TGpZd01TQXhPVGd1T1RVMklERXlPQzQwT1RFZ01UazRMamsyTVV3eE1qZ3VNRFF6SURFNU9DNDVOamRJTVRJM0xqUXhPRU14TWpZdU9USTNJREU1T0M0NU5qY2dNVEkyTGpRek55QXhPVGd1T1RZeUlERXlOUzQ1TkRrZ01UazRMamsxTWt3eE1qVXVOVFV6SURFNU9DNDVORE5ETVRJMUxqUTBJREU1T0M0NU5ETWdNVEkxTGpNeU55QXhPVGd1T1RNNElERXlOUzR5TVRZZ01UazRMamt6TkV3eE1qUXVOemsySURFNU9DNDVNakpNTVRJMExqSTNOU0F4T1RndU9UQXlUREV5TXk0NE1EVWdNVGs0TGpnNE1Vd3hNak11TmpnMElERTVPQzQ0TnpaTU1USXpMakl6TnlBeE9UZ3VPRFV6UXpFeU15NHhNVElnTVRrNExqZzBOaUF4TWpJdU9UZzVJREU1T0M0NE5DQXhNakl1T0RZMUlERTVPQzQ0TXpGTU1USXlMalUzTmlBeE9UZ3VPREUwUXpFeU1pNHlNVE1nTVRrNExqYzVNU0F4TWpFdU9EVWdNVGs0TGpjMk5pQXhNakV1TkRnM0lERTVPQzQzTXpoTU1USXhMakV3TnlBeE9UZ3VOekEzUXpFeU1DNDVORGNnTVRrNExqWTVOU0F4TWpBdU56ZzNJREU1T0M0Mk9DQXhNakF1TmpJNElERTVPQzQyTmpaRE1USXdMalEwTVNBeE9UZ3VOalVnTVRJd0xqSTFOQ0F4T1RndU5qTXlJREV5TUM0d05qY2dNVGs0TGpZeE5FTXhNVGt1TnpVMElERTVPQzQxT0RVZ01URTVMalEwTVNBeE9UZ3VOVFV6SURFeE9TNHhNamdnTVRrNExqVXhPVWd4TVRrdU1URXpRekV5TXk0Mk9ETWdNVGc0TGpNeU5DQXhNakV1TXpjeUlERTNPQzQ0TURJZ01URXlMakV6TnlBeE5qa3VOVGMxUXpFd05pNHdPQ0F4TmpNdU5USTJJREV3TWk0d05URWdNVFUwTGpVNU5DQXhNREV1TWpFMUlERTFNaTQyTXpORE9Ua3VOVEl5T1NBeE5EWXVPREk0SURrMUxqQTBOU0F4TkRBdU16YzFJRGczTGpZd09DQXhOREF1TXpjMVF6ZzJMamszT1NBeE5EQXVNemMxSURnMkxqTTFNU0F4TkRBdU5ESTFJRGcxTGpjeklERTBNQzQxTWpORE9ESXVORGN5SURFME1TNHdNellnTnprdU5qSTBJREUwTWk0NU1URWdOemN1TlRreUlERTBOUzQzTXpORE56VXVNemsySURFME15NHdNRElnTnpNdU1qWXlJREUwTUM0NE16RWdOekV1TXpNeUlERXpPUzQyTURWRE5qZ3VOREl5SURFek55NDNOaUEyTlM0MU1UYzVJREV6Tmk0NE1qUWdOakl1TmpnNE9TQXhNell1T0RJMFF6VTVMakUxTnprZ01UTTJMamd5TkNBMU5pNHdNREU1SURFek9DNHlOelFnTlRNdU9EQXhPU0F4TkRBdU9UQTBURFV6TGpjME5Ua2dNVFF3TGprM01VTTFNeTQzTURNNUlERTBNQzQzT1RnZ05UTXVOall6T1NBeE5EQXVOakkxSURVekxqWXlNamtnTVRRd0xqUTFNVXcxTXk0Mk1UYzVJREUwTUM0ME1qaEROVE11TVRrNU1pQXhNemd1TmpNNElEVXlMamcwTnpjZ01UTTJMamd6TXlBMU1pNDFOak01SURFek5TNHdNVFpETlRJdU5UWXpPU0F4TXpVdU1EQTBJRFV5TGpVMk16a2dNVE0wTGprNU1pQTFNaTQxTlRjNUlERXpOQzQ1T0VNMU1pNDFNelU1SURFek5DNDRORE1nTlRJdU5URTFPU0F4TXpRdU56QTFJRFV5TGpRNU5Ea2dNVE0wTGpVMk9FTTFNaTQwTXpNMElERXpOQzR4TmpJZ05USXVNemMxTnlBeE16TXVOelUxSURVeUxqTXlNVGtnTVRNekxqTTBPRU0xTWk0eU9UYzVJREV6TXk0eE5qTWdOVEl1TWpjeE9TQXhNekl1T1RjNElEVXlMakkwT0RrZ01UTXlMamM1TTB3MU1pNHhPREE1SURFek1pNHlNemhETlRJdU1UVTRPU0F4TXpJdU1EVXpJRFV5TGpFME1Ea2dNVE14TGpnNE5TQTFNaTR4TWpBNUlERXpNUzQzTURsTU5USXVNVEUxSURFek1TNDJOalZETlRJdU1ETTFNU0F4TXpBdU9UUTFJRFV4TGprMk5URWdNVE13TGpJeU5TQTFNUzQ1TURRNUlERXlPUzQxTUROTU5URXVPRGd5T1NBeE1qa3VNakkyVERVeExqZzBOemtnTVRJNExqYzFORU0xTVM0NE16YzVJREV5T0M0Mk1qVWdOVEV1T0RJM09TQXhNamd1TkRrMUlEVXhMamd5TURrZ01USTRMak0yTlVNMU1TNDRNakE1SURFeU9DNHpNelFnTlRFdU9ERTFPU0F4TWpndU16QTBJRFV4TGpneE5Ea2dNVEk0TGpJM05VTTFNUzQzT0RrMUlERXlOeTQ1TVRNZ05URXVOelkzT0NBeE1qY3VOVFVnTlRFdU56UTVPU0F4TWpjdU1UZzNRelV4TGpjek9Ua2dNVEkyTGprNU9DQTFNUzQzTWprNUlERXlOaTQ0TVNBMU1TNDNNakU1SURFeU5pNDJNa3cxTVM0M01ERTVJREV5Tmk0eE1qUk1OVEV1TmprMk9TQXhNalV1T1RjMFREVXhMalk0TURrZ01USTFMalV4TjB3MU1TNDJOekE1SURFeU5TNHhNamhETlRFdU5qY3dPU0F4TWpRdU9UY3pJRFV4TGpZMk1qa2dNVEkwTGpneE9DQTFNUzQyTmpBNUlERXlOQzQyTmpORE5URXVOalUzT1NBeE1qUXVOVEE0SURVeExqWTFNemtnTVRJMExqTXpPQ0ExTVM0Mk5USTVJREV5TkM0eE56UkROVEV1TmpVd09TQXhNalF1TURFZ05URXVOalV5T1NBeE1qTXVPRFE0SURVeExqWTBOemtnTVRJekxqWTROVU0xTVM0Mk5ETTVJREV5TXk0MU1qRWdOVEV1TmpRM09TQXhNak11TXpVNElEVXhMalkwTnprZ01USXpMakU1TlVNMU1TNDJORGM1SURneExqTTBNakVnT0RVdU5UYzRPU0EwTnk0ME1URXhJREV5Tnk0ME16WWdORGN1TkRFeE1VTXhOamt1TWpreUlEUTNMalF4TVRFZ01qQXpMakl5TWlBNE1TNHpOREV4SURJd015NHlNaklnTVRJekxqRTVOVll4TWpRdU1UYzBRekl3TXk0eU1qSWdNVEkwTGpNek55QXlNRE11TWpFM0lERXlOQzQxTURFZ01qQXpMakl4TkNBeE1qUXVOall6UXpJd015NHlNVFFnTVRJMExqYzVPQ0F5TURNdU1qQTRJREV5TkM0NU16RWdNakF6TGpJd05DQXhNalV1TURZNFF6SXdNeTR5TURRZ01USTFMakU0T0NBeU1ETXVNVGs1SURFeU5TNHpNRGtnTWpBekxqRTVOU0F4TWpVdU5ESTFRekl3TXk0eE9UVWdNVEkxTGpVM09DQXlNRE11TVRnMklERXlOUzQzTXpFZ01qQXpMakU0TVNBeE1qVXVPRGcwVmpFeU5TNDRPVFpNTWpBekxqRTJJREV5Tmk0ME1qZERNakF6TGpFMU15QXhNall1TlRneUlESXdNeTR4TkRjZ01USTJMamN6T0NBeU1ETXVNVE01SURFeU5pNDRPVE5NTWpBekxqRXpOQ0F4TWpjdU1EQXpUREl3TXk0eE1EY2dNVEkzTGpRNU9VTXlNRE11TURRNElERXlPQzQxTmpJZ01qQXlMamsyTnlBeE1qa3VOakl6SURJd01pNDROallnTVRNd0xqWTRNMVl4TXpBdU5qazJRekl3TWk0NE5Ea2dNVE13TGpnM0lESXdNaTQ0TXpJZ01UTXhMakEwTkNBeU1ESXVPREV6SURFek1TNHlNVGhNTWpBeUxqYzJPQ0F4TXpFdU5qSTVUREl3TWk0Mk56a2dNVE15TGpRek0wd3lNREl1TmpJNElERXpNaTQ0TkV3eU1ESXVOVFkxSURFek15NHpNVGxETWpBeUxqVTBNaUF4TXpNdU5Ea3pJREl3TWk0MU1Ua2dNVE16TGpZMk9DQXlNREl1TkRreklERXpNeTQ0TkRGRE1qQXlMalEyTnlBeE16UXVNRE0ySURJd01pNDBNemdnTVRNMExqSXpJREl3TWk0ME1Ea2dNVE0wTGpReU5Fd3lNREl1TXpRZ01UTTBMamc0TTB3eU1ESXVNalU0SURFek5TNDBNRE5ETWpBeUxqSXpJREV6TlM0MU56WWdNakF5TGpJZ01UTTFMamMwT0NBeU1ESXVNVFk0SURFek5TNDVNa015TURJdU1UTTFJREV6Tmk0d09UTWdNakF5TGpFd09TQXhNell1TWpZMUlESXdNaTR3TnprZ01UTTJMalF6TjBNeU1ESXVNREU1SURFek5pNDNPREVnTWpBeExqazFOaUF4TXpjdU1USTFJREl3TVM0NE9TQXhNemN1TkRZNFF6SXdNUzQzT0RrZ01UTTNMams0TVNBeU1ERXVOamcySURFek9DNDBPVE1nTWpBeExqVTRJREV6T1M0d01EVk1NakF4TGpRM0lERXpPUzQxTVRKRE1qQXhMalF6TkNBeE16a3VOamd4SURJd01TNHpPVFVnTVRNNUxqZzFNU0F5TURFdU16VTNJREUwTUM0d01rTXhPVGt1TWpJMElERXpOeTQ1TkRjZ01UazJMak01T1NBeE16WXVPREU0SURFNU15NHlPRFFnTVRNMkxqZ3hPRU14T1RBdU5EVTNJREV6Tmk0NE1UZ2dNVGczTGpVMUlERXpOeTQzTlRNZ01UZzBMalkwTVNBeE16a3VOVGs0UXpFNE1pNDNNVEVnTVRRd0xqZ3lOQ0F4T0RBdU5UYzRJREUwTWk0NU9UWWdNVGM0TGpNNE1TQXhORFV1TnpJMlF6RTNOaTR6TkRZZ01UUXlMamt3TkNBeE56TXVORGs0SURFME1TNHdNamtnTVRjd0xqSTBNaUF4TkRBdU5URTJRekUyT1M0Mk1qRWdNVFF3TGpReE9DQXhOamd1T1RreklERTBNQzR6TmpnZ01UWTRMak0yTkNBeE5EQXVNelk0UXpFMk1DNDVNalVnTVRRd0xqTTJPQ0F4TlRZdU5EVWdNVFEyTGpneU1TQXhOVFF1TnpVM0lERTFNaTQyTWpaRE1UVXpMamt4TnlBeE5UUXVOVGczSURFME9TNDRPRGNnTVRZekxqVXhPU0F4TkRNdU9ESTFJREUyT1M0MU56ZERNVE0wTGpVNU5pQXhOemd1TnpjMUlERXpNaTR5TmpnZ01UZzRMakkxTkNBeE16WXVOelkySURFNU9DNDBNRGRhVFRJeE5TNHdNRGNnTVRjM0xqazVPRXd5TVRRdU9UYzNJREUzT0M0d09EZERNakUwTGprd01TQXhOemd1TWpnNElESXhOQzQ0TVRNZ01UYzRMalE0TkNBeU1UUXVOekUwSURFM09DNDJOelJETWpFMExqWXpPU0F4TnpndU9ERTBJREl4TkM0MU5UZ2dNVGM0TGprMUlESXhOQzQwTnlBeE56a3VNRGd5UXpJeE5DNHpNRE1nTVRjNUxqTXpNU0F5TVRRdU1USWdNVGM1TGpVMk9TQXlNVE11T1RJeElERTNPUzQzT1RORE1qRXpMamczTlNBeE56a3VPRFExSURJeE15NDRNekVnTVRjNUxqZzVOeUF5TVRNdU56YzVJREUzT1M0NU5EaERNakV6TGpjd055QXhPREF1TURJMUlESXhNeTQyTXpRZ01UZ3dMakV3TVNBeU1UTXVOVFU1SURFNE1DNHhOelZETWpFeUxqSXhNeUF4T0RFdU5UQTVJREl4TUM0eE5qRWdNVGd5TGpZM09TQXlNRGN1T0RReElERTRNeTQzTlRKRE1qQTNMalUzT0NBeE9ETXVPRGN4SURJd055NHpNVEVnTVRnekxqazVJREl3Tnk0d05ESWdNVGcwTGpFeFRESXdOaTQzTnpRZ01UZzBMakl5T1VNeU1EWXVOVGsxSURFNE5DNHpNRGdnTWpBMkxqUXhOaUF4T0RRdU16ZzJJREl3Tmk0eU1qZ2dNVGcwTGpRMk0wTXlNRFl1TURRNUlERTROQzQxTkRFZ01qQTFMamcyTXlBeE9EUXVOakU1SURJd05TNDJOemNnTVRnMExqWTVOVXd5TURVdU1URTVJREU0TkM0NU1qVkRNakF6TGpneE5DQXhPRFV1TkRZeUlESXdNaTQwTnpjZ01UZzFMamszTkNBeU1ERXVNVGN6SURFNE5pNDBOemxNTWpBd0xqWXhOU0F4T0RZdU5qazJUREl3TUM0d05qUWdNVGcyTGpreE1rTXhPVGt1TmprM0lERTROeTR3TlRVZ01UazVMak16TlNBeE9EY3VNVGs0SURFNU9DNDVOemtnTVRnM0xqTTBNVXd4T1RndU5EUTRJREU0Tnk0MU5UVk1NVGszTGpreU5pQXhPRGN1TnpZNFRERTVOeTQyTnlBeE9EY3VPRGMyUXpFNU55NDBPVGtnTVRnM0xqazBOeUF4T1RjdU16TXlJREU0T0M0d01UZ2dNVGszTGpFMk5TQXhPRGd1TURnNVF6RTVNeTR6TWpnZ01UZzVMamN6TmlBeE9UQXVOVFkzSURFNU1TNDBNVEVnTVRreExqRTBOeUF4T1RNdU5EZzVRekU1TVM0eE5qTWdNVGt6TGpVME9DQXhPVEV1TVRneElERTVNeTQyTURRZ01Ua3hMakl3TVNBeE9UTXVOalU1UXpFNU1TNHlOVE1nTVRrekxqZ3hNeUF4T1RFdU16STBJREU1TXk0NU5UZ2dNVGt4TGpReE15QXhPVFF1TURrMVF6RTVNUzQwTmpVZ01UazBMakUzTmlBeE9URXVOVEkxSURFNU5DNHlOVE1nTVRreExqVTVNaUF4T1RRdU16SXpRekU1TWk0eU56UWdNVGsxTGpBek1pQXhPVE11TlRFMUlERTVOQzQ1TWlBeE9UVXVNRGdnTVRrMExqTTFOME14T1RVdU15QXhPVFF1TWpjMklERTVOUzQxTVRrZ01UazBMakU1TWlBeE9UVXVOek0ySURFNU5DNHhNRFJNTVRrMUxqZzNNaUF4T1RRdU1EUTRRekU1Tmk0eU15QXhPVE11T0RrMklERTVOaTQyTURrZ01Ua3pMamN5TmlBeE9UWXVPVGsySURFNU15NDFOREpETVRrM0xqQTVNeUF4T1RNdU5EazJJREU1Tnk0eE9URWdNVGt6TGpRMU1pQXhPVGN1TWpnNUlERTVNeTQwTURGRE1UazVMakl3TXlBeE9USXVORFkxSURJd01TNHpOeklnTVRreExqSXdOU0F5TURNdU5USTBJREU1TUM0d05UaERNakEwTGpNNE5TQXhPRGt1TlRreklESXdOUzR5TlRnZ01UZzVMakUxTWlBeU1EWXVNVFF5SURFNE9DNDNNek5ETWpBNExqRTRJREU0Tnk0M056UWdNakV3TGpBNU5pQXhPRGN1TURrMElESXhNUzQyTXpZZ01UZzNMakE1TkVNeU1USXVNelU1SURFNE55NHdPVFFnTWpFeUxqazVOeUF4T0RjdU1qUXlJREl4TXk0MU1qa2dNVGczTGpVNE1rd3lNVE11TmpFNElERTROeTQyTkRGRE1qRXpMamsxTWlBeE9EY3VPRGMySURJeE5DNHlNeklnTVRnNExqRTNPQ0F5TVRRdU5EUXhJREU0T0M0MU1qaERNakUwTGpRNE1pQXhPRGd1TlRrMUlESXhOQzQxTWpJZ01UZzRMalkyTmlBeU1UUXVOVFl4SURFNE9DNDNNemxETWpFMUxqTXlNaUF4T1RBdU1UZzBJREl4TkM0Mk9EVWdNVGt4TGpZNElESXhNeTR4T1RRZ01Ua3pMakUwTjBNeU1URXVOell6SURFNU5DNDFOVFlnTWpBNUxqVXpOeUF4T1RVdU9UTTNJREl3Tnk0d01EY2dNVGszTGpJeE5VTXlNRFl1T0RFNUlERTVOeTR6TVNBeU1EWXVOak14SURFNU55NDBNRFVnTWpBMkxqUTBJREU1Tnk0ME9UaERNVGs0TGpreElESXdNUzR4T1RZZ01UZzVMakEwT1NBeU1ETXVPVGd4SURFNE9DNDVNVElnTWpBMExqQXhOa014T0RZdU1qZzBJREl3TkM0Mk9UY2dNVGd5TGpVeU5pQXlNRFV1TlRreElERTNPQzR5T1RJZ01qQTJMakkyVERFM055NDJOallnTWpBMkxqTTFPRXd4TnpjdU5UWXpJREl3Tmk0ek56TkRNVGMzTGpBNE9TQXlNRFl1TkRRMUlERTNOaTQyTVRRZ01qQTJMalV4TWlBeE56WXVNVE00SURJd05pNDFOelJETVRjMUxqWTFOU0F5TURZdU5qTTVJREUzTlM0eE5qY2dNakEyTGpZNU9DQXhOelF1TmpjMklESXdOaTQzTlROTU1UYzBMalU0TmlBeU1EWXVOell6UXpFM01pNDRNRFlnTWpBMkxqazJPQ0F4TnpFdU1ERTVJREl3Tnk0eE1EUWdNVFk1TGpJeU9DQXlNRGN1TVRZNVNERTJPUzR5TURKRE1UWTRMalUxTkNBeU1EY3VNVGt5SURFMk55NDVNRGNnTWpBM0xqSXdOQ0F4TmpjdU1qVTVJREl3Tnk0eU1EUklNVFkyTGpVeE1rTXhOalV1TlRJMElESXdOeTR4T1RFZ01UWTBMalV6T0NBeU1EY3VNVFEySURFMk15NDFOVE1nTWpBM0xqQTNRekUyTXk0MU15QXlNRGN1TURjZ01UWXpMalV3TlNBeU1EY3VNRGNnTVRZekxqUTRNaUF5TURjdU1EWTBRekUyTXk0eE1qa2dNakEzTGpBek55QXhOakl1TnpjM0lESXdOeTR3TURRZ01UWXlMalF5TlNBeU1EWXVPVFkxUXpFMk1pNHdOaUF5TURZdU9USTJJREUyTVM0Mk9UWWdNakEyTGpnNE1pQXhOakV1TXpNeklESXdOaTQ0TXpORE1UWXhMakE1TkNBeU1EWXVPREF4SURFMk1DNDROVFlnTWpBMkxqYzJOU0F4TmpBdU5qRTRJREl3Tmk0M01qWkRNVFl3TGpNM05pQXlNRFl1TmpnM0lERTJNQzR4TXpRZ01qQTJMalkwTnlBeE5Ua3VPRGt6SURJd05pNDJNRFZNTVRVNUxqVTJOQ0F5TURZdU5UUXpUREUxT1M0MU16a2dNakEyTGpVek9FTXhOVGt1TVRreUlESXdOaTQwTnpJZ01UVTRMamcwTnlBeU1EWXVNems1SURFMU9DNDFNRE1nTWpBMkxqTXhPVU14TlRndU16QXpJREl3Tmk0eU56UWdNVFU0TGpFd05DQXlNRFl1TWpNZ01UVTNMamt3TnlBeU1EWXVNVGMyVERFMU55NDNPRGdnTWpBMkxqRTBOa014TlRjdU5qa2dNakEyTGpFeU1pQXhOVGN1TlRrMUlESXdOaTR3T1RZZ01UVTNMalE1T0NBeU1EWXVNRGRNTVRVM0xqUTBOU0F5TURZdU1EVTJUREUxTnk0eE16Y2dNakExTGprMk5rTXhOVGN1TURJMUlESXdOUzQ1TXpVZ01UVTJMamt4TXlBeU1EVXVPVEF4SURFMU5pNDRNREVnTWpBMUxqZzJPRXd4TlRZdU56WXlJREl3TlM0NE5UZE1NVFUyTGpRM01TQXlNRFV1TnpZNFF6RTFOaTR6TmpFZ01qQTFMamN6TkNBeE5UWXVNalV4SURJd05TNDJPVGdnTVRVMkxqRTBNaUF5TURVdU5qWXlUREUxTlM0NE56UWdNakExTGpVM00wd3hOVFV1TmpjM0lESXdOUzQxTURSRE1UVTFMalE0TnlBeU1EVXVORE0zSURFMU5TNHlPVGdnTWpBMUxqTTJPQ0F4TlRVdU1URXhJREl3TlM0eU9UWk1NVFUwTGprek15QXlNRFV1TWpJMlRERTFOQzQzT0RZZ01qQTFMakUyT0VNeE5UUXVOVEF5SURJd05TNHdOVFFnTVRVMExqSXlJREl3TkM0NU16VWdNVFV6TGprME1TQXlNRFF1T0RGTU1UVXpMamMxTmlBeU1EUXVOekpNTVRVekxqY3lOU0F5TURRdU56QTJRekUxTXk0Mk5Ua2dNakEwTGpZM05TQXhOVE11TlRrMElESXdOQzQyTkRRZ01UVXpMalV5T0NBeU1EUXVOakUzUXpFMU15NHpPVGtnTWpBMExqVTFOU0F4TlRNdU1qY3hJREl3TkM0ME9URWdNVFV6TGpFME5DQXlNRFF1TkRJMlRERTFNeTR4TURVZ01qQTBMalF3TjB3eE5USXVPVEl4SURJd05DNHpNVU14TlRJdU5UazBJREl3TkM0eE16a2dNVFV5TGpJM05DQXlNRE11T1RVM0lERTFNUzQ1TmlBeU1ETXVOelkwVERFMU1TNDNPRGdnTWpBekxqWTFPRU14TlRFdU56QXlJREl3TXk0Mk1EVWdNVFV4TGpZeE5pQXlNRE11TlRVZ01UVXhMalV6TWlBeU1ETXVORGswVERFMU1TNHpNRGdnTWpBekxqTTBOa3d4TlRFdU1EWTNJREl3TXk0eE9Fd3hOVEF1T1RJeklESXdNeTR3TnpkRE1UVXdMamMzTVNBeU1ESXVPVFk1SURFMU1DNDJNaklnTWpBeUxqZzFOeUF4TlRBdU5EYzJJREl3TWk0M05ESk1NVFV3TGpJME15QXlNREl1TlRZelF6RTFNQzR4TlNBeU1ESXVORGc0SURFMU1DNHdOVGdnTWpBeUxqUXhNaUF4TkRrdU9UWTNJREl3TWk0ek16VkRNVFE1TGpnNUlESXdNaTR5TnpJZ01UUTVMamd4TlNBeU1ESXVNakEySURFME9TNDNOQ0F5TURJdU1UUk1NVFE1TGpjek5DQXlNREl1TVRNMVF6RTBPUzQyTlRNZ01qQXlMakEyTkNBeE5Ea3VOVGMwSURJd01TNDVPVE1nTVRRNUxqUTVOU0F5TURFdU9USkRNVFE1TGpReE55QXlNREV1T0RRNUlERTBPUzR6TXprZ01qQXhMamMzTnlBeE5Ea3VNall6SURJd01TNDNNRFJNTVRRNUxqSTFOQ0F5TURFdU5qazFRekUwT1M0eE56UWdNakF4TGpZeE9TQXhORGt1TURrMklESXdNUzQxTkRJZ01UUTVMakF4T1NBeU1ERXVORFl6UXpFME9DNDVORElnTWpBeExqTTROU0F4TkRndU9EWXpJREl3TVM0ek1EY2dNVFE0TGpjNE9DQXlNREV1TWpJM1F6RTBPQzQzTVRNZ01qQXhMakUwT0NBeE5EZ3VOak0ySURJd01TNHdOamNnTVRRNExqVTJNaUF5TURBdU9UZzBRekUwT0M0ME9EZ2dNakF3TGprd01pQXhORGd1TkRJZ01qQXdMamd5TnlBeE5EZ3VNelVnTWpBd0xqYzBOa3d4TkRndU16STNJREl3TUM0M01UbERNVFE0TGpJMU9TQXlNREF1TmpReElERTBPQzR4T1RJZ01qQXdMalUyTWlBeE5EZ3VNVEkySURJd01DNDBPREZETVRRM0xqazRNeUF5TURBdU16RWdNVFEzTGpnME5DQXlNREF1TVRNMUlERTBOeTQzTVNBeE9Ua3VPVFUyUXpFME55NDFOelVnTVRrNUxqYzNOaUF4TkRjdU5EUXpJREU1T1M0MU9USWdNVFEzTGpNeE5DQXhPVGt1TkRBMVRERTBOeTR4T1RFZ01UazVMakl5TVVNeE5EY3VNREkzSURFNU9DNDVPREVnTVRRMkxqZzJOeUF4T1RndU56TTVJREUwTmk0M01USWdNVGs0TGpRNU0wTXhORFl1TlRrMklERTVPQzR6TVRZZ01UUTJMalE0TXlBeE9UZ3VNVE00SURFME5pNHpOek1nTVRrM0xqazFOME14TkRZdU16QXlJREU1Tnk0NE5EUWdNVFEyTGpJek5DQXhPVGN1TnpNZ01UUTJMakUyTmlBeE9UY3VOakU0VERFME5pNHhNemdnTVRrM0xqVTNNa014TkRZdU1EY3pJREU1Tnk0ME5qSWdNVFEyTGpBd09TQXhPVGN1TXpVMElERTBOUzQ1TkRjZ01UazNMakkwTlVNeE5EVXVPVEV4SURFNU55NHhPRFlnTVRRMUxqZzNOeUF4T1RjdU1USTNJREUwTlM0NE5EVWdNVGszTGpBMk5rTXhORFV1T0RFeUlERTVOeTR3TURRZ01UUTFMamMzTkNBeE9UWXVPVFF4SURFME5TNDNNemtnTVRrMkxqZzNPRXd4TkRVdU5qZ3lJREU1Tmk0M056bE1NVFExTGpZME55QXhPVFl1TnpFMVF6RTBOUzQxT0NBeE9UWXVOVGsxSURFME5TNDFNVFFnTVRrMkxqUTNOQ0F4TkRVdU5EVWdNVGsyTGpNMU1rTXhORFV1TkRJZ01UazJMakk1T0NBeE5EVXVNemt4SURFNU5pNHlORFFnTVRRMUxqTTJJREU1Tmk0eE9USk1NVFExTGpJM01TQXhPVFl1TURFNVRERTBOUzR4T0RFZ01UazFMamcwT0VNeE5EUXVPVFUySURFNU5TNHpPVGdnTVRRMExqYzBNeUF4T1RRdU9UUXlJREUwTkM0MU5ETWdNVGswTGpRNFRERTBOQzQwTnpJZ01UazBMak14TVVNeE5EUXVOREkySURFNU5DNHhPVGdnTVRRMExqTTRNeUF4T1RRdU1EZzJJREUwTkM0ek16Y2dNVGt6TGprM05VTXhORFF1TXpFMUlERTVNeTQ1TWpFZ01UUTBMakk1TXlBeE9UTXVPRFk0SURFME5DNHlOelFnTVRrekxqZ3hORU14TkRRdU1UWTNJREU1TXk0MU16Y2dNVFEwTGpBMk55QXhPVE11TWpVM0lERTBNeTQ1TnpVZ01Ua3lMamszTlVNeE5ETXVPVFF5SURFNU1pNDROelFnTVRRekxqa3hJREU1TWk0M056VWdNVFF6TGpnNElERTVNaTQyTnpWRE1UUXpMamd3T0NBeE9USXVORFE0SURFME15NDNORE1nTVRreUxqSXhPU0F4TkRNdU5qZzFJREU1TVM0NU9EaERNVFF6TGpZeE5DQXhPVEV1TnpFNUlERTBNeTQxTlRFZ01Ua3hMalEwT0NBeE5ETXVORGs0SURFNU1TNHhOelZETVRRekxqUTROeUF4T1RFdU1USWdNVFF6TGpRM05pQXhPVEV1TURZMUlERTBNeTQwTmpjZ01Ua3hMakF4TWtNeE5ETXVOREUxSURFNU1DNDNORFVnTVRRekxqTTNNeUF4T1RBdU5EYzJJREUwTXk0ek5DQXhPVEF1TWpBMlF6RTBNeTR6TXpJZ01Ua3dMakUxTXlBeE5ETXVNekkySURFNU1DNHhJREUwTXk0ek1pQXhPVEF1TURRM1RERTBNeTR6TURNZ01UZzVMamc0TlVNeE5ETXVNamd4SURFNE9TNDJOek1nTVRRekxqSTJOQ0F4T0RrdU5EWWdNVFF6TGpJMU5DQXhPRGt1TWpRM1F6RTBNeTR5TlRRZ01UZzVMakU1TXlBeE5ETXVNalE1SURFNE9TNHhNemtnTVRRekxqSTBOeUF4T0RrdU1EZzNRekUwTXk0eU5ESWdNVGc0TGprNE1TQXhORE11TWpRZ01UZzRMamczTlNBeE5ETXVNak01SURFNE9DNDNOamxETVRRekxqRTRNeUF4T0RRdU5EazJJREUwTlM0ek5EVWdNVGd3TGpNNE9DQXhORGt1T1RZNElERTNOUzQzTmpkRE1UVTRMakl3TXlBeE5qY3VOVFFnTVRZeUxqazVOeUF4TlRVdU5UQXhJREUyTWk0NU9UY2dNVFUxTGpVd01VTXhOakl1T1RrM0lERTFOUzQxTURFZ01UWXpMakV5TmlBeE5UUXVPVGsySURFMk15NHpPVFFnTVRVMExqSTJPVU14TmpNdU5ETXhJREUxTkM0eE5qZ2dNVFl6TGpRM0lERTFOQzR3TmpRZ01UWXpMalV4TkNBeE5UTXVPVFUxUXpFMk15NDJOeUF4TlRNdU5UUTRJREUyTXk0NE5EWWdNVFV6TGpFME9DQXhOalF1TURReElERTFNaTQzTlRoTU1UWTBMakE0SURFMU1pNDJPRE5ETVRZMExqSTBOaUF4TlRJdU16VXhJREUyTkM0ME1qZ2dNVFV5TGpBeU55QXhOalF1TmpJMElERTFNUzQzTVRKRE1UWTBMalkzSURFMU1TNDJNemtnTVRZMExqY3hOQ0F4TlRFdU5UWTNJREUyTkM0M05qVWdNVFV4TGpRNU5FTXhOalF1T1RFeUlERTFNUzR5TnpjZ01UWTFMakEyTnlBeE5URXVNRFkxSURFMk5TNHlNeUF4TlRBdU9EWkRNVFkxTGpNeE9TQXhOVEF1TnpRNUlERTJOUzQwTVRZZ01UVXdMall6T1NBeE5qVXVOVEV6SURFMU1DNDFNekpETVRZMUxqVTFNaUF4TlRBdU5Ea2dNVFkxTGpVNUlERTFNQzQwTkRnZ01UWTFMall6TVNBeE5UQXVOREE0UXpFMk5pNHhNRGdnTVRRNUxqa3hOU0F4TmpZdU5qVXpJREUwT1M0MU1UTWdNVFkzTGpJM0lERTBPUzR5T1RsTU1UWTNMak0wT0NBeE5Ea3VNamN6UXpFMk55NDBJREUwT1M0eU5UWWdNVFkzTGpRMU1pQXhORGt1TWpRZ01UWTNMalV3TlNBeE5Ea3VNakkxUXpFMk55NDFOallnTVRRNUxqSXdPU0F4TmpjdU5qSTNJREUwT1M0eE9UVWdNVFkzTGpZNUlERTBPUzR4T0RKTU1UWTNMamN4T1NBeE5Ea3VNVGMyUXpFMk55NDRORGtnTVRRNUxqRTFJREUyTnk0NU9ERWdNVFE1TGpFek15QXhOamd1TVRFMElERTBPUzR4TWpSSU1UWTRMakV5TlVNeE5qZ3VNVGswSURFME9TNHhNalFnTVRZNExqSTJOQ0F4TkRrdU1URTNJREUyT0M0ek16VWdNVFE1TGpFeE4wTXhOamd1TkRJMElERTBPUzR4TVRjZ01UWTRMalV3TnlBeE5Ea3VNVEUzSURFMk9DNDFPVFFnTVRRNUxqRXlOa014TmpndU5qZzBJREUwT1M0eE16UWdNVFk0TGpjM015QXhORGt1TVRRMElERTJPQzQ0TmpNZ01UUTVMakUxT0VNeE5qa3VOakExSURFME9TNHlOellnTVRjd0xqTXhNU0F4TkRrdU56RTRJREUzTUM0NU1Ua2dNVFV3TGpSRE1UY3hMakUxSURFMU1DNDJOaUF4TnpFdU16VTRJREUxTUM0NU5DQXhOekV1TlRRZ01UVXhMakl6TmtNeE56RXVOallnTVRVeExqUXlPQ0F4TnpFdU56Y3pJREUxTVM0Mk16RWdNVGN4TGpnNElERTFNUzQ0TkRWRE1UY3hMamt5TXlBeE5URXVPVE0wSURFM01TNDVOalFnTVRVeUxqQXhOaUF4TnpJdU1EQTBJREUxTWk0eE1EUkRNVGN5TGpFd09DQXhOVEl1TXpNZ01UY3lMakl3TWlBeE5USXVOVFlnTVRjeUxqSTROQ0F4TlRJdU56azFRekUzTWk0ME56a2dNVFV6TGpNME5TQXhOekl1TmpJMklERTFNeTQ1TVRFZ01UY3lMamN5TXlBeE5UUXVORGczUXpFM01pNDRNRGNnTVRVMExqazVNaUF4TnpJdU9EVTNJREUxTlM0MU1ESWdNVGN5TGpnM015QXhOVFl1TURFelF6RTNNaTQ0T0RFZ01UVTJMakk0TmlBeE56SXVPRGd4SURFMU5pNDFOak1nTVRjeUxqZzNNeUF4TlRZdU9EUXlRekUzTWk0NE1Ua2dNVFU0TGpFMElERTNNaTQxTlRNZ01UVTVMalF5TVNBeE56SXVNRGcySURFMk1DNDJNelJETVRjeUxqQTBOQ0F4TmpBdU56UTFJREUzTVM0NU9UY2dNVFl3TGpnMU55QXhOekV1T1RVeUlERTJNQzQ1TmpsRE1UY3hMamcySURFMk1TNHhPVFVnTVRjeExqYzFPU0F4TmpFdU5ERTNJREUzTVM0Mk5TQXhOakV1TmpNMFF6RTNNUzQxTmprZ01UWXhMamM1T1NBeE56RXVORGcwSURFMk1TNDVOalVnTVRjeExqTTVNaUF4TmpJdU1UTkRNVGN4TGpNek1pQXhOakl1TWpRZ01UY3hMakkyT1NBeE5qSXVNelVnTVRjeExqSXdOaUF4TmpJdU5EWkRNVGN4TGpBME5TQXhOakl1TnpNMElERTNNQzQ0TnpFZ01UWXpMakF3TmlBeE56QXVOamcwSURFMk15NHlOemRNTVRjd0xqVTNNU0F4TmpNdU5ETTVRekUzTUM0eE1qa2dNVFkwTGpBMU5TQXhOamt1TmpNM0lERTJOQzQyTXpNZ01UWTVMakE1T1NBeE5qVXVNVFkzUXpFMk9DNDFOamtnTVRZMUxqWTVPQ0F4TmpndU1EQXhJREUyTmk0eE9Ea2dNVFkzTGpRZ01UWTJMall6TjBNeE5qWXVOems0SURFMk55NHdPRE1nTVRZMkxqSXpNeUF4TmpjdU5UYzNJREUyTlM0M01URWdNVFk0TGpFeE5FTXhOalF1TWpBNElERTJPUzQyT1RFZ01UWXpMamcxT0NBeE56RXVNRGd6SURFMk5DNHhPVFlnTVRjeUxqRXpPRU14TmpRdU1qVWdNVGN5TGpNd05DQXhOalF1TXpJeElERTNNaTQwTmpVZ01UWTBMalF3TnlBeE56SXVOakUzUXpFMk5DNDFNRGdnTVRjeUxqYzVNU0F4TmpRdU5qSTRJREUzTWk0NU5URWdNVFkwTGpjMk5DQXhOek11TURrM1RERTJOQzQ0TVRjZ01UY3pMakUxTWt3eE5qUXVPRGN4SURFM015NHlNRFpETVRZMExqa3lOU0F4TnpNdU1qVTRJREUyTkM0NU9ESWdNVGN6TGpNd09TQXhOalV1TURReklERTNNeTR6TlRsTU1UWTFMakV3TXlBeE56TXVOREEzUXpFMk5TNHlORGdnTVRjekxqVXhPU0F4TmpVdU5EQXlJREUzTXk0Mk1Ua2dNVFkxTGpVMk15QXhOek11TnpBM1F6RTJOUzQyTVNBeE56TXVOek15SURFMk5TNDJOVElnTVRjekxqYzFOeUF4TmpVdU56QTFJREUzTXk0M09ERkRNVFkxTGpnM09TQXhOek11T0RZMklERTJOaTR3TlRnZ01UY3pMamt6T1NBeE5qWXVNalF5SURFM015NDVPVGhETVRZMkxqSTVNeUF4TnpRdU1ERTFJREUyTmk0ek5EUWdNVGMwTGpBeklERTJOaTR6T1RZZ01UYzBMakEwTmt3eE5qWXVORFl4SURFM05DNHdOak5NTVRZMkxqVTFNU0F4TnpRdU1EZzNUREUyTmk0Mk1qZ2dNVGMwTGpFd05rd3hOall1TnpFeUlERTNOQzR4TWpSTU1UWTJMamM1TlNBeE56UXVNVFF4VERFMk5pNDROelFnTVRjMExqRTFORU14TmpZdU9UTXlJREUzTkM0eE5qUWdNVFkyTGprNU1pQXhOelF1TVRjMElERTJOeTR3TlRJZ01UYzBMakU0TVV3eE5qY3VNVEE1SURFM05DNHhPVXd4TmpjdU1qRXpJREUzTkM0eVRERTJOeTR5TnpjZ01UYzBMakl3TjB3eE5qY3VNemd5SURFM05DNHlNVFJJTVRZM0xqUTBORXd4TmpjdU5UVTBJREUzTkM0eU1rZ3hOamN1T1V3eE5qY3VPVGs1SURFM05DNHlNVFJNTVRZNExqRXhNeUF4TnpRdU1qQTNUREUyT0M0eU5USWdNVGMwTGpFNU5Fd3hOamd1TXpneUlERTNOQzR4TnpsRE1UWTRMalF4TWlBeE56UXVNVGM1SURFMk9DNDBORElnTVRjMExqRTNNU0F4TmpndU5EY3lJREUzTkM0eE5qVkRNVFk0TGpnM01pQXhOelF1TVRBM0lERTJPUzR5TmpRZ01UYzBMakF3TVNBeE5qa3VOak01SURFM015NDRORGxNTVRZNUxqYzVPQ0F4TnpNdU56Z3lRekUyT1M0NE9EY2dNVGN6TGpjME15QXhOamt1T1RjM0lERTNNeTQzTURJZ01UY3dMakExT1NBeE56TXVOalU0UXpFM01DNHlNelVnTVRjekxqVTNJREUzTUM0ME1EWWdNVGN6TGpRM0lERTNNQzQxTnlBeE56TXVNell4UXpFM01DNDNPVGtnTVRjekxqSXhNU0F4TnpFdU1ERTFJREUzTXk0d05ETWdNVGN4TGpJeE55QXhOekl1T0RVNFF6RTNNUzR5TmpVZ01UY3lMamd4TlNBeE56RXVNekV5SURFM01pNDNOamtnTVRjeExqTTFPQ0F4TnpJdU56STFRekUzTVM0ek9ERWdNVGN5TGpjd015QXhOekV1TkRBeklERTNNaTQyT0RJZ01UY3hMalF5TlNBeE56SXVOalU0UXpFM01TNDBOamtnTVRjeUxqWXhNeUF4TnpFdU5URTBJREUzTWk0MU5qa2dNVGN4TGpVMU9DQXhOekl1TlRKRE1UY3hMamczT0NBeE56SXVNVFk0SURFM01pNHhOVFVnTVRjeExqYzRJREUzTWk0ek9ETWdNVGN4TGpNMk0wTXhOelF1TXpRZ01UWTNMamd3TkNBeE56WXVNemt4SURFMk5DNHlPVGdnTVRjNExqVXpOQ0F4TmpBdU9EUTVUREUzT0M0NE1qZ2dNVFl3TGpNM09Fd3hOemt1TVRJMUlERTFPUzQ1TURkRE1UYzVMakkzTXlBeE5Ua3VOalk0SURFM09TNDBNak1nTVRVNUxqUXpNeUF4TnprdU5UY3lJREUxT1M0eE9UbE1NVGM1TGpjeU1pQXhOVGd1T1RZMVF6RTRNQzR5TWlBeE5UZ3VNVGcxSURFNE1DNDNNallnTVRVM0xqUXhJREU0TVM0eU5ERWdNVFUyTGpZME1Vd3hPREV1TlRRMklERTFOaTR4T0RWRE1UZ3lMakUxT0NBeE5UVXVNamM0SURFNE1pNDNOamdnTVRVMExqTTVOaUF4T0RNdU16Y3pJREUxTXk0MU5UaE1NVGd6TGpZM05DQXhOVE11TVRRelF6RTROQzR6TXpJZ01UVXlMakl6TmlBeE9EVXVNREUzSURFMU1TNHpORGdnTVRnMUxqY3lPQ0F4TlRBdU5EZ3lUREU0Tmk0d01TQXhOVEF1TVRRMFF6RTROaTR3TlRjZ01UVXdMakE0T0NBeE9EWXVNU0F4TlRBdU1ETXlJREU0Tmk0eE5URWdNVFE1TGprM09FTXhPRFl1TWpRMElERTBPUzQ0TmpnZ01UZzJMak16TnlBeE5Ea3VOell4SURFNE5pNDBNamdnTVRRNUxqWTFOME14T0RZdU5EYzBJREUwT1M0Mk1EUWdNVGcyTGpVeE55QXhORGt1TlRVeUlERTROaTQxTmpZZ01UUTVMalZNTVRnMkxqZ3pOQ0F4TkRrdU1UazRUREU0Tmk0NU5qZ2dNVFE1TGpBMU1VTXhPRGN1TVRBeklERTBPQzQ1TURZZ01UZzNMakl6TlNBeE5EZ3VOelkzSURFNE55NHpOalVnTVRRNExqWXpORU14T0RjdU5EVTFJREUwT0M0MU5EUWdNVGczTGpVek9DQXhORGd1TkRVMUlERTROeTQyTWpRZ01UUTRMak0zTVVNeE9EZ3VNVE14SURFME55NDROVE1nTVRnNExqWTVJREUwTnk0ek9EZ2dNVGc1TGpJNU15QXhORFl1T1RnMVRERTRPUzQwTXpNZ01UUTJMamc1TlVNeE9Ea3VOVFkzSURFME5pNDRNRFVnTVRnNUxqY3dOaUF4TkRZdU56SXhJREU0T1M0NE5EZ2dNVFEyTGpZME5VTXhPVEl1TWpFeUlERTBOUzR6TURNZ01UazBMakUyT1NBeE5EVXVNakEwSURFNU5TNHlPVFlnTVRRMkxqTXpNVU14T1RVdU9UYzRJREUwTnk0d01UTWdNVGsyTGpNMU5pQXhORGd1TVRRMElERTVOaTR6TXpVZ01UUTVMamN4T0VNeE9UWXVNek0xSURFME9TNDNPRGNnTVRrMkxqTXpOU0F4TkRrdU9EVTNJREU1Tmk0ek15QXhORGt1T1RJNVZqRTFNQzR3TURaRE1UazJMak16SURFMU1DNHdOemdnTVRrMkxqTXlOQ0F4TlRBdU1UVWdNVGsyTGpNeE9DQXhOVEF1TWpJelF6RTVOaTR6TVRnZ01UVXdMak14TXlBeE9UWXVNekE0SURFMU1DNDBNRElnTVRrMkxqSTVPU0F4TlRBdU5Ea3lRekU1Tmk0eU9TQXhOVEF1TlRneElERTVOaTR5T0RVZ01UVXdMalkwT1NBeE9UWXVNamMySURFMU1DNDNNamxETVRrMkxqSTNOaUF4TlRBdU56VXhJREU1Tmk0eU56SWdNVFV3TGpjM05DQXhPVFl1TWpZNElERTFNQzQzT1RoRE1UazJMakkyTWlBeE5UQXVPRFkzSURFNU5pNHlOVE1nTVRVd0xqa3pPQ0F4T1RZdU1qUXpJREUxTVM0d01EbERNVGsyTGpJME15QXhOVEV1TURNZ01UazJMakkwTXlBeE5URXVNRFV5SURFNU5pNHlNelVnTVRVeExqQTNORU14T1RZdU1qSTBJREUxTVM0eE5qa2dNVGsyTGpJeElERTFNUzR5TmpNZ01UazJMakU1TkNBeE5URXVNelUzUXpFNU5pNHhPRE1nTVRVeExqUTBOeUF4T1RZdU1UWTRJREUxTVM0MU16RWdNVGsyTGpFMU1pQXhOVEV1TmpFNVRERTVOaTR4TWpZZ01UVXhMamMyT0VNeE9UWXVNU0F4TlRFdU9URWdNVGsyTGpBMk55QXhOVEl1TURVZ01UazJMakF5TmlBeE5USXVNVGc0UXpFNU5TNDVORGdnTVRVeUxqUTBOeUF4T1RVdU9EVTBJREUxTWk0M0lERTVOUzQzTkRNZ01UVXlMamswTmtNeE9UVXVOVGc0SURFMU15NHlPRFFnTVRrMUxqUXhOeUF4TlRNdU5qRXpJREU1TlM0eU1qa2dNVFV6TGprek0wTXhPVFV1TVRJMUlERTFOQzR4TVRFZ01UazFMakF4T0NBeE5UUXVNamcySURFNU5DNDVNRGNnTVRVMExqUTFPVU14T1RRdU56a3pJREUxTkM0Mk16Z2dNVGswTGpZM015QXhOVFF1T0RFNUlERTVOQzQxTkRrZ01UVTFMakF3TWtNeE9UUXVNak16SURFMU5TNDBOVFFnTVRrekxqa3dOU0F4TlRVdU9EazNJREU1TXk0MU5qUWdNVFUyTGpNelRERTVNeTQwTURnZ01UVTJMalV5TjBNeE9USXVPRFV5SURFMU55NHlNaUF4T1RJdU1qYzRJREUxTnk0NE9Ua2dNVGt4TGpZNE5pQXhOVGd1TlRZeVRERTVNUzQwT1RrZ01UVTRMamMzTWtNeE9URXVNalEzSURFMU9TNHdOVE1nTVRrd0xqazVNU0F4TlRrdU16TTJJREU1TUM0M01qa2dNVFU1TGpZeVRERTVNQzQxTXpJZ01UVTVMamd6TkVNeE9UQXVOREF4SURFMU9TNDVOemNnTVRrd0xqSTJOQ0F4TmpBdU1USWdNVGt3TGpFek1pQXhOakF1TWpZMFF6RTVNQzR3TURFZ01UWXdMalF3TnlBeE9Ea3VPRFkwSURFMk1DNDFOVElnTVRnNUxqY3lOaUF4TmpBdU5qazNUREU0T1M0ek1UVWdNVFl4TGpFelRERTRPQzQ0T1RnZ01UWXhMalUyTmt3eE9EZ3VORGM0SURFMk1pNHdNREpETVRnNExqRTVOaUF4TmpJdU1qazBJREU0Tnk0NU1UTWdNVFl5TGpVNE5pQXhPRGN1TmpJNElERTJNaTQ0TnpoRE1UZ3pMalUzTXlBeE5qY3VNRE0zSURFM09TNHpNREVnTVRjeExqRTRNaUF4TnpjdU9EVTFJREUzTXk0M05qWkRNVGMzTGpjMU9DQXhOek11T1RNMElERTNOeTQyTnpFZ01UYzBMakV3T0NBeE56Y3VOVGt6SURFM05DNHlPRFZETVRjM0xqTTROeUF4TnpRdU56VTFJREUzTnk0ek1ERWdNVGMxTGpFMU55QXhOemN1TXpZZ01UYzFMalE0TWtNeE56Y3VNemM1SURFM05TNDFPRGtnTVRjM0xqUXhOaUF4TnpVdU5qa3hJREUzTnk0ME56RWdNVGMxTGpjNE5VTXhOemN1TlRVeUlERTNOUzQ1TWpZZ01UYzNMalkxTVNBeE56WXVNRFUySURFM055NDNOallnTVRjMkxqRTNNa014TnpjdU9ERTVJREUzTmk0eU1qUWdNVGMzTGpnM05TQXhOell1TWpjeUlERTNOeTQ1TXpRZ01UYzJMak14TmtNeE56Z3VNak15SURFM05pNDFNamdnTVRjNExqVTVNU0F4TnpZdU5qTTNJREUzT0M0NU5UY2dNVGMyTGpZeU4wZ3hOemt1TURjeFRERTNPUzR4T0RnZ01UYzJMall4T0V3eE56a3VNekExSURFM05pNDJNRFZNTVRjNUxqUXdNaUF4TnpZdU5Ua3hRekUzT1M0ME1UVWdNVGMyTGpVNE9TQXhOemt1TkRJNUlERTNOaTQxT0RjZ01UYzVMalEwTWlBeE56WXVOVGd6VERFM09TNDFNekVnTVRjMkxqVTJOa3d4TnprdU5UVTBJREUzTmk0MU5qRk1NVGM1TGpZMU15QXhOell1TlRSTU1UYzVMalk0T0NBeE56WXVOVE14UXpFM09TNDNNak1nTVRjMkxqVXlNaUF4TnprdU56VTNJREUzTmk0MU1UTWdNVGM1TGpjNU1pQXhOell1TlRBelF6RTNPUzQ0TWpjZ01UYzJMalE1TXlBeE56a3VPRGMxSURFM05pNDBPQ0F4TnprdU9URTNJREUzTmk0ME5qWkRNVGd3TGpBNU15QXhOell1TkRFeklERTRNQzR5TmpVZ01UYzJMak0xSURFNE1DNDBNelFnTVRjMkxqSTNPRU14T0RBdU5USXpJREUzTmk0eU5ESWdNVGd3TGpZeElERTNOaTR5TURNZ01UZ3dMalk1TmlBeE56WXVNVFl4UXpFNE1DNDNOREVnTVRjMkxqRTBNU0F4T0RBdU56ZzJJREUzTmk0eE1pQXhPREF1T0RJNElERTNOaTR3T1RoTU1UZ3dMamsyTWlBeE56WXVNRE15UXpFNE1TNHlPRElnTVRjMUxqZzJOaUF4T0RFdU5UazBJREUzTlM0Mk9EVWdNVGd4TGpnNU9DQXhOelV1TkRreFRERTRNaTR3TXpFZ01UYzFMalF3TVVNeE9ESXVNRGMySURFM05TNHpOek1nTVRneUxqRXlNU0F4TnpVdU16UTBJREU0TWk0eE5qUWdNVGMxTGpNeE1rd3hPREl1TWprM0lERTNOUzR5TWpOTU1UZ3lMak0yT0NBeE56VXVNVGMwVERFNE1pNDFOaUF4TnpVdU1ETTVRekU0TWk0M016a2dNVGMwTGpreE5pQXhPREl1T1RBMklERTNOQzQzT0RrZ01UZ3pMakEzTlNBeE56UXVOalpNTVRnekxqQTVJREUzTkM0Mk5EaE1NVGd6TGpNMU9TQXhOelF1TkRSRE1UZ3pMamN5TmlBeE56UXVNVFVnTVRnMExqQTNOQ0F4TnpNdU9EVTRJREU0TkM0ek9TQXhOek11TlRnelRERTROQzQySURFM015NHpPVGxNTVRnMExqWXhPU0F4TnpNdU16Z3hUREU0TkM0M01qa2dNVGN6TGpJNE5FTXhPRFF1T1RnM0lERTNNeTR3TlRJZ01UZzFMakl4TnlBeE56SXVPRE0ySURFNE5TNDBNRGdnTVRjeUxqWTFPRXd4T0RVdU5EZzNJREUzTWk0MU9ERkRNVGcxTGpVMU5pQXhOekl1TlRFMklERTROUzQyTVRrZ01UY3lMalExTlNBeE9EVXVOamMySURFM01pNDBNRE5NTVRnMUxqYzRPQ0F4TnpJdU1qa3lUREU0TlM0NE1qZ2dNVGN5TGpJMU0wd3hPRFV1T0RNNUlERTNNaTR5TkRKTU1UZzFMamsxTmlBeE56SXVNVEkxVERFNE5pNHdNeUF4TnpJdU1EUTRUREU0Tmk0d016a2dNVGN5TGpBME1Vd3hPRFl1TURjMElERTNNaTR3TURsTU1UZzJMakV4T0NBeE56RXVPVFk1VERFNE5pNHhNeklnTVRjeExqazFOa3d4T0RZdU1UWTVJREUzTVM0NU1qSk1NVGcyTGpNM015QXhOekV1TnpRelRERTROaTQwT0RjZ01UY3hMalkwTVVNeE9EWXVOVFE0SURFM01TNDFPRGdnTVRnMkxqWXdOeUF4TnpFdU5UTTBJREU0Tmk0Mk5qWWdNVGN4TGpRM09Vd3hPRFl1T0RBeUlERTNNUzR6TlRoRE1UZzJMamd5TnlBeE56RXVNek00SURFNE5pNDROVEVnTVRjeExqTXhOaUF4T0RZdU9EYzJJREUzTVM0eU9UUk1NVGczTGpBeE9TQXhOekV1TVRZNVRERTROeTR5TWprZ01UY3dMams0TkV3eE9EY3VNelF4SURFM01DNDRPRGRETVRnM0xqYzNOaUF4TnpBdU5UQTVJREU0T0M0ek1EVWdNVGN3TGpBMU1pQXhPRGd1T1RFeklERTJPUzQxTXpkTU1UZzVMakUyTWlBeE5qa3VNekkyVERFNE9TNDFOek1nTVRZNExqazRNVXd4T0RrdU9UazBJREUyT0M0Mk0wTXhPVEF1TlRRMElERTJPQzR4TnpNZ01Ua3hMakV6TmlBeE5qY3VOamc0SURFNU1TNDNOaklnTVRZM0xqRTROVXd4T1RJdU1UY3pJREUyTmk0NE5UVkRNVGt5TGpVeU15QXhOall1TlRjMklERTVNaTQ0T0RJZ01UWTJMakk1TWlBeE9UTXVNalEySURFMk5pNHdNRFpETVRrekxqTTVNeUF4TmpVdU9Ea3hJREU1TXk0MU5ESWdNVFkxTGpjM05pQXhPVE11TmprMElERTJOUzQyTmpKRE1UazBMakEyTmlBeE5qVXVNemN6SURFNU5DNDBOQ0F4TmpVdU1EZzJJREU1TkM0NE1UY2dNVFkwTGpnd00wTXhPVFV1TmpjMUlERTJOQzR4TlRVZ01UazJMalUySURFMk15NDFNRFlnTVRrM0xqUTFOaUF4TmpJdU9EYzBUREU1Tnk0NE5DQXhOakl1TmpBMlF6RTVPQzR4TURrZ01UWXlMalF5TVNBeE9UZ3VNemMzSURFMk1pNHlNelVnTVRrNExqWTBOU0F4TmpJdU1EVTBUREU1T0M0NE9EZ2dNVFl4TGpnNVF6RTVPUzR6TmpjZ01UWXhMalUyTlNBeE9Ua3VPRFV6SURFMk1TNHlORGdnTWpBd0xqTTBNeUF4TmpBdU9UTTVUREl3TUM0MU9EWWdNVFl3TGpjNE5rd3lNREF1T0RJM0lERTJNQzQyTXpaRE1qQXhMakEyT1NBeE5qQXVORGcySURJd01TNHpNRGtnTVRZd0xqTXpPU0F5TURFdU5UUTRJREUyTUM0eE9UWk1NakF4TGpjNE55QXhOakF1TURVelRESXdNaTR5TmpVZ01UVTVMamMzTlV3eU1ESXVOek0wSURFMU9TNDFNRFpNTWpBeUxqZ3lPU0F4TlRrdU5EVTBUREl3TXk0eUlERTFPUzR5TlVNeU1ETXVNelUxSURFMU9TNHhOallnTWpBekxqVXdPU0F4TlRrdU1EZzFJREl3TXk0Mk5qTWdNVFU1TGpBd05rd3lNRE11T0RreUlERTFPQzQ0T0RoTU1qQTBMakV4TlNBeE5UZ3VOemMyUXpJd05DNHhPVE1nTVRVNExqY3pPU0F5TURRdU1qY2dNVFU0TGpjZ01qQTBMak0wTmlBeE5UZ3VOall6UXpJd05DNDRORGdnTVRVNExqUXhOU0F5TURVdU16WWdNVFU0TGpFNE55QXlNRFV1T0RnZ01UVTNMamszT1VNeU1EWXVNREl4SURFMU55NDVNVGtnTWpBMkxqRTJNU0F4TlRjdU9EWTFJREl3Tmk0eklERTFOeTQ0TVRoTU1qQTJMamN4SURFMU55NDJOelJETWpBMkxqZ3pNeUF4TlRjdU5qTXpJREl3Tmk0NU5UTWdNVFUzTGpVNU5DQXlNRGN1TURZNElERTFOeTQxTlRsTU1qQTNMakV3T0NBeE5UY3VOVFEzUXpJd055NHhOeUF4TlRjdU5USTNJREl3Tnk0eU16SWdNVFUzTGpVd09TQXlNRGN1TWpreklERTFOeTQwT1ROTU1qQTNMak14TVNBeE5UY3VORGc0UXpJd055NDBNemtnTVRVM0xqUTFNU0F5TURjdU5UWTJJREUxTnk0ME1Ua2dNakEzTGpZNU1TQXhOVGN1TXpnNVNESXdOeTQzUXpJd09DNHdOVFFnTVRVM0xqTXdOQ0F5TURndU5ERTBJREUxTnk0eU5ETWdNakE0TGpjM055QXhOVGN1TWpBMlF6SXdPQzQ1TkRRZ01UVTNMakU0T1NBeU1Ea3VNVEV4SURFMU55NHhPQ0F5TURrdU1qYzVJREUxTnk0eE9ERklNakE1TGpNMk0wTXlNRGt1TkRjMUlERTFOeTR4T0RFZ01qQTVMalU0TXlBeE5UY3VNVGc0SURJd09TNDJPU0F4TlRjdU1UazVRekl3T1M0M016a2dNVFUzTGpFNU9TQXlNRGt1TnpnNElERTFOeTR5TURrZ01qQTVMamd6TmlBeE5UY3VNakUxU0RJd09TNDROVFpETWpBNUxqa3dOQ0F4TlRjdU1qSXhJREl3T1M0NU5USWdNVFUzTGpJeU9DQXlNVEFnTVRVM0xqSXpPVU15TVRBdU1EUTNJREUxTnk0eU5EZ2dNakV3TGpBNU5TQXhOVGN1TWpVMklESXhNQzR4TkRFZ01UVTNMakkyTjBneU1UQXVNVFUyUXpJeE1DNHlNRE1nTVRVM0xqSTNOeUF5TVRBdU1qUTFJREUxTnk0eU9Ea2dNakV3TGpJNU5DQXhOVGN1TXpBelF6SXhNQzQxTkRnZ01UVTNMak0zTkNBeU1UQXVOemtnTVRVM0xqUTROQ0F5TVRFdU1ERXlJREUxTnk0Mk1qaERNakV4TGpFeU1TQXhOVGN1TmprNUlESXhNUzR5TWpNZ01UVTNMamMzT1NBeU1URXVNekUzSURFMU55NDROamhNTWpFeExqTTBOQ0F4TlRjdU9EazBRekl4TVM0ek5qSWdNVFUzTGpreElESXhNUzR6TnprZ01UVTNMamt5TnlBeU1URXVNemsxSURFMU55NDVORFJNTWpFeExqUTBOQ0F4TlRjdU9UazNRekl4TVM0NE5EWWdNVFU0TGpReE9DQXlNVEl1TVRjNElERTFPQzQ1TURFZ01qRXlMalF5T0NBeE5Ua3VOREkzVERJeE1pNDBOallnTVRVNUxqVXhOME15TVRJdU5UVXhJREUxT1M0M01UY2dNakV5TGpZeE9DQXhOVGt1T1RJMElESXhNaTQyTmpZZ01UWXdMakV6TlVNeU1USXVPREE0SURFMk1DNDNPREVnTWpFeUxqYzFNeUF4TmpFdU5EVTFJREl4TWk0MU1EZ2dNVFl5TGpBM1F6SXhNaTQwTVRVZ01UWXlMak14T0NBeU1USXVNekF5SURFMk1pNDFOVGNnTWpFeUxqRTJPU0F4TmpJdU56ZzFRekl4TVM0NE5UZ2dNVFl6TGpNd09TQXlNVEV1TkRnNUlERTJNeTQzT1RZZ01qRXhMakEzSURFMk5DNHlNemRNTWpFd0xqazRNU0F4TmpRdU16TXlRekl4TUM0NE5EZ2dNVFkwTGpRM01pQXlNVEF1TnpFZ01UWTBMall4TWlBeU1UQXVOVFkxSURFMk5DNDNOVEpETWpFd0xqVXdNU0F4TmpRdU9ERTFJREl4TUM0ME16UWdNVFkwTGpnM055QXlNVEF1TXpZM0lERTJOQzQ1TkV3eU1UQXVNVFl5SURFMk5TNHhNamxNTWpFd0xqQTFOU0F4TmpVdU1qSTBRekl3T1M0M09UY2dNVFkxTGpRMU5DQXlNRGt1TlRNeUlERTJOUzQyTnpjZ01qQTVMakkyTXlBeE5qVXVPRGt6UXpJd09TNHhJREUyTmk0d01qVWdNakE0TGprek5pQXhOall1TVRVMElESXdPQzQzTnlBeE5qWXVNamd4UXpJd09DNHhPRFFnTVRZMkxqY3lPU0F5TURjdU5UZzNJREUyTnk0eE5qRWdNakEyTGprM09TQXhOamN1TlRjNFF6SXdOaTQyTVRJZ01UWTNMamd6SURJd05pNHlORElnTVRZNExqQTNOeUF5TURVdU9EWTVJREUyT0M0ek1qRkRNakEwTGprMUlERTJPQzQ1TWpRZ01qQTBMakF5TVNBeE5qa3VOVEV5SURJd015NHdPRE1nTVRjd0xqQTRORU15TURFdU1URTFJREUzTVM0eU9UUWdNVGs0TGprek5DQXhOekl1TlRnNElERTVOaTQyTURrZ01UY3pMams1TlV3eE9UWXVNREEzSURFM05DNHpOa014T1RVdU16UTRJREUzTkM0M05qSWdNVGswTGpjeU5pQXhOelV1TVRRMklERTVOQzR4TkNBeE56VXVOVEV5VERFNU15NDRORFVnTVRjMUxqWTVOMHd4T1RNdU1qZzNJREUzTmk0d05UVkRNVGt5TGpreE55QXhOell1TWpreUlERTVNaTQxTkRnZ01UYzJMalV6TVNBeE9USXVNVGM1SURFM05pNDNOMHd4T1RFdU9EZ3lJREUzTmk0NU5qWkRNVGt4TGpjek55QXhOemN1TURZZ01Ua3hMalU1TXlBeE56Y3VNVFUySURFNU1TNDBORGtnTVRjM0xqSTFNa3d4T1RFdU16QTRJREUzTnk0ek5ESk1NVGt3TGpnM05pQXhOemN1TmpNelRERTVNQzQyTkRjZ01UYzNMamM1VERFNU1DNHpOemtnTVRjM0xqazNOa3d4T1RBdU1UTWdNVGM0TGpFME9VTXhPRGt1TnpFeklERTNPQzQwTkRRZ01UZzVMak15TlNBeE56Z3VOekkxSURFNE9DNDVOamdnTVRjNExqazVNa3d4T0RndU9ETTBJREUzT1M0d09UUkRNVGc0TGpZeU5DQXhOemt1TWpVeklERTRPQzQwTVRZZ01UYzVMalF4TlNBeE9EZ3VNakV4SURFM09TNDFPRU14T0RjdU9UQXlJREUzT1M0NE1qa2dNVGczTGpZeUlERTRNQzR3TmpjZ01UZzNMak0yTnlBeE9EQXVNamsyVERFNE55NHlORE1nTVRnd0xqUXdPVU14T0RjdU1UY3lJREU0TUM0ME56UWdNVGczTGpFd01pQXhPREF1TlRNNUlERTROeTR3TXpVZ01UZ3dMall3TTBNeE9EWXVPVGc1SURFNE1DNDJORGdnTVRnMkxqazBOaUF4T0RBdU5qa3pJREU0Tmk0NE9UZ2dNVGd3TGpjek5rd3hPRFl1T0RNMElERTRNQzQ0UXpFNE5pNDJPVEVnTVRnd0xqazBOQ0F4T0RZdU5UVXhJREU0TVM0d09URWdNVGcyTGpReE5pQXhPREV1TWpReVRERTROaTR6TlNBeE9ERXVNekU0UXpFNE5pNHlNRE1nTVRneExqUTRPQ0F4T0RZdU1EYzFJREU0TVM0Mk5URWdNVGcxTGprMk15QXhPREV1T0RGTU1UZzFMamt4TXlBeE9ERXVPRGd4UXpFNE5TNDRNalVnTVRneUxqQXdPU0F4T0RVdU56UTBJREU0TWk0eE5ERWdNVGcxTGpZM01TQXhPREl1TWpjM1F6RTROUzQyTlRJZ01UZ3lMak14TVNBeE9EVXVOak0xSURFNE1pNHpORFVnTVRnMUxqWXhPQ0F4T0RJdU16YzVUREU0TlM0MU5qa2dNVGd5TGpRNE1Vd3hPRFV1TlRNMklERTRNaTQxTlRWTU1UZzFMalV4TlNBeE9ESXVOakExVERFNE5TNDBPVGdnTVRneUxqWTFUREU0TlM0ME56VWdNVGd5TGpjeE1VTXhPRFV1TkRFeklERTRNaTQ0T0NBeE9EVXVNemNnTVRnekxqQTFOaUF4T0RVdU16UTFJREU0TXk0eU16Uk1NVGcxTGpNek55QXhPRE11TWprMlRERTROUzR6TXpFZ01UZ3pMak0xTkZZeE9ETXVOalk1UXpFNE5TNHpNekVnTVRnekxqWTVOU0F4T0RVdU16TXhJREU0TXk0M01qRWdNVGcxTGpNek9DQXhPRE11TnpRNVRERTROUzR6TkRNZ01UZ3pMamM1TjBNeE9EVXVNelF6SURFNE15NDRNak1nTVRnMUxqTTBPU0F4T0RNdU9EUTRJREU0TlM0ek5UTWdNVGd6TGpnM05rTXhPRFV1TXpVM0lERTRNeTQ1TURJZ01UZzFMak0yTkNBeE9ETXVPVFE1SURFNE5TNHpOeklnTVRnekxqazRObFl4T0RNdU9Ua3hRekU0TlM0ek56a2dNVGcwTGpBeU5pQXhPRFV1TXpnMklERTROQzR3TmlBeE9EVXVNemsxSURFNE5DNHdPVFZETVRnMUxqUXdOQ0F4T0RRdU1UTWdNVGcxTGpReE15QXhPRFF1TVRjZ01UZzFMalF5TkNBeE9EUXVNakEyUXpFNE5TNDBORE1nTVRnMExqSTNOeUF4T0RVdU5EWTNJREU0TkM0ek5EY2dNVGcxTGpRNU1pQXhPRFF1TkRFM1F6RTROUzQxTURnZ01UZzBMalExT1NBeE9EVXVOVEl6SURFNE5DNDFJREU0TlM0MU5DQXhPRFF1TlRReFF6RTROUzQxTkNBeE9EUXVOVFE1SURFNE5TNDFORFlnTVRnMExqVTFPQ0F4T0RVdU5UVWdNVGcwTGpVMk5rd3hPRFV1TlRnMklERTROQzQyTkRkTU1UZzFMall6TmlBeE9EUXVOelU0UXpFNE5TNDJPU0F4T0RRdU9EY3pJREU0TlM0M05Ea2dNVGcwTGprNE5TQXhPRFV1T0RFeklERTROUzR3T1RSTU1UZzFMamczT1NBeE9EVXVNakE0VERFNE5TNDVORGNnTVRnMUxqTXlNa014T0RVdU9UVTVJREU0TlM0ek5ERWdNVGcxTGprM015QXhPRFV1TXpVNUlERTROUzQ1T0RnZ01UZzFMak0zTmt3eE9EWXVNREVnTVRnMUxqTTVPVXd4T0RZdU1ETTFJREU0TlM0ME1qSk1NVGcyTGpBMk1TQXhPRFV1TkRReVF6RTROaTR3T1RrZ01UZzFMalEyT1NBeE9EWXVNVFFnTVRnMUxqUTVJREU0Tmk0eE9ETWdNVGcxTGpVd05VTXhPRFl1TWpBMklERTROUzQxTVRNZ01UZzJMakl6SURFNE5TNDFNVGtnTVRnMkxqSTFOQ0F4T0RVdU5USTFRekU0Tmk0NE16RWdNVGcxTGpZMU5TQXhPRGd1TURFM0lERTROUzR4TnpnZ01UZzVMalU1TXlBeE9EUXVNelEyUXpFNE9TNDJPRElnTVRnMExqSTVPQ0F4T0RrdU56Z2dNVGcwTGpJME9DQXhPRGt1T0RjMUlERTROQzR4T1RaTU1Ua3dMak0xTlNBeE9ETXVPVE0wVERFNU1DNDFPRGtnTVRnekxqZ3dORU14T1RBdU56VTJJREU0TXk0M01UVWdNVGt3TGpreU5pQXhPRE11TmpFMElERTVNUzR4SURFNE15NDFNVFZNTVRreExqUXhOeUF4T0RNdU16TTJRekU1TXk0MUlERTRNaTR4TXpjZ01UazFMams0T0NBeE9EQXVOVGszSURFNU9DNDFOaUF4TnprdU1Ea3pRekU1T0M0NE1ERWdNVGM0TGprMU1pQXhPVGt1TURReklERTNPQzQ0TVRFZ01UazVMakk0TlNBeE56Z3VOamN5VERFNU9TNDNOekVnTVRjNExqTTJNVU15TURBdU16TTFJREUzT0M0d016Z2dNakF3TGprd01pQXhOemN1TnpFNUlESXdNUzQwTnpFZ01UYzNMalF3TkVNeU1ESXVNVGc0SURFM055NHdNU0F5TURJdU9URWdNVGMyTGpZeU5pQXlNRE11TmpNNUlERTNOaTR5TlRSTU1qQTBMakV4TlNBeE56WXVNREV6UXpJd05DNDBNekVnTVRjMUxqZzFOeUF5TURRdU56UTBJREUzTlM0M01EVWdNakExTGpBMU15QXhOelV1TlRVM1F6SXdOUzQyTlRFZ01UYzFMakkzTXlBeU1EWXVNalUySURFM05TNHdNRE1nTWpBMkxqZzJPQ0F4TnpRdU56UTRUREl3Tnk0eU1ETWdNVGMwTGpZeE1rd3lNRGN1TWpReklERTNOQzQxT1RaRE1qQTVMakF4T0NBeE56TXVPRGt6SURJeE1DNDJNamNnTVRjekxqUTFPU0F5TVRFdU9USTVJREUzTXk0ME5UbERNakV5TGpJeElERTNNeTQwTlRZZ01qRXlMalE1TWlBeE56TXVORGdnTWpFeUxqYzJPU0F4TnpNdU5USTRTREl4TWk0M056aERNakV5TGpnMk55QXhOek11TlRRMElESXhNaTQ1TkRnZ01UY3pMalUyTWlBeU1UTXVNRE14SURFM015NDFPREpJTWpFekxqQTBOa015TVRNdU1qVTVJREUzTXk0Mk16WWdNakV6TGpRMk5pQXhOek11TnpFeklESXhNeTQyTmpJZ01UY3pMamd4TWtNeU1UTXVPVE0zSURFM015NDVOVFFnTWpFMExqRTROQ0F4TnpRdU1UUXpJREl4TkM0ek9UTWdNVGMwTGpNM01VTXlNVFF1TkRnNUlERTNOQzQwTnpjZ01qRTBMalUzTkNBeE56UXVOVGt5SURJeE5DNDJORGtnTVRjMExqY3hORU15TVRRdU56ZzVJREUzTkM0NU1qa2dNakUwTGpnNU9TQXhOelV1TVRZeUlESXhOQzQ1TnpnZ01UYzFMalF3TmtNeU1UVXVNREVnTVRjMUxqVXdNU0F5TVRVdU1ETTRJREUzTlM0MU9UUWdNakUxTGpBMk55QXhOelV1TmprelF6SXhOUzR5TnpnZ01UYzJMalExSURJeE5TNHlOVGNnTVRjM0xqSTFNeUF5TVRVdU1EQTNJREUzTnk0NU9UaGFJaTglMkJKaU40WVRzZ0lEeHdZWFJvSUdacGJHdzlJaU5HUmtReU1VVWlJR1E5SWsweU1ETXVNakVnTVRJekxqWTROVll4TWpNdU1UazBRekl3TXk0eU1TQTRNUzR6TkNBeE5qa3VNamt5SURRM0xqUXhNU0F4TWpjdU5ETTFJRFEzTGpReE1VTTROUzQxTnpreElEUTNMalF4TVNBMU1TNDJORGdnT0RFdU16UXlJRFV4TGpZME9DQXhNak11TVRrMFZqRXlNeTR6TlRoRE5URXVOalEySURFeU15NDBOamNnTlRFdU5qUTFJREV5TXk0MU56WWdOVEV1TmpRNElERXlNeTQyT0RWRE5URXVOalV5T1NBeE1qTXVPRFE0SURVeExqWTFORFlnTVRJMExqQXhNU0ExTVM0Mk5UTWdNVEkwTGpFM05FdzFNUzQyTlRneElERXlOQzQxTXpSTU5URXVOall4SURFeU5DNDJOak5ETlRFdU5qWXhJREV5TkM0M01qTWdOVEV1TmpZek1TQXhNalF1TnpneUlEVXhMalkyTlRFZ01USTBMamcwTWtNMU1TNDJOamd4SURFeU5DNDVNemNnTlRFdU5qY2dNVEkxTGpBek15QTFNUzQyTnlBeE1qVXVNVEk0VERVeExqWTRNU0F4TWpVdU5URTNURFV4TGpZNU55QXhNalV1T1RjMFREVXhMamN3TWlBeE1qWXVNVEkwVERVeExqY3lNaUF4TWpZdU5UazNWakV5Tmk0Mk1rTTFNUzQzTXlBeE1qWXVPREExSURVeExqYzBNREVnTVRJMkxqazRPU0ExTVM0M05Ea3hJREV5Tnk0eE56Tk1OVEV1TnpVZ01USTNMakU0TjBNMU1TNDNOaUF4TWpjdU16YzFJRFV4TGpjM01ERWdNVEkzTGpVMk5DQTFNUzQzT0RJeElERXlOeTQzTlRORE5URXVOemt5TVNBeE1qY3VPVEkzSURVeExqZ3dNaUF4TWpndU1UQXhJRFV4TGpneE5TQXhNamd1TWpjMVREVXhMamd4TnpFZ01USTRMak13TmtNMU1TNDRNalU0SURFeU9DNDBOVFVnTlRFdU9ETTFPQ0F4TWpndU5qQTFJRFV4TGpnME55QXhNamd1TnpVMFREVXhMamcxSURFeU9DNDNPVFJNTlRFdU9EZ3pJREV5T1M0eU1qWk1OVEV1T0RnMk1TQXhNamt1TWpVMFF6VXhMamc1TWpFZ01USTVMak16T0NBMU1TNDRPVGdnTVRJNUxqUXlNaUExTVM0NU1EWWdNVEk1TGpVd00wTTFNUzQ1TmpVNElERXpNQzR5TWpRZ05USXVNRE0xTlNBeE16QXVPVFExSURVeUxqRXhOVEVnTVRNeExqWTJORXcxTWk0eE1pQXhNekV1TnpBNVREVXlMakU0TVNBeE16SXVNak00VERVeUxqSTBPVEVnTVRNeUxqYzVNMHcxTWk0eU9Ua2dNVE16TGpFM1REVXlMak15TWlBeE16TXVNelEzUXpVeUxqTTNOVE1nTVRNekxqYzFOU0ExTWk0ME16TWdNVE0wTGpFMk1pQTFNaTQwT1RVZ01UTTBMalUyT0V3MU1pNDBPVGt4SURFek5DNDFPVFZNTlRJdU5UVTRJREV6TkM0NU56bEROVEl1T0RRek5TQXhNell1T0RBNElEVXpMakU1TnpFZ01UTTRMall5TmlBMU15NDJNVGdnTVRRd0xqUXlPVXcxTXk0Mk1qTXhJREUwTUM0ME5URk1OVE11TmpVMUlERTBNQzQxT0RaTU5UTXVOelEySURFME1DNDVOekZNTlRNdU9EQXlJREUwTUM0NU1EUkROVFl1TURBeUlERXpPQzR5TnpRZ05Ua3VNVFU0SURFek5pNDRNalFnTmpJdU5qZzVJREV6Tmk0NE1qUkROalV1TlRFNUlERXpOaTQ0TWpRZ05qZ3VOREl5TVNBeE16Y3VOellnTnpFdU16TXlNU0F4TXprdU5qQTFRemN6TGpJMk1qRWdNVFF3TGpnek1TQTNOUzR6T1RZeElERTBNeTR3TURJZ056Y3VOVGt5TVNBeE5EVXVOek16UXpjNUxqWXlOREVnTVRReUxqa3hNU0E0TWk0ME56SXhJREUwTVM0d016VWdPRFV1TnpNd01TQXhOREF1TlRJelF6ZzJMak0xTVRNZ01UUXdMalF5TlNBNE5pNDVOemt5SURFME1DNHpOellnT0RjdU5qQTRNU0F4TkRBdU16YzFRemsxTGpBME5ERWdNVFF3TGpNM05TQTVPUzQxTWpNZ01UUTJMamd5T0NBeE1ERXVNakUxSURFMU1pNDJNek5ETVRBeUxqQTFNU0F4TlRRdU5UazBJREV3Tmk0d09DQXhOak11TlRJMklERXhNaTR4TlRZZ01UWTVMalUyT0VNeE1qRXVNemt5SURFM09DNDNPVFVnTVRJekxqY3dNeUF4T0RndU16RTJJREV4T1M0eE16SWdNVGs0TGpVeE1VZ3hNVGt1TVRRNFF6RXhPUzQwTlRrZ01UazRMalUwTmlBeE1Ua3VOemN5SURFNU9DNDFOemdnTVRJd0xqQTROeUF4T1RndU5qQTNRekV5TUM0eU56UWdNVGs0TGpZeU5TQXhNakF1TkRZZ01UazRMalkwTXlBeE1qQXVOalE0SURFNU9DNDJOVGxNTVRJd0xqY3hOQ0F4T1RndU5qWTFUREV5TVM0eE1qY2dNVGs0TGpkTU1USXhMalV3TnlBeE9UZ3VOek5ETVRJeExqZzJPU0F4T1RndU56VTRJREV5TWk0eU16SWdNVGs0TGpjNE5DQXhNakl1TlRrMklERTVPQzQ0TURkTU1USXlMamc0TlNBeE9UZ3VPREkwVERFeU15NHhNVFFnTVRrNExqZ3pPRXd4TWpNdU1qVTJJREU1T0M0NE5EWk1NVEl6TGpjd015QXhPVGd1T0RZNVRERXlNeTQ0TWpVZ01UazRMamczTkV3eE1qUXVNamswSURFNU9DNDRPVFZNTVRJMExqZ3hOaUF4T1RndU9URTFUREV5TlM0eU16VWdNVGs0TGpreU4wd3hNalV1TXpBMUlERTVPQzQ1TWpsRE1USTFMak01TkNBeE9UZ3VPVE16SURFeU5TNDBPRE1nTVRrNExqa3pOaUF4TWpVdU5UY3lJREU1T0M0NU16Wk1NVEkxTGpZMk9DQXhPVGd1T1RNNVF6RXlOaTR5TlRnZ01UazRMamsxTXlBeE1qWXVPRFEzSURFNU9DNDVOaUF4TWpjdU5ETTNJREU1T0M0NU5UbElNVEk0TGpBMk0wd3hNamd1TlRFZ01UazRMamsxTkVNeE1qZ3VOaklnTVRrNExqazBPU0F4TWpndU56STVJREU1T0M0NU5Ea2dNVEk0TGpnMElERTVPQzQ1TkRsSU1USTVMakF4TkV3eE1qa3VNVFkxSURFNU9DNDVORFZETVRJNUxqSXlOQ0F4T1RndU9UUXpJREV5T1M0eU9ETWdNVGs0TGprME1TQXhNamt1TXpReklERTVPQzQ1TkRGSU1USTVMalV5TWt3eE1qa3VPRGN6SURFNU9DNDVNekpNTVRNd0xqUXdNU0F4T1RndU9URTBUREV6TUM0NU9ESWdNVGs0TGpnNE9FTXhNekV1TVRVZ01UazRMamc0TWlBeE16RXVNekUySURFNU9DNDROek1nTVRNeExqUTRNaUF4T1RndU9EWTFUREV6TVM0Mk5qRWdNVGs0TGpnMU5Fd3hNekV1T1RJM0lERTVPQzQ0TkV3eE16SXVNRGd6SURFNU9DNDRNekZNTVRNeUxqSXdNU0F4T1RndU9ESXpUREV6TWk0M016Z2dNVGs0TGpjNE9Fd3hNek11TWpjMElERTVPQzQzTkRsTU1UTXpMamMyTVNBeE9UZ3VOekZNTVRNMExqRXdNeUF4T1RndU5qZ3hUREV6TkM0ME56a2dNVGs0TGpZME4wTXhNelV1TVRBM0lERTVPQzQxT1RFZ01UTTFMamN6TXlBeE9UZ3VOVEkxSURFek5pNHpOVGtnTVRrNExqUTFUREV6Tmk0M09EWWdNVGs0TGpNNU9VTXhNekl1TWpnM0lERTRPQzR5TkRjZ01UTTBMall4TmlBeE56Z3VOelkzSURFME15NDRNVE1nTVRZNUxqVTNOME14TkRrdU9EYzJJREUyTXk0MU1Ua2dNVFV6TGprd05TQXhOVFF1TlRnM0lERTFOQzQzTkRVZ01UVXlMall5TlVNeE5UWXVORE00SURFME5pNDRNakVnTVRZd0xqa3hOQ0F4TkRBdU16WTRJREUyT0M0ek5USWdNVFF3TGpNMk9FTXhOamd1T1RneElERTBNQzR6TmpnZ01UWTVMall4SURFME1DNDBNVGdnTVRjd0xqSXpNU0F4TkRBdU5URTJRekUzTXk0ME9EWWdNVFF4TGpBeU9DQXhOell1TXpNMElERTBNaTQ1TURRZ01UYzRMak0yT1NBeE5EVXVOekkyUXpFNE1DNDFOallnTVRReUxqazVOaUF4T0RJdU5qazVJREUwTUM0NE1qTWdNVGcwTGpZeklERXpPUzQxT1RkRE1UZzNMalV6T1NBeE16Y3VOelV6SURFNU1DNDBORFVnTVRNMkxqZ3hOeUF4T1RNdU1qY3lJREV6Tmk0NE1UZERNVGsyTGpNNE9DQXhNell1T0RFM0lERTVPUzR5TVRJZ01UTTNMamswTnlBeU1ERXVNelExSURFME1DNHdNa015TURFdU16ZzBJREV6T1M0NE5URWdNakF4TGpReU1pQXhNemt1TmpneUlESXdNUzQwTlRrZ01UTTVMalV4TWt3eU1ERXVOVFk0SURFek9TNHdNRFpETWpBeExqWXdOeUF4TXpndU9ESXhJREl3TVM0Mk5EWWdNVE00TGpZek5pQXlNREV1TmpneklERXpPQzQwTlRGRE1qQXhMamMwT1NBeE16Z3VNVEkwSURJd01TNDRNVFVnTVRNM0xqYzVOeUF5TURFdU9EYzRJREV6Tnk0ME5qZERNakF4TGprME5DQXhNemN1TVRJMUlESXdNaTR3TURjZ01UTTJMamM0TVNBeU1ESXVNRFkzSURFek5pNDBNemRNTWpBeUxqQTVPQ0F4TXpZdU1qVXhRekl3TWk0eE1UY2dNVE0yTGpFME1TQXlNREl1TVRNMUlERXpOaTR3TXpFZ01qQXlMakUxTmlBeE16VXVPVEpETWpBeUxqRTVJREV6TlM0M05EZ2dNakF5TGpJeE9DQXhNelV1TlRjMklESXdNaTR5TkRZZ01UTTFMalF3TWt3eU1ESXVNalUzSURFek5TNHpNelpNTWpBeUxqTXlPQ0F4TXpRdU9EZ3pUREl3TWk0ek9UZ2dNVE0wTGpReU5GWXhNelF1TkRKRE1qQXlMalEwT1NBeE16UXVNRGd4SURJd01pNDBPVGNnTVRNekxqYzBNaUF5TURJdU5UUXlJREV6TXk0ME1ETk1NakF5TGpVMU15QXhNek11TXpFNVRESXdNaTQyTVRZZ01UTXlMamcwTVV3eU1ESXVOalkzSURFek1pNDBNek5NTWpBeUxqYzFOeUF4TXpFdU5qSTVUREl3TWk0M09USWdNVE14TGpNd05rd3lNREl1T0RBeElERXpNUzR5TVRoRE1qQXlMamd5SURFek1TNHdORFFnTWpBeUxqZ3pPQ0F4TXpBdU9EY2dNakF5TGpnMU5DQXhNekF1TmprMlZqRXpNQzQyT0RKRE1qQXlMamcyTnlBeE16QXVOVFEwSURJd01pNDRPREVnTVRNd0xqUXdOU0F5TURJdU9Ea3pJREV6TUM0eU5qWkRNakF5TGprMk5DQXhNamt1TkRjNElESXdNeTR3TWpRZ01USTRMalk0TmlBeU1ETXVNRGN5SURFeU55NDRPVEZETWpBekxqQTRNU0F4TWpjdU56WXhJREl3TXk0d09EZ2dNVEkzTGpZeklESXdNeTR3T1RZZ01USTNMalE1T1ZZeE1qY3VORGt6VERJd015NHhNaklnTVRJM0xqQXdNa3d5TURNdU1USTRJREV5Tmk0NE9USkRNakF6TGpFME5DQXhNall1TlRZZ01qQXpMakUxT0NBeE1qWXVNakk0SURJd015NHhOamtnTVRJMUxqZzVObFl4TWpVdU9EZzBUREl3TXk0eE56UWdNVEkxTGpjMU5FTXlNRE11TVRjNUlERXlOUzQyTkRVZ01qQXpMakU0TXlBeE1qVXVOVE0xSURJd015NHhPRE1nTVRJMUxqUXlOVXd5TURNdU1UZzFJREV5TlM0ek9ERkRNakF6TGpFNE9TQXhNalV1TWpjNElESXdNeTR4T1RNZ01USTFMakUzTWlBeU1ETXVNVGt6SURFeU5TNHdOamRNTWpBekxqRTVOaUF4TWpRdU9UYzNRekl3TXk0eE9Ua2dNVEkwTGpnM01pQXlNRE11TWpBeUlERXlOQzQzTmpnZ01qQXpMakl3TWlBeE1qUXVOall6VERJd015NHlNRFFnTVRJMExqVTNORU15TURNdU1qQTNJREV5TkM0ME5ERWdNakF6TGpJeElERXlOQzR6TURjZ01qQXpMakl4SURFeU5DNHhOelJXTVRJekxqWTROVnBOTVRBNExqWXpPQ0F4T1RrdU16a3hRekV4TkM0Mk5DQXhPVEF1TlRrZ01URTBMakl4TkNBeE9ETXVPVGcwSURFd05TNDVPQ0F4TnpVdU56VTBRemszTGpjME5ERWdNVFkzTGpVeU15QTVNaTQ1TlRFZ01UVTFMalE0TnlBNU1pNDVOVEVnTVRVMUxqUTROME01TWk0NU5URWdNVFUxTGpRNE55QTVNUzR4TmpJeElERTBPQzQwT1RZZ09EY3VNRGd5TVNBeE5Ea3VNVE00UXpnekxqQXdNakVnTVRRNUxqYzRJRGd3TGpBd09URWdNVFl3TGpJeU55QTRPQzQxTlRJeElERTJOaTQyTWpKRE9UY3VNRGswTVNBeE56TXVNREUzSURnMkxqZzFNakVnTVRjM0xqTTFNeUE0TXk0MU5qUXhJREUzTVM0ek5USkRPREF1TWpjMk1TQXhOalV1TXpVZ056RXVNams1SURFME9TNDVNak1nTmpZdU5qUTFJREUwTmk0NU56SkROakV1T1RreElERTBOQzR3TWpFZ05UZ3VOekU0SURFME5TNDJOelVnTlRrdU9ERTFJREUxTVM0M05UZEROakF1TXpZZ01UVTBMamMzTmlBMk5TNDBNamd4SURFMU9TNDVNamtnTnpBdU1UWXpNU0F4TmpRdU56UXpRemMwTGprMk56RWdNVFk1TGpZeU55QTNPUzQwTWpnZ01UYzBMakUyTXlBM09DNDBOelFnTVRjMUxqYzJPRU0zTmk0MU9ERWdNVGM0TGprMU5TQTJPUzQ1TVRReElERTNNaTR3TWpNZ05qa3VPVEUwTVNBeE56SXVNREl6UXpZNUxqa3hOREVnTVRjeUxqQXlNeUEwT1M0d016Z2dNVFV6TGpBeU5TQTBOQzQwT1RRZ01UVTNMamszTmtNME1DNHpNRFFnTVRZeUxqVXpPU0EwTmk0M05qVWdNVFkyTGpReE9DQTFOaTQzTWpFeElERTNNaTR6T1RkRE5UY3VOVFkzTVNBeE56SXVPVEExSURVNExqUXpPVEVnTVRjekxqUXlPU0ExT1M0ek16SXhJREUzTXk0NU5qbEROekF1TnpJek1TQXhPREF1T0RZMUlEY3hMall3T1NBeE9ESXVOamcwSURZNUxqazVNaUF4T0RVdU1qa3pRelk1TGpNNU5TQXhPRFl1TWpVM0lEWTFMalU0TWlBeE9ETXVPVFk0SURZd0xqZzVNaUF4T0RFdU1UVXpRelV5TGpnNU55QXhOell1TXpVeUlEUXlMak0xTlRFZ01UY3dMakF5TXlBME1DNDROall4SURFM05TNDJPRGhETXprdU5UYzRNU0F4T0RBdU5Ua3hJRFEzTGpNek5DQXhPRE11TlRrMUlEVTBMak0yT0NBeE9EWXVNekpETmpBdU1qSTRJREU0T0M0MU9TQTJOUzQxT0RneElERTVNQzQyTmpZZ05qUXVOems1TVNBeE9UTXVORGcwUXpZekxqazRNakVnTVRrMkxqUXdOaUExT1M0MU5UTXhJREU1TXk0NU5qa2dOVFF1TnpFeU1TQXhPVEV1TXpBMVF6UTVMakkzTnpFZ01UZzRMak14TkNBME15NHpNakl4SURFNE5TNHdNemdnTkRFdU16Y3pNU0F4T0RndU56TTFRek0zTGpZNU1ERWdNVGsxTGpjeU5TQTJOaTQzT0RNeElESXdNeTQ1TlRRZ05qY3VNREl6TVNBeU1EUXVNREUxUXpjMkxqUXlNekVnTWpBMkxqUTFNeUF4TURBdU1qazFJREl4TVM0Mk1Ua2dNVEE0TGpZek9DQXhPVGt1TXpreFdrMHhORGN1TXpBeklERTVPUzR6T1RGRE1UUXhMak13TVNBeE9UQXVOVGtnTVRReExqY3lOeUF4T0RNdU9UZzBJREUwT1M0NU5qSWdNVGMxTGpjMU5FTXhOVGd1TVRrM0lERTJOeTQxTWpNZ01UWXlMams1SURFMU5TNDBPRGNnTVRZeUxqazVJREUxTlM0ME9EZERNVFl5TGprNUlERTFOUzQwT0RjZ01UWTBMamMzT1NBeE5EZ3VORGsySURFMk9DNDROVGtnTVRRNUxqRXpPRU14TnpJdU9UTTVJREUwT1M0M09DQXhOelV1T1RNeUlERTJNQzR5TWpjZ01UWTNMak01SURFMk5pNDJNakpETVRVNExqZzBOeUF4TnpNdU1ERTNJREUyT1M0d09Ea2dNVGMzTGpNMU15QXhOekl1TXpjM0lERTNNUzR6TlRKRE1UYzFMalkyTmlBeE5qVXVNelVnTVRnMExqWXpOeUF4TkRrdU9USXpJREU0T1M0eU9URWdNVFEyTGprM01rTXhPVE11T1RRMUlERTBOQzR3TWpFZ01UazNMakl5SURFME5TNDJOelVnTVRrMkxqRXlNaUF4TlRFdU56VTNRekU1TlM0MU56Z2dNVFUwTGpjM05pQXhPVEF1TlRBNUlERTFPUzQ1TWprZ01UZzFMamMzTkNBeE5qUXVOelEwUXpFNE1DNDVOeUF4TmprdU5qSTRJREUzTmk0MU1Ea2dNVGMwTGpFMk15QXhOemN1TkRZeUlERTNOUzQzTmpoRE1UYzVMak0xTlNBeE56Z3VPVFUxSURFNE5pNHdNamNnTVRjeUxqQXhPU0F4T0RZdU1ESTNJREUzTWk0d01UbERNVGcyTGpBeU55QXhOekl1TURFNUlESXdOaTQ1TURJZ01UVXpMakF5TWlBeU1URXVORFE0SURFMU55NDVOek5ETWpFMUxqWXpOeUF4TmpJdU5UTTFJREl3T1M0eE56WWdNVFkyTGpReE5TQXhPVGt1TWpFNUlERTNNaTR6T1RSRE1UazRMak0wT0NBeE56SXVPVEUzSURFNU55NDBOemdnTVRjekxqUTBNU0F4T1RZdU5qQTVJREUzTXk0NU5qWkRNVGcxTGpJeE9DQXhPREF1T0RZeUlERTROQzR6TXpJZ01UZ3lMalk0TVNBeE9EVXVPVFE0SURFNE5TNHlPRGxETVRnMkxqVTBOaUF4T0RZdU1qVTBJREU1TUM0ek5Ua2dNVGd6TGprMk5DQXhPVFV1TURRNElERTRNUzR4TkRsRE1qQXpMakEwTkNBeE56WXVNelE1SURJeE15NDFPRFlnTVRjd0xqQXhPU0F5TVRVdU1EYzFJREUzTlM0Mk9EVkRNakUyTGpNMk5DQXhPREF1TlRnNElESXdPQzQyTURjZ01UZ3pMalU1TWlBeU1ERXVOVGN6SURFNE5pNHpNVGRETVRrMUxqY3hNeUF4T0RndU5UZzNJREU1TUM0ek5UTWdNVGt3TGpZMk15QXhPVEV1TVRReElERTVNeTQwT0RGRE1Ua3hMamsxTnlBeE9UWXVOREF5SURFNU5pNHpPRFVnTVRrekxqazJOU0F5TURFdU1qSTFJREU1TVM0ek1ERkRNakEyTGpZMklERTRPQzR6TVNBeU1USXVOakUySURFNE5TNHdNeklnTWpFMExqVTJOQ0F4T0RndU56TXlRekl4T0M0eU5EZ2dNVGsxTGpjeU5pQXhPRGt1TVRVZ01qQXpMamswTnlBeE9EZ3VPVEUxSURJd05DNHdNRGRETVRjNUxqVXhOU0F5TURZdU5EVXpJREUxTlM0Mk5ETWdNakV4TGpZeE9TQXhORGN1TXpBeklERTVPUzR6T1RGYUlpQmpiR2x3TFhKMWJHVTlJbVYyWlc1dlpHUWlJR1pwYkd3dGNuVnNaVDBpWlhabGJtOWtaQ0l2UGlZamVHRTdJQ0E4Y0dGMGFDQm1hV3hzUFNJak16SXpORE5FSWlCa1BTSk5NVFV5TGpBME55QXhNREl1TlRZM1F6RTFNeTR5TWprZ01UQXlMams0TlNBeE5UUXVNVEE0SURFd05DNHlOVGNnTVRVMExqazBOQ0F4TURVdU5EWTRRekUxTmk0d056UWdNVEEzTGpFd05DQXhOVGN1TVRJMklERXdPQzQyTWpjZ01UVTRMamMwSURFd055NDNOamxETVRZd0xqWTBOQ0F4TURZdU56VTJJREUyTWk0eU1EVWdNVEExTGpJd01pQXhOak11TWpJMUlERXdNeTR6TURKRE1UWTBMakkwTmlBeE1ERXVOREF5SURFMk5DNDJPREVnT1RrdU1qUXlOeUF4TmpRdU5EYzFJRGszTGpBNU5rTXhOalF1TXpJeElEazFMalE1TURnZ01UWXpMamd4TXlBNU15NDVNems0SURFMk1pNDVPRGNnT1RJdU5UVTBPRU14TmpJdU1UWXhJRGt4TGpFMk9UY2dNVFl4TGpBek9DQTRPUzQ1T0RVZ01UVTVMamNnT0RrdU1EZzJNa014TlRndU16WXhJRGc0TGpFNE56UWdNVFUyTGpnek9TQTROeTQxT1RZNElERTFOUzR5TkRVZ09EY3VNelUyT1VNeE5UTXVOalVnT0RjdU1URTNJREUxTWk0d01qSWdPRGN1TWpNek9TQXhOVEF1TkRjNElEZzNMalk1T1VNeE5EZ3VPVE0wSURnNExqRTJNemtnTVRRM0xqVXhNeUE0T0M0NU5qVXpJREUwTmk0ek1UWWdPVEF1TURRMU5VTXhORFV1TVRFNUlEa3hMakV5TlRjZ01UUTBMakUzTmlBNU1pNDBOVGM0SURFME15NDFOVFlnT1RNdU9UUTJRekUwTWk0NU16WWdPVFV1TkRNME1pQXhOREl1TmpVeklEazNMakEwTVRVZ01UUXlMamN5T0NBNU9DNDJOVEpETVRReUxqZ3dOQ0F4TURBdU1qWXpJREUwTXk0eU16VWdNVEF4TGpnek5pQXhORE11T1RreUlERXdNeTR5TmtNeE5EUXVOelFnTVRBMExqWTJOeUF4TkRZdU5DQXhNRFF1TURBeklERTBPQzR4TlRJZ01UQXpMak13TWtNeE5Ea3VOVEkxSURFd01pNDNOVE1nTVRVd0xqazFOaUF4TURJdU1UZ3hJREUxTWk0d05EY2dNVEF5TGpVMk4xcE5NVEF3TGpZM01pQXhNREl1TlRZM1F6azVMalE1SURFd01pNDVPRFVnT1RndU5qRXhJREV3TkM0eU5UZ2dPVGN1TnpjMUlERXdOUzQwTmpoRE9UWXVOalExSURFd055NHhNRFVnT1RVdU5Ua3lJREV3T0M0Mk1qY2dPVE11T1RjNUlERXdOeTQzTmpsRE9URXVOVGcwTlNBeE1EWXVOVEF4SURnNUxqYzBPRElnTVRBMExqTTROaUE0T0M0NE1qYzRJREV3TVM0NE16aERPRGN1T1RBM05TQTVPUzR5T0RrMUlEZzNMamsyT1RJZ09UWXVORGc1TmlBNE9TNHdNREE0SURrekxqazROREZET1RBdU1ETXlOQ0E1TVM0ME56ZzJJRGt4TGprMk1ERWdPRGt1TkRRM01TQTVOQzQwTURnZ09EZ3VNamcxTlVNNU5pNDROVFlnT0RjdU1USXpPU0E1T1M0Mk5EZzRJRGcyTGpreE5UWWdNVEF5TGpJME1pQTROeTQzTURGRE1UQTBMak13TnlBNE9DNHpNakk0SURFd05pNHhOREVnT0RrdU5UUXlOeUF4TURjdU5URXpJRGt4TGpJd05qVkRNVEE0TGpnNE5TQTVNaTQ0TnpBMElERXdPUzQzTXpJZ09UUXVPVEF6TlNBeE1Ea3VPVFE1SURrM0xqQTBPVU14TVRBdU1UWTFJRGs1TGpFNU5EVWdNVEE1TGpjMElERXdNUzR6TlRZZ01UQTRMamN5T0NBeE1ETXVNalpETVRBM0xqazNPU0F4TURRdU5qWTNJREV3Tmk0ek1Ua2dNVEEwTGpBd015QXhNRFF1TlRZM0lERXdNeTR6TURORE1UQXpMakU1TXlBeE1ESXVOelV6SURFd01TNDNOalFnTVRBeUxqRTRNU0F4TURBdU5qY3lJREV3TWk0MU5qZGFUVEUwTkM0d09Ua2dNVFE1TGpNeE9FTXhOVEl1TWpReUlERTBNaTQ1TURNZ01UVTFMakl6TXlBeE16SXVOREk1SURFMU5TNHlNek1nTVRJMUxqazNOME14TlRVdU1qTXpJREV5TUM0NE56Y2dNVFV4TGpnd01pQXhNakl1TkRneUlERTBOaTR6TURrZ01USTFMakl3TWt3eE5EVXVPVGs1SURFeU5TNHpOVFZETVRRd0xqazFOeUF4TWpjdU9EVXlJREV6TkM0eU5EVWdNVE14TGpFM055QXhNall1T0RjM0lERXpNUzR4TnpkRE1URTVMalV3T0NBeE16RXVNVGMzSURFeE1pNDNPVFlnTVRJM0xqZzFNaUF4TURjdU56VTFJREV5TlM0ek5UUkRNVEF5TGpBNE5DQXhNakl1TlRRMUlEazRMalV5TnlBeE1qQXVOemd6SURrNExqVXlOeUF4TWpVdU9UYzRRems0TGpVeU55QXhNekl1TmpNMElERXdNUzQzTURrZ01UUXpMalUyTXlBeE1UQXVORFF6SURFME9TNDVNVEpETVRFeExqVTVOaUF4TkRjdU5UY3pJREV4TXk0eU1Ua2dNVFExTGpRNU55QXhNVFV1TWpFeElERTBNeTQ0TVRORE1URTNMakl3TWlBeE5ESXVNVEk1SURFeE9TNDFNaUF4TkRBdU9EYzBJREV5TWk0d01UZ2dNVFF3TGpFeU5rTXhNakl1T0RrZ01UTTVMamcyTmlBeE1qTXVOemc0SURFME1TNHpOamNnTVRJMExqY3dOeUF4TkRJdU9UQTBRekV5TlM0MU9UUWdNVFEwTGpNNE5pQXhNall1TlRBeElERTBOUzQ1TURJZ01USTNMalF5TXlBeE5EVXVPVEF5UXpFeU9DNDBNRFlnTVRRMUxqa3dNaUF4TWprdU16Y3hJREUwTkM0ME1EZ2dNVE13TGpNeE5DQXhOREl1T1RWRE1UTXhMakk1T1NBeE5ERXVOREkxSURFek1pNHlOaUF4TXprdU9UUWdNVE16TGpFNE9TQXhOREF1TWpNM1F6RXpOeTQ0TmpRZ01UUXhMamN6T0NBeE5ERXVOemMxSURFME5DNDVPVE1nTVRRMExqQTVPU0F4TkRrdU16RTRXaUlnWTJ4cGNDMXlkV3hsUFNKbGRtVnViMlJrSWlCbWFXeHNMWEoxYkdVOUltVjJaVzV2WkdRaUx6NG1JM2hoT3lBZ1BIQmhkR2dnWm1sc2JEMGlJMFpHTXpJelJDSWdaRDBpVFRFME5DNHdPVGNnTVRRNUxqTXhOME14TXprdU9EVTJJREUxTWk0Mk5Ua2dNVE0wTGpJeE9TQXhOVFF1T1NBeE1qWXVPRGM0SURFMU5DNDVRekV4T1M0NU9ERWdNVFUwTGprZ01URTBMalU0TnlBeE5USXVPVEl5SURFeE1DNDBORE1nTVRRNUxqa3hNVU14TVRFdU5UazJJREUwTnk0MU56SWdNVEV6TGpJeE9TQXhORFV1TkRrMUlERXhOUzR5TVRFZ01UUXpMamd4TWtNeE1UY3VNakF5SURFME1pNHhNamdnTVRFNUxqVXlJREUwTUM0NE56TWdNVEl5TGpBeE9DQXhOREF1TVRJMVF6RXlNeTQzTXlBeE16a3VOakUwSURFeU5TNDFORFVnTVRRMUxqa3dNU0F4TWpjdU5ESXpJREUwTlM0NU1ERkRNVEk1TGpRek15QXhORFV1T1RBeElERXpNUzR6TnlBeE16a3VOalUxSURFek15NHhPRGtnTVRRd0xqSXpOa014TXpjdU9EWXpJREUwTVM0M016Z2dNVFF4TGpjM015QXhORFF1T1RreklERTBOQzR3T1RjZ01UUTVMak14TjFvaUx6NG1JM2hoT3lBZ1BIQmhkR2dnWm1sc2JEMGlJMFpHUVVRd015SWdaRDBpVFRneExqSWdNVEV4TGpZMFF6Z3dMakl6TVRJZ01URXlMakk0T0NBM09TNHhNVGN6SURFeE1pNDJPRGNnTnpjdU9UVTNNaUF4TVRJdU9EQXhRemMyTGpjNU56RWdNVEV5TGpreE5pQTNOUzQyTWpZM0lERXhNaTQzTkRJZ056UXVOVFVnTVRFeUxqSTVOVU0zTXk0Mk9Ea3pJREV4TVM0NU5DQTNNaTQ1TURjeUlERXhNUzQwTVRnZ056SXVNalE0T0NBeE1UQXVOelU1UXpjeExqVTVNRE1nTVRFd0xqRXdNU0EzTVM0d05qZzBJREV3T1M0ek1Ua2dOekF1TnpFeklERXdPQzQwTlRoRE56QXVNalkzSURFd055NHpPREVnTnpBdU1Ea3pOU0F4TURZdU1qRXhJRGN3TGpJd09ESWdNVEExTGpBMU1VTTNNQzR6TWpJNElERXdNeTQ0T1RFZ056QXVOekl4T1NBeE1ESXVOemMzSURjeExqTTNJREV3TVM0NE1EaEROekl1TVRRNE9DQXhNREF1TmpReUlEY3pMakkxTlRnZ09Ua3VOek16TXlBM05DNDFOVEV5SURrNUxqRTVOamRETnpVdU9EUTJOaUE1T0M0Mk5qQXhJRGMzTGpJM01pQTVPQzQxTVRrM0lEYzRMalkwTnpFZ09UZ3VOemt6TlVNNE1DNHdNakl6SURrNUxqQTJOeklnT0RFdU1qZzFNeUE1T1M0M05ESTNJRGd5TGpJM05qUWdNVEF3TGpjek5FTTRNeTR5TmpjMUlERXdNUzQzTWpZZ09ETXVPVFF5TWlBeE1ESXVPVGtnT0RRdU1qRTFJREV3TkM0ek5qVkRPRFF1TkRnNE15QXhNRFV1TnpRZ09EUXVNelEzTnlBeE1EY3VNVFkxSURnekxqZ3hNVE1nTVRBNExqUTJRemd6TGpJM05EZ2dNVEE1TGpjMU5TQTRNaTR6TmpVMElERXhNQzQ0TmpFZ09ERXVNaUF4TVRFdU5qUmFUVEU0TWk0Mk1UTWdNVEV4TGpZMFF6RTRNUzQyTkRRZ01URXlMakk0T0NBeE9EQXVOVE1nTVRFeUxqWTROeUF4TnprdU16Y2dNVEV5TGpnd01VTXhOemd1TWpBNUlERXhNaTQ1TVRZZ01UYzNMakF6T1NBeE1USXVOelF5SURFM05TNDVOaklnTVRFeUxqSTVOVU14TnpVdU1UQXhJREV4TVM0NU16a2dNVGMwTGpNeE9TQXhNVEV1TkRFNElERTNNeTQyTmpFZ01URXdMamMxT1VNeE56TXVNREF6SURFeE1DNHhNREVnTVRjeUxqUTRNU0F4TURrdU16RTVJREUzTWk0eE1qVWdNVEE0TGpRMU9FTXhOekV1TmpnZ01UQTNMak00TVNBeE56RXVOVEEzSURFd05pNHlNVEVnTVRjeExqWXlNU0F4TURVdU1EVXhRekUzTVM0M016WWdNVEF6TGpnNU1TQXhOekl1TVRNMUlERXdNaTQzTnpjZ01UY3lMamM0TWlBeE1ERXVPREE0UXpFM015NHpOalFnTVRBd0xqa3pOaUF4TnpRdU1UTXpJREV3TUM0eU1EVWdNVGMxTGpBek1pQTVPUzQyTmpVNFF6RTNOUzQ1TXpFZ09Ua3VNVEkyT1NBeE56WXVPVE00SURrNExqYzVORElnTVRjM0xqazRNU0E1T0M0Mk9URTNRekUzT1M0d01qVWdPVGd1TlRnNU1TQXhPREF1TURjNElEazRMamN4T1RNZ01UZ3hMakEyTkNBNU9TNHdOekk0UXpFNE1pNHdOVEVnT1RrdU5ESTJOQ0F4T0RJdU9UUTNJRGs1TGprNU5EUWdNVGd6TGpZNE9DQXhNREF1TnpNMlF6RTROQzQyT0NBeE1ERXVOekkzSURFNE5TNHpOVFVnTVRBeUxqazVJREU0TlM0Mk1qZ2dNVEEwTGpNMk5VTXhPRFV1T1RBeUlERXdOUzQzTkNBeE9EVXVOell4SURFd055NHhOalVnTVRnMUxqSXlOQ0F4TURndU5EWkRNVGcwTGpZNE55QXhNRGt1TnpVMUlERTRNeTQzTnprZ01URXdMamcyTVNBeE9ESXVOakV6SURFeE1TNDJORm9pSUdOc2FYQXRjblZzWlQwaVpYWmxibTlrWkNJZ1ptbHNiQzF5ZFd4bFBTSmxkbVZ1YjJSa0lpOCUyQkppTjRZVHNnSUR4MFpYaDBJSGs5SWpFd01DNDVOemdpSUhnOUlqTXpNUzQyT1RRaUlITjBlV3hsUFNKM2FHbDBaUzF6Y0dGalpUb2djSEpsT3lCbWFXeHNPaUJ5WjJJb05URXNJRFV4TENBMU1TazdJR1p2Ym5RdFptRnRhV3g1T2lCQmNtbGhiQ3dnYzJGdWN5MXpaWEpwWmpzZ1ptOXVkQzF6YVhwbE9pQXhNUzR4Y0hnN0lqNGdQQzkwWlhoMFBpWWplR0U3SUNBOGRHVjRkQ0I1UFNJNU1DNHpNVEVpSUhnOUlqTXhNQzR6TmpFaUlITjBlV3hsUFNKM2FHbDBaUzF6Y0dGalpUb2djSEpsT3lCbWFXeHNPaUJ5WjJJb05URXNJRFV4TENBMU1TazdJR1p2Ym5RdFptRnRhV3g1T2lCQmNtbGhiQ3dnYzJGdWN5MXpaWEpwWmpzZ1ptOXVkQzF6YVhwbE9pQXhNUzR4Y0hnN0lqNGdQQzkwWlhoMFBpWWplR0U3SUNBOGRHVjRkQ0I1UFNJeE5ETXVOalEwSWlCNFBTSTFNVFl1T1RjNElpQnpkSGxzWlQwaWQyaHBkR1V0YzNCaFkyVTZJSEJ5WlRzZ1ptbHNiRG9nY21kaUtEVXhMQ0ExTVN3Z05URXBPeUJtYjI1MExXWmhiV2xzZVRvZ1FYSnBZV3dzSUhOaGJuTXRjMlZ5YVdZN0lHWnZiblF0YzJsNlpUb2dNVEV1TVhCNE95SSUyQklEd3ZkR1Y0ZEQ0bUkzaGhPeUFnUEhSbGVIUWdlVDBpTVRFd0xqQTJOQ0lnZUQwaU1UYzFMakkwT1NJZ2MzUjViR1U5SW5kb2FYUmxMWE53WVdObE9pQndjbVU3SUdacGJHdzZJSEpuWWlnMU1Td2dOVEVzSURVeEtUc2dabTl1ZEMxbVlXMXBiSGs2SUVGeWFXRnNMQ0J6WVc1ekxYTmxjbWxtT3lCbWIyNTBMWE5wZW1VNklERXhMakZ3ZURzaVBpQThMM1JsZUhRJTJCSmlONFlUc2dJRHhuSUhOMGNtOXJaVDBpYm05dVpTSWdabWxzYkQwaUl6QXdNREF3TUNJZ2RISmhibk5tYjNKdFBTSnRZWFJ5YVhnb01DNHhMQ0F3TENBd0xDQXRNQzR4TENBeU5ERXVOelV4TlRReExDQXlNemt1Tnprek16TTFLU0klMkJKaU40WVRzZ0lDQWdQSEJoZEdnZ1pEMGlUVE0zTURVZ01UY3hOQ0JqTFRZNElDMHpOU0F0T0RJZ0xURXlOU0F0TWpnZ0xURTNPU0ExTWlBdE5URWdNVFUzSUMwME1TQXhPVE1nTVRnZ05qVWdNVEEySUMwMU15QXlNakFnTFRFMk5TQXhOakY2SWk4JTJCSmlONFlUc2dJQ0FnUEhCaGRHZ2daRDBpVFRVNU1qTWdNVFk1TkNCakxUZzNJQzB6TVNBdE1UVXpJQzB4TkRFZ0xURTFNeUF0TWpVMUlHd3dJQzAwTmlBdE5UQWdMVGNnTFRVd0lDMDNJREFnTFRjNUlEQWdMVGd3SURVd0lEQWdOVEFnTUNBd0lDMHlPRFVnTUNBdE1qZzFJREV4TUNBd0lERXhNQ0F3SURBZ01qZzFJREFnTWpnMUlEWTFJREFnTmpVZ01DQXdJRGcxSURBZ09EVWdMVFkxSURBZ0xUWTFJREFnTUNBMU1DQmpNQ0EwTVNBMUlEVTJJREkySURjM0lESXpJREl6SURNeElESTFJRGM1SURJd0lEWXdJQzAySURVMElDMHhNU0EzTlNBM015QTJJREkxSURFeklEVXlJREUySURZeElERXdJRE0ySUMweE56a2dOVElnTFRJMk15QXlNM29pTHo0bUkzaGhPeUFnSUNBOGNHRjBhQ0JrUFNKTk16VXdJREV4TnpVZ2JEQWdMVFV5TlNBeE1UQWdNQ0F4TVRBZ01DQXdJREkxTkNBd0lESTFOQ0EwTWlBek1TQmpOVFlnTkRFZ01USXpJRFEwSURFMU9TQTFJREkwSUMweU5pQXlOQ0F0TWpZZ01qY2dMVEk0TlNCc015QXRNalU1SURFeE1TQXdJREV4TUNBd0lDMDBJREk0TXlCakxUUWdNall6SUMwMklESTROaUF0TWpjZ016TTVJQzAxT1NBeE5UQWdMVEl5T1NBeE9ETWdMVE00TUNBM05DQnNMVFV3SUMwek5TQTJJREU1TkNBMklERTVOU0F0TVRFeElEQWdMVEV4TWlBd0lEQWdMVFV5TlhvaUx6NG1JM2hoT3lBZ0lDQThjR0YwYUNCa1BTSk5PVEU1TUNBeE1UYzFJR3d3SUMwMU1qVWdNVEV3SURBZ01URXdJREFnTUNBeU5UUWdNQ0F5TlRRZ05ESWdNekVnWXpVMklEUXhJREV5TXlBME5DQXhOVGtnTlNBeU5DQXRNallnTWpRZ0xUSTJJREkzSUMweU9EVWdiRE1nTFRJMU9TQXhNVEVnTUNBeE1UQWdNQ0F0TkNBeU9ETWdZeTAwSURJMk15QXROaUF5T0RZZ0xUSTNJRE16T1NBdE5Ua2dNVFV3SUMweU1qa2dNVGd6SUMwek9EQWdOelFnYkMwMU1DQXRNelVnTmlBeE9UUWdOaUF4T1RVZ0xURXhNU0F3SUMweE1USWdNQ0F3SUMwMU1qVjZJaTglMkJKaU40WVRzZ0lDQWdQSEJoZEdnZ1pEMGlUVEV3T1RBd0lERXhOelVnYkRBZ0xUVXlOU0E0TkNBd0lEZzBJREFnTnlBek15QmpNVEVnTkRrZ01UUWdOVEFnTlRFZ01UZ2dNVEEzSUMwNU5DQXlNelVnTFRreUlETTBNeUExSURrMUlEZzFJREV6T1NBeU1UTWdNVEk0SURNMk9DQXRNVEFnTVRRMElDMDJOU0F5TlRBZ0xURTFOU0F5T1RrZ0xUa3hJRFV3SUMweE9UUWdORFVnTFRJNE5TQXRNVE1nYkMwME5DQXRNamNnTlNBeE9ETWdOU0F4T0RRZ0xURXhNaUF3SUMweE1URWdNQ0F3SUMwMU1qVjZJRzAwTVRrZ016QWdZelF3SUMwek5DQTFOQ0F0T0RJZ05UTWdMVEU0TVNBd0lDMHhORFFnTFRVMUlDMHlNakFnTFRFMU1pQXRNakV4SUMweU5TQXlJQzAxT0NBeE1pQXROek1nTWpFZ2JDMHlOeUF4T0NBd0lERTFPQ0JqTUNBeE56SWdMVEVnTVRjd0lEWTFJREl3TkNBME5pQXlOQ0E1T0NBeU1DQXhNelFnTFRsNklpOCUyQkppTjRZVHNnSUNBZ1BIQmhkR2dnWkQwaVRUSXlOakVnTVRRd01DQmpMVEUyT0NBdE16VWdMVEkyTlNBdE1UZ3dJQzB5TVRrZ0xUTXpNaUEySUMweU1pQXlPU0F0TlRrZ05URWdMVGcwSURNNUlDMDBOQ0F6T1NBdE5EVWdNVGtnTFRZd0lDMHpOU0F0TWpRZ0xUWXlJQzAzT0NBdE5qSWdMVEV5TXlBd0lDMDBPU0F4TWlBdE56Z2dORGNnTFRFd055QnNNalFnTFRJeElDMHpOU0F0TWpRZ1l5MDNNU0F0TkRnZ0xUazJJQzB4TkRFZ0xUVTJJQzB5TURZZ05EY2dMVGM0SURFM05pQXRNVEU1SURNek55QXRNVEE1SURJeU55QXhOQ0F6TmpNZ01URXlJRE0yTXlBeU5qTWdNQ0F4TkRNZ0xUa3lJREU1TWlBdE16WXdJREU1TXlBdE1URTJJREFnTFRFMU1DQXhNaUF0TVRVd0lEVTBJREFnTXpjZ01qQWdORGNnT0RZZ05EQWdNVEkxSUMweE15QXlORFVnTXpnZ01qa3pJREV5TmlBeU5pQTBOeUF6TlNBeE16VWdNVGdnTVRreklHd3ROeUF5TnlBMU5TQXdJRFUxSURBZ01DQTNPU0F3SURjNUlDMHhOaklnTmlCakxUa3dJRE1nTFRFNE15QTRJQzB5TURnZ01UQWdMVEkxSURNZ0xUWTFJREVnTFRnNUlDMDBlaUJ0TVRReElDMHhOamtnWXpNd0lDMHlOeUF6TXlBdE16UWdNek1nTFRnNUlEQWdMVFk1SUMweU1pQXRNVEE1SUMwMk9TQXRNVEkxSUMwMU5pQXRNVGtnTFRFd09DQXhOQ0F0TVRJMUlEZ3dJQzB6TWlBeE1qRWdOelVnTWpFeElERTJNU0F4TXpSNklHMDVNQ0F0TmpJeklHTTFOaUF0TWpFZ05ESWdMVGcxSUMweU55QXRNVEU0SUMwME55QXRNak1nTFRFMU1DQXRNamNnTFRJd05pQXRPU0F0TmpVZ01qSWdMVGczSURjeklDMDFNQ0F4TWpBZ01UZ2dNak1nTWpJZ01qUWdNVE0zSURJeElEWTJJQzB5SURFek1TQXRPQ0F4TkRZZ0xURTBlaUl2UGlZamVHRTdJQ0FnSUR4d1lYUm9JR1E5SWswek1EWTBJREUwTURBZ1l5MDJNaUF0TVRNZ0xURXpOeUF0TlRRZ0xURTNNaUF0T1RRZ0xUUXhJQzAwTnlBdE5qWWdMVEV6TXlBdE5UY2dMVEU1TkNBNElDMDFOaUF5TlNBdE9UQWdOallnTFRFek55QnNNekVnTFRNMUlDMHlOU0F0TWpRZ1l5MDJOeUF0TmpJZ0xUYzFJQzB4TlRFZ0xURTVJQzB5TURrZ2JETXhJQzB6TWlBdE5ERWdMVE0wSUdNdE1URXpJQzA1TlNBdE56VWdMVEkwTVNBM05TQXRNamcySURFeE9DQXRNellnTWpneklDMHlPU0EwTURRZ01UY2dPRFFnTXpFZ01UVTNJREV3TnlBeE56TWdNVGM1SURrZ05EQWdPU0EyTkNBeElEazFJQzB5T0NBeE1EUWdMVGsySURFek5DQXRNekU1SURFME1pQXRNVEkySURRZ0xURTFOeUE0SUMweE56VWdNaklnTFRFNElERTFJQzB5TUNBeU1pQXRNVElnTkRZZ2JERXdJREk1SURFd01DQXdJR000TXlBeElERXdPU0ExSURFMU15QXlOQ0EyTkNBeU9TQXhNVFVnT0RZZ01UTXlJREUwTmlBeE1pQTBOQ0F4TUNBeE1qSWdMVFVnTVRVNElDMDJJREUxSURBZ01UY2dOVFFnTVRjZ2JEWXhJREFnTUNBM09TQXdJRGM1SUMweE5qY2dOaUJqTFRreklETWdMVEU0T0NBNElDMHlNVE1nTVRBZ0xUSTFJRE1nTFRZMElERWdMVGcySUMwMGVpQnRNVEkxSUMweE5UUWdZek0xSUMweE9TQTFNU0F0TlRVZ05URWdMVEV4TmlBd0lDMDBNU0F0TlNBdE5UWWdMVEk1SUMwNE1pQXRNalFnTFRJM0lDMHpOaUF0TXpNZ0xUY3hJQzB6TXlBdE16VWdNQ0F0TkRjZ05pQXROekVnTXpNZ0xUSTBJREkzSUMweU9TQTBNU0F0TWprZ09EVWdNQ0EyTVNBeE5pQTVOeUExTUNBeE1UUWdNek1nTVRjZ05qVWdNVFlnT1RrZ0xURjZJRzA0T1NBdE5qTXlJR015TWlBdE15QXpOeUF0TVRNZ05EUWdMVE13SURJNElDMDJNU0F0TkRjZ0xURXhNeUF0TVRZMElDMHhNVFFnTFRFek5pQXdJQzB5TURVZ05qQWdMVEUwT1NBeE16RWdNVGdnTWpRZ01qTWdNalFnTVRJM0lESXhJRFl3SUMweElERXlOQ0F0TlNBeE5ESWdMVGg2SWk4JTJCSmlONFlUc2dJQ0FnUEhCaGRHZ2daRDBpVFRRME16TWdNVE01T1NCakxURTRJQzAxSUMwMk1TQXRNamtnTFRrM0lDMDFNeUF0TXpVZ0xUSTFJQzAyTnlBdE5ESWdMVGN3SUMwek9TQXRNeUEwSUMwMklERTJJQzAySURJNUlEQWdOVEVnTFRZZ05UUWdMVEV3TVNBMU5DQnNMVGc1SURBZ01DQXRNemN3SURBZ0xUTTNNQ0F4TVRBZ01DQXhNVEFnTUNBd0lESTBPQ0F3SURJME9DQXlPQ0F5TmlCak1UVWdNVFFnTXpjZ016RWdORGtnTXpjZ016UWdNVGNnT1RnZ01UTWdNVEkwSUMwNElESTBJQzB4T1NBeU5DQXRNVGtnTWpjZ0xUSTROU0JzTXlBdE1qWTJJREV4TUNBd0lERXhNQ0F3SUMweklESTVNeUF0TXlBeU9UTWdMVE13SURZd0lHTXRNak1nTkRVZ0xUUXhJRFkxSUMwM05DQTRNeUF0TkRnZ01qWWdMVEUwTmlBek55QXRNVGs0SURJd2VpSXZQaVlqZUdFN0lDQWdJRHh3WVhSb0lHUTlJazAxTVRJeUlERXpPVFlnWXkwM01TQXRNVGdnTFRFME1DQXROak1nTFRFM055QXRNVEUwSUMweU5TQXRNemNnTFRNd0lDMDFOU0F0TXpNZ0xURXhOeUF0TlNBdE9EZ2dOeUF0TVRJNUlEVTBJQzB4T0RRZ2JETTJJQzAwTVNBdE16VWdMVFF3SUdNdE5UZ2dMVFl6SUMwMU9TQXRNVFEzSUMweUlDMHlNREFnYkRJMUlDMHlNeUF0TkRRZ0xUUXhJR010T1RJZ0xUZzFJQzA0TUNBdE1UazFJREkySUMweU5UVWdNVEl3SUMwMk9TQXpOVFVnTFRZMElEUTVPQ0E1SURreElEUTJJREUwTmlBeE5EQWdNVE00SURJek1TQXRNVElnTVRJeklDMHhNVElnTVRZNElDMHpOekFnTVRZNUlDMDVOU0F3SUMweE1URWdNeUF0TVRJNElESXdJQzB5TWlBeU1pQXRNaklnTWpVZ0xURXhJRFUxSURjZ01UZ2dNVGNnTWpBZ01UQTNJREl3SURneElERWdNVEE0SURVZ01UUTVJREl6SURZeklESTVJREV3TWlBMk5TQXhNallnTVRFM0lESXdJRFEwSURJMUlERXpOeUE1SURFM09TQnNMVEV3SURJMklEWXdJREFnTmpBZ01DQXdJRGM1SURBZ056a2dMVEUyTnlBMklHTXRPVE1nTXlBdE1UZzRJRGdnTFRJeE15QXhNU0F0TWpVZ01pQXROamtnTFRJZ0xUazRJQzA1ZWlCdE1UVTVJQzB4TmpVZ1l6STFJQzB5TlNBeU9TQXRNemNnTWprZ0xUZzFJREFnTFRZNElDMHhNeUF0T1RjZ0xUVXlJQzB4TWpBZ0xUTTNJQzB5TXlBdE9EWWdMVEUxSUMweE1UZ2dNVGtnTFRJNElETXdJQzB6T0NBeE1UQWdMVEl3SURFMU5TQXlOaUEyTkNBeE1USWdPREFnTVRZeElETXhlaUJ0T0RrZ0xUWXlOQ0JqTWprZ0xURTBJRE01SUMwMU9TQXhPQ0F0T0RRZ0xUSTFJQzB6TVNBdE9URWdMVFV6SUMweE5qRWdMVFV6SUMweE1UUWdNQ0F0TVRnd0lEUTBJQzB4TlRjZ01UQTJJRFlnTVRZZ01UVWdNek1nTWpBZ016a2dNVEVnTVRRZ01qUTNJRGNnTWpnd0lDMDRlaUl2UGlZamVHRTdJQ0FnSUR4d1lYUm9JR1E5SWswMk5EQTFJREV6T1RZZ1l5MDJOaUF0TVRVZ0xURTVOU0F0TnpJZ0xURTVOU0F0T0RZZ01DQXRNVEFnTnpBZ0xURTBNQ0EzTlNBdE1UUXdJRElnTUNBeE9TQTVJRE0zSURFNUlEY3pJRFEwSURFM055QTFOaUF5TXpFZ01qa2dNakVnTFRFeElEVXhJQzAzTkNBME1pQXRPRGdnTFRRZ0xUWWdMVEl4SUMweE1DQXRNemdnTFRFd0lDMDFNQ0F3SUMweE9USWdMVE0zSUMweU5EVWdMVFkwSUMweE1USWdMVFUzSUMweE5UWWdMVEUxT1NBdE1USXdJQzB5TnprZ01UY2dMVFUxSURneUlDMHhNaklnTVRNeklDMHhNellnT0RRZ0xUSXpJREUxTlNBdE1UQWdNak0ySURRMUlEVTFJRE0ySURZMUlETTFJRGN4SUMwMklETWdMVEkwSURVZ0xUSTFJRGszSUMweU9DQnNPVE1nTFRNZ0xUUWdNall6SUdNdE5pQXlPVFVnTFRFeklETXpOU0F0TnpNZ05EQTFJQzB4T1NBeU15QXROVFVnTlRFZ0xUZ3dJRFl6SUMwMU55QXlPQ0F0TVRjMklETTFJQzB5TmpBZ01UWjZJRzB4T1RVZ0xUUTNNQ0JqTUNBdE5qSWdMVElnTFRZMklDMHpOQ0F0T1RFZ0xUZzVJQzAyTnlBdE1qQXhJQzB5TmlBdE1UY3dJRFl6SURFMklEUTFJREV3TVNBNU1TQXhOeklnT1RJZ2JETXlJREFnTUNBdE5qUjZJaTglMkJKaU40WVRzZ0lDQWdQSEJoZEdnZ1pEMGlUVGN5TmpBZ01UUXdNQ0JqTFRFeE5DQXRNalFnTFRJeE1pQXRNVEF5SUMweU5qUWdMVEl4TUNBdE1qa2dMVFl4SUMwek1TQXROek1nTFRNeElDMHhOelVnTUNBdE9UZ2dNeUF0TVRFMklESTNJQzB4TmpjZ05UUWdMVEV4TmlBeE1qSWdMVEUzTkNBeU16Z2dMVEl3TkNBeE1EVWdMVEkzSURJMU1DQXRNU0F6TVRnZ05UWWdiREkwSURJd0lDMDBNeUEyT1NBdE5ESWdOamtnTFRRMUlDMHlOQ0JqTFRVNUlDMHpNaUF0TVRJM0lDMHpNaUF0TVRjeklDMHhJQzB4TURZZ056QWdMVEV4TUNBeU9UVWdMVGNnTXpZNUlEUTBJRE14SURFeE15QXpOQ0F4TmpNZ09TQXpNQ0F0TVRZZ05ERWdMVEU0SURRMklDMDRJRFFnTmlBeU5pQXpOaUEwT0NBMk5pQXpPQ0ExTUNBME1DQTFOaUF5TlNBM01pQXRORFFnTkRnZ0xURTRPU0EzT1NBdE1qZzBJRFU1ZWlJdlBpWWplR0U3SUNBZ0lEeHdZWFJvSUdROUlrMDNPVEF6SURFME1EQWdZeTB5TURNZ0xUUXpJQzB6TWpNZ0xUSTJNaUF0TWpZNUlDMDBPVEVnTlRZZ0xUSTBNQ0F6TVRjZ0xUTTBOU0ExTmpNZ0xUSXlPQ0JzTmpRZ016QWdMVE15SURVM0lHTXRNVGdnTXpFZ0xUTTFJRFl3SUMwek9DQTJOQ0F0TkNBMElDMHpNU0F0TWlBdE5qRWdMVEV6SUMwNE1DQXRNekFnTFRFM015QXRNalFnTFRJeU5TQXhOU0F0TXpZZ01qZ2dMVGM1SURFd01pQXROamtnTVRFNElETWdOQ0F4TURNZ09DQXlNak1nT0NCc01qRTRJREFnTmlBME5pQmpNVElnTVRBM0lDMHlOU0F5TXpnZ0xUZzNJRE14TVNBdE5UWWdOallnTFRFNU1DQXhNRFVnTFRJNU15QTRNM29nYlRFek1TQXRNVGN5SUdNek1pQXRNVFFnTlRNZ0xUUTFJRFl4SUMwNU1pQnNOeUF0TXpZZ0xURXpOeUF3SUMweE16WWdNQ0EySURJeklHTXlPQ0E1TXlBeE1qQWdNVFF5SURFNU9TQXhNRFY2SWk4JTJCSmlONFlUc2dJQ0FnUEhCaGRHZ2daRDBpVFRFeU1ESWdNVEE1T0NCc015QXRNamt6SURJNElDMDFPQ0JqTkRFZ0xUZ3lJRGswSUMweE1USWdNVGszSUMweE1USWdPRFFnTUNBeE1UWWdNVE1nTVRreUlEYzJJR3cwTnlBME1DQTNJQzAxTVNBM0lDMDFNQ0E0T0NBd0lEZzVJREFnTUNBek56QWdNQ0F6TnpBZ0xURXhNQ0F3SUMweE1UQWdNQ0F3SUMweU5Ea2dNQ0F0TWpRNUlDMDBNQ0F0TXpZZ1l5MHpNaUF0TWpnZ0xUUTRJQzB6TmlBdE56a2dMVE0ySUMwNU9DQXdJQzB4TURFZ01URWdMVEV3TVNBek1qQWdiREFnTWpVd0lDMHhNVEVnTUNBdE1URXdJREFnTXlBdE1qa3llaUl2UGlZamVHRTdJQ0FnSUR4d1lYUm9JR1E5SWswek5qWXdJREV3TWpBZ2JEQWdMVE0zTUNBeE1UQWdNQ0F4TVRBZ01DQXdJRE0zTUNBd0lETTNNQ0F0TVRFd0lEQWdMVEV4TUNBd0lEQWdMVE0zTUhvaUx6NG1JM2hoT3lBZ0lDQThjR0YwYUNCa1BTSk5NVEF3TkRJZ01UQTVPQ0JzTXlBdE1qa3pJREk0SUMwMU9DQmpOREVnTFRneUlEazBJQzB4TVRJZ01UazNJQzB4TVRJZ09EUWdNQ0F4TVRZZ01UTWdNVGt5SURjMklHdzBOeUEwTUNBM0lDMDFNU0EzSUMwMU1DQTRPQ0F3SURnNUlEQWdNQ0F6TnpBZ01DQXpOekFnTFRFeE1DQXdJQzB4TVRBZ01DQXdJQzB5TkRrZ01DQXRNalE1SUMwME1DQXRNellnWXkwek1pQXRNamdnTFRRNElDMHpOaUF0TnprZ0xUTTJJQzA1T0NBd0lDMHhNREVnTVRFZ0xURXdNU0F6TWpBZ2JEQWdNalV3SUMweE1URWdNQ0F0TVRFd0lEQWdNeUF0TWpreWVpSXZQaVlqZUdFN0lDQWdJRHh3WVhSb0lHUTlJazA0TXpZd0lEVXdNQ0JzTUNBdE5qQWdNelUxSURBZ016VTFJREFnTUNBMk1DQXdJRFl3SUMwek5UVWdNQ0F0TXpVMUlEQWdNQ0F0TmpCNklpOCUyQkppTjRZVHNnSUR3dlp6NG1JM2hoT3p3dmMzWm5QZyUzRCUzRCUzQiUyMiUyMHBhcmVudCUzRCUyMjElMjIlMjB2ZXJ0ZXglM0QlMjIxJTIyJTNFJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTNDbXhHZW9tZXRyeSUyMHglM0QlMjIyMzQwJTIyJTIweSUzRCUyMjI3NjglMjIlMjB3aWR0aCUzRCUyMjI5NC4zNSUyMiUyMGhlaWdodCUzRCUyMjUyJTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQ214Q2VsbCUyMGlkJTNEJTIya1hsNkhjY2FRN0E5NVA0RkJnNlQtNjQlMjIlMjB2YWx1ZSUzRCUyMlB5VG9yY2glMjYlMjN4YSUzQkNsdXN0ZXIlMjIlMjBzdHlsZSUzRCUyMnNoYXBlJTNEaW1hZ2UlM0J2ZXJ0aWNhbExhYmVsUG9zaXRpb24lM0Rib3R0b20lM0JsYWJlbEJhY2tncm91bmRDb2xvciUzRGRlZmF1bHQlM0J2ZXJ0aWNhbEFsaWduJTNEdG9wJTNCYXNwZWN0JTNEZml4ZWQlM0JpbWFnZUFzcGVjdCUzRDAlM0JpbWFnZSUzRGRhdGElM0FpbWFnZSUyRnBuZyUyQ2lWQk9SdzBLR2dvQUFBQU5TVWhFVWdBQUFmQUFBQUpaQ0FZQUFBQldWMmRkQUFBQUJHZEJUVUVBQUxHUEMlMkZ4aEJRQUFBQ0JqU0ZKTkFBQjZKZ0FBZ0lRQUFQb0FBQUNBNkFBQWRUQUFBT3BnQUFBNm1BQUFGM0NjdWxFOEFBQUFCbUpMUjBRQSUyRndEJTJGQVAlMkJndmFlVEFBQkY1VWxFUVZSNDJ1M2RlWHhkZFozJTJGOGZmbjNKdWxkTXZTc2xUWkZDbnR2V25SQUZMa2gxRTIyeVJsa2JqaHJpUHE2T0E0aWd2alVEY1VseGtWZE54QmNSc3pDalJkWkZHcXNncEJhSktXQWlMTENOZzJ1ZW1hTk1rOW45OGZMVWozSk0xeXolMkYyJTJCbm8lMkZIJTJGREVJN2Izdjh6M25mVDduM251T0JLRG91R1JkOWRsdmRqWm16eUlOb0RoRlJBQVVYM25uNnJOWHlmUiUyQjBnQW9jQUNVTndBS0hBRGxEWUFDQnlodnl6WFVYRWw1QXhRNGdLU1Z0JTJGeWZTUU9nd0FGUTNnQW9jQUNVTndBS0hLQzhLVyUyQkFBZ2RBZVFPZ3dBRlEzZ0FvY0FDVU53QUtIS0M4QVZEZ0FDaHZBQlE0QU1vYkFBVU9VTjRBS0hBQWxEY0FDaHdBNVEyQUFnY29id0FVT0FES0d3QUZEbUNRNVozNUJ1VU5nQUlIRWxmZTlnSFNBRUNCQTVRM0FBb2NBT1VOZ0FJSEtHJTJGS0d3QUZEbERlQUNod0FKUTNBQW9jQU9VTmdBSUhLRzhBb01BQnloc0FCUTZBOGdaQWdRT1VOd0JRNEFEbERZQUNCMEI1QTZEQUFjb2JBQ2h3Z1BJR1FJRURHRng1TjJhJTJGVG5rRG9NQ0JwSlczNjRPa0FZQUNCeWh2QUtEQUFjb2JBQVVPVU42VU53QUtIS0M4QVlBQ0J5aHZBQlE0QU1vYkFBVU9VTjRBUUlFRGxEY0FDaHdBNVEyQUFnY29id0Nnd0FIS0d3QW9jSUR5QmtDQkE1UTNBRkRnQU9VTkFCUTRNS2p5N21ySWZvM3lCa0NCQXdrcmI1UCUyQmhUUUFVT0FBNVEwQUZEaEFlUU1BQlE3S20lMkZJR1FJRURsRGNBVU9BQTVRMEFGRGhBZVFPZ3dBSEtHd0FvY0lEeUJnQUtIS0M4QVZEZ0FPVU5BQlE0UUhrREFBVU9VTjRBS0hDQThnWUFDaHlndkFHQUFnY0dXOTclMkZSWGtEb01DQjVKWDN4YVFCZ0FJSEtHOEFvTUFCeWhzQUtIQlEzcFEzQUFvY29Md0JnQUlIUmxXdU1mTUZ5aHNBQlE0a1NGZGo1b3R5JTJCeGhKQUtEQUFjb2JBQ2h3Z1BJR0FBb2NvTHdCZ0FJSDVRMEFGRGhBZVFNQUJRNVEzZ0JBZ1lQeUJnQUtIS0M4QVlBQ0IlMkZaVTNnMlpMMURlQUVDQkkybmxMZnM0U1FBQUJRN0tHd0FvY0lEeVRoalRIJTJGTGxmZ2RCQU1XNml3T1VkMUdXOTBDNTF4JTJGYzNMR1pNQUFLSEtDOEtXOEFGRGdvYjFEZUFDaHdVTjdCOHo4T1ROQUN5aHVnd0FIS20lMkZJR1FJR0Q4cWE4S1c4QUZEZ29iMURlQUFVT1VONlVOd0FLSEtDOEtXOEFGRGdvYjFEZUFDaHdVTjZVTjRERVN4TUJScmE4czVkTG9yd3A3Nkt6OGJ6anF2UDU2QWlMMDFYdSUyQllteG9ySklucyUyRkxOc3JpalpaUFBWVzlmT1glMkZrUlNZd0pIVTh2NEVTVkRlU2RjNSUyRjVncGxpNCUyRnpXSiUyRnRjdE9rbW1tcEdtRCUyQkU4M1NYcklYUGQ3WkwlMkZMOXczY092M0cxVSUyQlRLQ2h3VU42VU4wYkoycWJNcEpJZW5SOUxielZabmFUVUNCMW0lMkYlMkJ3V1h6dGc5ck5ERnJmJTJGbmFSQmdZUHlwcnd4RXV1M01YT0VYQiUyQlY3TzJTSm8zaVh6VmcwZzFtMGVVVkxTdnZJM2xRNEJoWHVjYnNWOXoxYnlReEtudm5yYjBxYTVqUjBycVZNRWJldW9Velo2VHpKWjl4MDFza2xZN3hpZGx5aSUyRlhKeW1VZDk3TWxRSUdEeVp2Skc0Tkp0cTR1M1QxcCUyRlQlMkI3OUJsSlU4YnhwY1F5JTJGNzU2eWklMkJwdXFWMUExc0dGRGdvYjhvYmU3R2hZZFpMOGtyOVhGSnRBUjJHbnpLUDMxeTV0T05XdGhBb2NGRGVsRGQya2F2UG51JTJCbUgwaXFLTVFOTCUyRk12VlpiUHZ0U2FtJTJGTnNMVkRnb0x3cGIwanFiS2o1ck1uJTJGdmZDWGdOJTJCdzVhQXBienk4JTJCYzRldGhvb2NGRGVsSGU0cVRZMXBYSmJWMzlUcG9zUzlMTHZTcGNNTkV5NTdzRk90aUQySlNJQ1VONlVkMUdtS2xtdVolMkZYVkNTdHZTVHA1b0Q5OTQ3cUZNeWV6RlVHQmclMkZLbXZJUFQzWmo5c3FTM0pQVGwxNmE4NUFhZmYwd1pXeElVT0Nodnlqc1l1ZnJNaHhKJTJGZndMWHEzS3A4aCUyQndOYkUzZkFZT3lwdnlMaXJyR3pJblJiSSUyRmFzeHZ6akphUjJsN2IxVkwyM2ZZc3FEQVFYbFQza1ZydzltWnFueUozU2ZweUNKNlc3MFclMkJ6enUyb1pkY1FrZGxEZmxYVFRpRXZ0eWtaVzNKSlY3eW43c2RYVTglMkZoa1VPUFpSM28zWnoxUGVvJTJCWTJ5bnNVMSUyQjdDekN0Y2VrZHhudmVwcG52eSUyQnZlemxVR0JZJTJCJTJGbDdmb2tTWXhXZWZ0OHludVUlMkJtMlJJc1gyVFJYeHg0SXVmV2JUZVhNT1ptdURBZ2ZsVFhrWHolMkZwdHpad25hVzV4bjZWb2F2OUElMkZzTnNiVkRnb0x3cDclMkJJUjI4ZURlSjl1NyUyQiUyQnVyNmxrZzRNQ0IlMkJWTmVTZmUlMkJ2cWFNOHgwUWlCdmQzSXNmeDliSFJRNDVVMTVVOTdKUDRpWnZ6Mm9OMng2aCUyRk1UWUloRlFIbUQ4azZ3dFUyWlNla2VlMXJTcEpEZXQxczByN3BsNVYyc0FDWndVTjZndkJNcHZkWE9EYTI4dHpkNCUyRkVhMlBpaHd5aHVVZDNKN0xMSXpRbnpmSmp1ZHJROEtuUElHNVozY0luT3ZDJTJGVFVaZmJhQlpsRFdRRVVPQ2h2VU42Smsxc3c2MGdWMzIxVEIzM3Vra3JaYWF3Q0NoeVVOeWp2NU0yZ1VUb1RkZ0NhelNxZ3dFRjVnJTJGSk9YbjlaUERQazkyJTJGU1RGWUJCUTdLRzVSMzhnck03ZGpBRTZEQUtYQlEzcUM4a3ppQjJyU3dFJTJGQnByQUlLSEpRM0tPJTJGazFaZDhjdUFSVEdZVlVPQW9wdkt1ejM2TzhxYThLYkF3M2olMkIzVktYQVVVemxiYnFVSkNqdlFCanZIeUZMRXdIbGpmMlhkejdxWDNCdzh4ckt1NURheTdYWnc2Nnd6U1k1SzRFSkhKUTM5bEhlMHhldjJVUVVoU1dPRlBvMllVMVM0S0M4UVhrbjhPRGw2Z282QUF2OCUyRllNQ3A3eEJlU2VUeXg4T3VyOWREN0VLS0hCUTNxQzhrMWRnRnEwSiUyQmdUR3RJWlZRSUdEOGdibG5UZ0QlMkJXaDEwQUhFV3MwcW9NQkJlWVB5VHB4cHl4NTRXTkl6b2I1JTJGSzBuZnhpcWd3RUY1dzNVNzVaMndBdHYlMkJFNm9WZ2I3NXYxUmVmJTJGOWpyQUlLSEpRMzVaM3FuMDk1SjNEVG1mODIwSGYlMkJXN1klMkJLSERLbSUyRkttdkJNcjNhZGZTOW9XNElIN2Y5ajZvTUFwYjhxYjhrNnNxVGQyZE1uOU40Rzk3YjlOTFolMkY5ZTdZJTJCS0hES20lMkZKR29sa1VYUlBZNHIzV21wdnpiSGxRNEpRMzVZMUVxeWclMkZyc1hrb2R6VVpGdXM5RlZzZFZEZ2xEZmxqZVJQNE0zTiUyQmRqdGlqRGVySDQ0YmNrRGYyT3Jnd0l2UUowTk5aJTJCbHZDbHZERTNWTTJYWFNucTB5TjltcjZYU1gySnJnd0l2MFBJMiUyQmIlMkJUQk9XTklRNm1yYTM5SHZzJTJGRiUyRmNTMWhYODloc1VPT1ZOZWFQb1ZDJTJGciUyQkkzY2J5ak9NeFQ5WmVQbXpWOWtLNE1DcDd3cGJ4VG41bzVUSDVEVVdXUnZLMiUyQnVkeCUyQjk0ckZldGpBb2NNcWI4a1p4VHVITFYlMkY2ZnpONmk3YmRaTFk3aDIlMkJ3emxVdmFWN0IxUVlGVDNwUTNpbHBWUzl0eXliNWNGT1h0dXJtaXR1MXpiRlhzY1gwUUFlVk5lYVA0bG9BczE1QzlSdEpiRTN4MGJyTlUlMkJyVEs2JTJCJTJGdlpvdUNDWnp5cHJ3UnltVGlsVSUyQlh2VnZTalFsOUMzJTJGTjklMkJYUHByeEJnVlBlbERmQ0slMkZIVzF2NWVLenRmcHFVSmUlMkJrUHlyeHUlMkJvMnJuMllyZ2dLbnZDbHZCR2xHUyUyQnZXeXZKWjU1anJCd201Y25CUFNiN2t0S3FXamlmWWVoakVlZ0hsVFhtajJKZUlMTmVRJTJGWWlreXlXbEMlMkZSZyUyRk1NZUslMkZ2Z2pKYldyV3d4VU9DVU4lMkJVTlBIOWZyTSUyQmVZcWFmU3pxaWdGN1daak85djdLbCUyRlZxMkVJYUNTJTJCaVVOJTJCV05ZRlF2YmIlMkJqcnklMkJhTGZNckpBMFV3RXRhWXVsMERlVU5KbkRLbSUyRklHQmluWGtKa3IyVmRjT21NY0RyMGRNdjk0VlV2N0VyWUVLSERLbSUyRklHaHJPdk5zNDUyVHklMkJWRkw5R0J3VFcwMzZmTVVKN1RmWUlzV2tEd3FjOHFhOGdRUGRiOCUyRkpIbTREOWlheiUyQkowdU8zWUUlMkYlMkJndW1mJTJCdnBHdXJXanB1STJsUTRBVjdOcCUyRjVqTGw5aWlRb2J5VFglMkJ2cnNyTWo4MVc3MmFuT2RLT253b2Z6bjV2cXpSJTJGYTdPSiUyQiUyRnRYcGk1bDVyYnM2VEtpaHd5cHZ5QnNiWTJxYk1wTkxlMUxFZXgwZkZVa1VVYVpMSE5zR2p1RSUyQnV6ZktvVyUyRkslMkZsWlFPckpseTNZT2RKQVlLblBMR2RuZmtvJTJGN1hVTjRBUUlGVDNwUTNBRkRnbERmbFRYa0RBQVZPZVlQeUJnQUtuUEttdkFHQUFnZmxUWGtEQUFWT2VZUHlCZ0FLblBLbXZBR0FBZ2ZsVFhrRFFLSGljYUtVOSUyRmh5M1U1NUE5ajVzTUJ3U1lHUGdGeGp6WDlRM3FNNGVYTjdWQUM3bEhldUlmdXRYRVAyTXRMWU44NXk5alY1TjlSODJPUmZKWWxSS204bWJ3QjdLRzlKNzkzeGp6NVp0YVQ5Q3lSRGdROXQ4bTdJWHV6UzEwaUM4Z1l3THVYOXJFdXFsclIlMkZtWVFvOE1GTjNvMlpkNXZiZDhtSDhnWXdydVc5JTJGWDgyJTJGMEJWUzhlM1NJb0MzJTJGZmtYWjk1bTV0ZFRUYWpzcGZ5U0ZBQU94OFdGaW5xdmpmN1BaZmV1WTklMkZMVGIzZDFZdTdmZ1JpZjBEWDJMYnVid1h1dG4zS2U5Um1yd3Bid0M3VHQ3M1pyJTJCNW4lMkZLV3BNak5mdERaa0xtQTFKakFkeSUyRnZobXlkUzhzbGxaUEdLSlEzbDgwQjdGcmVlNzlzdmpkOWJtcXNibW0lMkZpUVFwOEIzbG5abnJzaFdTS2tpRDhnWlFrT1g5ckUyUjI2c3FscmExVXVDQlc3ZHd6c3hVSFA5UjBuUjJLOG9id0NpWDklMkJBJTJCODk3dm9Uc2ZwMDZkdnV5Qmh5andRSzFka0RrMEhka2RrbzVtdDZLOEFTU2l2SiUyRjFlTDQlMkZQMiUyRjZqYXVmRGpYUFlMJTJGRTlsUmo3VUhwVkhROTVUMDY1ZTM1WHI2d0J1QWY1VDM0TDZ3TjFwR3AwdFNOWFdmVVRxWEFRMXBJVFUycGN1JTJGN3VkeGZ6bTQxT3VWZHZmeVJqVVFCNExueUh2NW4zdnY2ZzJ0VTN2dHpyNnRMVSUyQkNCeVBXdXZsTHloZXhXbERlQWhKYjNjMnglMkI5OFQxMzZiQVF5anYlMkJwcFB5ZlUlMkJkcXVSTCUyQjk4MVA4YXlodkFjJTJCVzlTRkYzZmZaN28xZmVPJTJGNGUwN3U2R3JPWGhwWnZVRjlpNjZ5dmFUTHolMkZ4SGZ2bWZ5QmpENjVYMVA5cnR1ZXRlWURmdnViNnBhMnZFTENyeklkRGZPZVZuczhSOGtUV1RYR2xGM2VyNlh5UnZBODVwVWxtdk1mbk1jcm5iMnhuRmNOMjNacXJzcDhDS3g3dXhaaDZWS1VuJTJCUzlFSjJMY29iUUZHVzk3T2U4WlJPcXI2aCUyRmNsaXo3cm9Qd04lMkZzbW5laEhSSjZuckttJTJGSUdVUFRsTFVtSFd0NXVlT2FzT1VWJTJGdFRVcTlzVTBzV2ZUMVM2ZHhLNDFvdTZndkFIc2RMeDk5Z3RyQmZFbFlYOXBXV244SXklMkZ5cTh4RlhlQzVoc3hISmIyZVhXdkVKMiUyQiUyQnNBWmc1OG03Tlh2VkdINWhiVEN2NmJYZDlUWCUyRlhzeTVGJTJCM1pTWGZEbk5OanhiJTJCUmxHYjNHdEh5WnZJR3NITjVqJTJGOWw4NzJKNVZwWXRiUjlLUVdlbE1sN3dhd2pQVXJkSzJrYXV4ZmxEU0RJOG41dW5rdEZmdUxVeFIyUEZGdiUyQlJYY0olMkZjbW1lUk04U3YySzhxYThBUVJmM3BKVWtZJTJCdHBYUCUyQk1WTW84QUkzc1dmVHR5WFZzbnRSM2dCR3Fid1hLZXB1eUg0M1FYZTFQTTZpOHU5UjRBV3Nzekg3TGtsdlpmZWl2QUdNNHVUZG1yM0twWGNuNm9XYlhwZXJ6MzZ3bUxaRjBYd0czbFUlMkZKeXVMNzVaMEVMc1k1UTFnbE1vN0daZk45OVo0JTJGZTcyeXVvbGJYY3lnUmVJdFUyWlNiTDRsNVEzNVEyQTh0N0hteWd4JTJCUzgybkoycG9zQUxSTHJIdmlWcEZyc1k1UTJBOHQ2UEklMkZJbFZoUTNlVWtsJTJGUTEwTm1iZWJiSiUyRlp4ZWp2QUdNUW5rdlV0UTlLZnRkU1JjVjBkczZkdHRMcG5kZjhmQzZ1NUw4SmhKOUJySmhZZWFZZkd6M1Nack1ia1o1QTJEeUhrTDc5Y2Z5VjB4cjZiZ25xVzhoc1pmUXZiYTJKSTd0cDVRMzVRMkE4aDdHR3l5SjNINjJ0aWt6aVFJZlk3bER0MTNPUTBvb2J3Q1U5d0U0SnIzVnZwTGNpd2hKTE8lMkZHbWxlNiUyQiUyQjhVd09OUUtXOEFZMTdlOWRtclpIcCUyRk1PJTJGWjdYWFZTOXVhS2ZCUnR1SHNURlclMkJKR3FUZkFhNzJnRzV5JTJGTzlaMVBlQUo0cnNrV0tjdmZXZkZ2eWZ3cnNyWGZtbyUyRjQ1MHhldmVTcEpMenB4RTJ5JTJCUkZkUzNpTXllVlBlQUhhZXZPJTJGSlhobGdlVXRTZFRvdVNkeFB5eEpWNExuR21uTWtleE83MmdGcGpkenFLVzhBTzVWM1lKZk45NURCR2JuNm1rU2R2Q1RtYkdOajQ3SFQ4bDdhN3RJaDdHNEhWTjVuVml4dHl4RUZBTXA3TjF1aXZPWldMRyUyRiUyRkN4UDRDTXA3Mlg5VDNwUTNBTXA3RkUyTVU3ckdGeVdqR3hQeElyc2FhOTdrOGd0WVc4TjJsM3JMVHFlOEFleFUzZzAxMzZHOGQzTnFkMnYyQTBsNG9RViUyRkNYMWo0N0hUQnJ4MHRhUnByS3RobCUyRmRycW01cDNVQVVBSFlxN3pDJTJGc0RZWVd5TzNtb3FsYlk4eWdSJTJCQUFTJTJGNU91VTliSzJSMndMS0c4Qk81VjJmdllyeTNxZUQ0c2klMkZYJTJCamZTaSUyRm9BdTlxckpuUHQ4NFBxTHo1ekJ2QTd1WE5aZlBCaFBXcTdzYWF0eFh5U3l6WXM0dG56cG96c2JRMGJwTjBOQ3VKOGdaQWVZJTJGSEhOa2ZhZlloaTl2JTJGemdRJTJCQktWbDhSY283MkhoQzJzQWRpJTJGdnhzeTNLZThocXlxSjlYVW04Q0hvcnElMkJwamMzdlZoRThyM3lNTiUyQmFmdkxmc0xEN3pCckRUR05tUWFaUnNNVWtNJTJCd3lvb1dwcCUyQjFJbThQM2x0RWhSYkg0VjVUMWtEMFQ5UHAlMkZ5QnJEYkdMbWtvMFhtVjVERXNLZWpiejdWV0hzUUJiNGZ1WHV6NzVGME1pdG1TTmIwUnpwNzZvMGRYVVFCWUU4cVd6byUyQklkTiUyRms4U3dIRmtXOTM2czhNNHJDc2pHODQ2ckh1aFBQeWglMkJOalpvTGowYzklMkJkZk9mM0cxVSUyQlRCb0Q5SEMlMkJzdXo3N1BUZTlpelNHYkZzJTJCaXVaT1g3eHlEUlA0SHZUM3A3OU1lUSUyRkpvOHBIcjZhOEFReHlZdk9LTGRQZTY2WmZrOGFRbGFYaSUyQk9zRnRqMEx3JTJGcUd6RW1SN0M0bDhCbmw0JTJCUkpTNmRQcTd6JTJCJTJGc2VJQXNDUUp2R21UR211TjdwQjdxOGhqU0ZtWjM1QmRVdkhyNWpBbncxRXNrajJWY3A3MEhtdGpjM09vcndCREd0eWElMkI3bzIxSSUyQjZYeEpLMGhqaU5tNSUyRlZlaGZLR3RJQW84MTFqelJrbW5zalFHRjVjc2Z2VzBscllIaVFMQWNCM2VmR2RQUHVwZktPayUyQjBoaGFkT1h4dGc4VnhNbkVlTCUyQkFKNXZtVFpqWXMlMkJsQlNVZXdMdmE3dGZvamolMkJaWExGbjVXOElBTUJMV25UM3JzRlJKNmk2T3dVT3lPUiUyRjF6NXklMkJlTTFUUVUlMkZnQjIzZCUyQkhFV3pxQzR1YiUyQmI4Z1l3a3FiZnVQcHB0M2lCVE54RFl2QW1SVjU2ZWRBVCUyQlBxR3VTJTJCSWxIOUkwa0dzaCUyRjF0S1A5VTVaS096NUVFZ05IUTFWZ3pYJTJCNkxKYVZKWTFEaTJQemthUzBkOXdRNWdhYzglMkYybktlMUJuV1QlMkJrdkFHTXBxcVd0dVZ1JTJGajZTR0h4JTJGUnE2dmp1c0xHTGZwdTdIbU9EZTlqVFd3MyUyRmElMkJ0V0lDT3hXQTBWZmQwdkY5ayUyRjhuU1F6NkFQMyUyRnVocXpEY0VWZU9TNlFseXEyZCUyRmk2TEJVJTJCbnhyN3VnakN3QmpvZUtFam8lMkI2ZEIxSkRKTHJ5MTVYTnk1ZE5pNEYzdFdZT1ZYeWhXejVmWHJHVXo2JTJGOHZyN3U0a0N3SmlORFlzVWI3T3lON3ZyWHRJWWxPTzZKcTUlMkZhemdUdUJ0UHhkbTNBWXZ0OWRVM3REOUpGQURHMm95VzFxMlI1eSUyQlExRWthZ3pqcE1YMzZ5YVo1RTRxJTJCd0xzYWFoWklPb1ZOdnElMkZ6RzclMkJrY2xuYkgwZ0N3SGlwWExiNmNYZSUyRlVGSk1HdnYxd29rOW16NVE5QVZ1OHN2WTF2djBpJTJCcVdqdjhpQmdEanJYcHB4NDFtOW1tU0dKUkwxalpsSmhWdGdlY2FhODV4NlNTMjgxNDltSSUyRjYzME1NQUFwRlJXM2I1eVF0STRuOW1wYnFpY2IwJTJCRDFtQmU2U3Vmc2l0dkZlYllwZDUwOWZ2R1lUVVFBb0ZMWkljZVQyWmttUGtzYiUyQkN0VXZHY3NIbll4WmdYZlYxMXdnNlhnMjhaN1BiOHoxOW1sTDIxY1RCWUNDbThLWHR1Vk1mcjZrSHRMWTU2QjZ5SVM0ZDh5bThHaU0zcFJaNUo5aTglMkI0MW9Nc3JsN2IlMkZtaUFBRktyS0pSMFB1UG0lMkZrTVIlMkJEdWVSWFRKVzMwZ2Zrd0x2cnM4MHlsWERwdDJqT3lvUG1zVVglMkJ3QVV2T3FXanU5TCUyRmpPUzJPZEFkdGlrM2szJTJGVkR3VHVObkgyS3A3dERtbCUyRk51dHVUbFBGQUFTb2JmOCUyRlpLZUlJaDlkYmclMkJQaFpUJTJCS2dYJTJCUHI2bWpQRTc3NzN5TnclMkZNSFhKNm9kSkFrQlNWTjNTdWtFZXZWbjhQbnlmVSUyRmpFbm8zdlRIeUJSJTJCYVhzalgzZUlaMlhlWFNqaCUyQlJCSURFbGZqU2xYODAlMkJkZElZcDhqMnNkOSUyRmpGbGlTM3d6b2FhZVpMcTJKQzclMkJWdTYzOTlOREFDU3FpSyUyRjdaTXl0WkhFWHIwd0Y1V1A2aFElMkJ1aE80JTJCVWZZaHJ1SkkwVnZtM3BqUnhkUkFFanNmTG44a1czbSUyRmhaSjIwaGpiJTJGeVMwWHhTMmFnVmVIZmpuS1BOZFE0YmNKZEZiJTJGcXZpaVVyZjBzU0FKS3Vja25IQTVMNGlmRGVEJTJGaEhkVTFhZDI3aUNqejIlMkZJY2xwZGlDTzIzTmpvcUJYcjRUQUtCNFN2eUU5cTlLJTJCajFKN09Xb0w3dDQ5UDdzMFppJTJCNjJzcVklMkZNbkpFMWk4JTJGM2puRWFSbjFhMXVPTjJvZ0JRVERZMHpIcEpYcW1Wa3NwSll3OEhmJTJGT1RwclYwM0pPSUNUeVd2NCUyRnkzb1hyMjVRM2dHSTBkY25xaDgzc0N5U3hsNkoxJTJCJTJCQ28lMkZMa2ozbE4xZFdtWjNzOG1lejU3U3R2S1Bra09BSXBWUlhuOFJVazh6MkhQWHIlMkZ1N0ZtSEZYeUJkMDNzUEUlMkZTQzloZXo2dHY5dzlXM2RLNmdTUUFGTzF4cnJtalR4NWRKTWxKWXplbFVUcDZiOEVYdUpuJTJGTTl2cSUyQllGb0tROHFBUkNDcXFVciUyRjJpdUg1TEVucnJSM3ZmWHVxTkc5RHNDSTFyZ25lZGtaa3M2alUzMW5FMCUyQk1QSm5YUUJRcUtJQnY4U2x0U1N4bSUyQmtWa3lhJTJGc1dBTDNQTDJRWTNTTjlzVGVzNzF5ZXJsSyUyRiUyQlBIQUNFWXVxTkhWM20lMkJqZVMySjNMUCUyQndqMkpFalZ1Q2Q4NCUyQlpJdW5OYktMbjNGZDVRdHUzaUFGQWFLcVd0diUyRkU1ZHl3YW5mWjdvYnNLd3R2QWslMkJYdlU3OGRPd2ZzN2YwYjdhSXAlMkZVQUNQUVlHRWYlMkZLb2xISmU4aU5vM1lUOHBHck1ETjdaMXNtdTFjdXE1eVNmc0trZ0FRN0JTJTJCckszTnBLdEpZdGV1Vk1PbSUyQlMlMkJkWGpBRnZtN0IzR01sbmN5bWtTVDFwWlglMkZHREVBQ0YyNkpMcFUwa2FTMkVucFFLciUyRlRRVlQ0S2xvNEIzaXkydmJ6NjdrVjAxZHN2cGhrZ0FRdXNuWHJWeHI4aSUyQlR4TTdjOUs2Q0tIQmZwRWl5Qzlra2txUmMxSyUyRlBFd01BYkxkNXdwU3ZTbnFDSko1Zm5LckpMWno5MG5FdjhGeHJ6ZG1TRG1lTFNKTDlCOCUyRjVCb0IlMkZPTHo1emg2VDg4alJYY1J4OVBaeEwzQ1R2NE5OSVVsYVUlMkZsMDZYZUlBUUIyVm5GQ3gwJTJGY2RTOUpQTDg3ZGFIUFA2WnMzQXA4dzltWktuY3RaRk5JNXZxa3RiYjJrd1FBN0hKOFhLUTRNbjJVSkhaUzNaVXFheHkzQXMlMkJYUkclMkJTVk1aMlVIdkZpZTNYRXdNQTdGbmxrdllWTXQxS0VzODdzVEY3JTJCN2dWdUxoOCUyRnV6MGZSazNiUUdBJTJGUjRzJTJCU3g4cHdyVjJRZnltTkZoRjNoWCUyRlp5c3BKZXhCWmklMkJBV0F3cWhaMzNDN3A5eVR4bkhTcUpEWHNXNUFQZndLM1BEOGRZJTJGb0dnQ0VlTSUyRjNUcExEVEZQNzJzUzl3Mlhra3olMkZRTkFFTlJ1YlRqVnBuJTJCUUJMUFZxbG03N2lpUFRZRjNyV2dwa2JTVE00a21iNEJZS2ppMkQ1TENzJTJGckVvdGZPMllGN3BHJTJGbHNpWnZnRmdPS1l0YmJ0RjhqJTJCU3hJNU9OWTFkZ1pzVSUyRk9Wemx6N0g5QTBBd3kwdCUyQnh3cFBGY29OUnNhWnIxazFBdDh4MTh5SiUyRkM0bjZqYVBPMVhyRG9BR0o3cWx2YWJKTjFQRXR2bExUM2tLVHdhaTclMkJrQ0YxbEsxWU1FQU1BREolMkZKdmtFS080YncyRWUlMkZ3TTM5JTJGTUJ6M3BycTl4JTJCdzNBRGd3RlRrZTM0bTZSbVNrTXgwUW5mam5LTkhyY0E3NTg5NW9Vc25CQjd6MVR4eERBQkc0R2k2JTJGSkZ0THZFUXFCM3l5cDg3YWdVZVJma0xKRm5BJTJCWHBzdW9wbEJnQWpvN1FrJTJCcGFrWHBLUUxMWWhYVVlmVW9HN1dkaWZmNXVXVFd0cGU1QmxCZ0FqWSUyRkoxSzlkSyUyQmlWSlNETE5XN2R3NW93UkwlMkZCTjgxODZYZEs4a0xOMTA5ZFpZUUF3c2lLTE9MYnVpQ0xsNlhOSHZNRDcwMzFuU0VxRjI5NWFWYlc0JTJGUmJXRndDTXJJcVdsZmR4WTVmbmFublF6d2dmZElHNzI1bGhUOSUyRjJBNU9jeFFVQW96RWoyVGRKUVpMN2FYJTJCdE82cDhSQXZjcERNQ2puUWdIOGMlMkZZMlVCd09pb211RFhTZW9rQ1IxVU9YbmlLU05XNE92cnM3TWtIUjd1bWFGYURsN1d3VzhWQVdDVVdITkhuMXolMkZReEpTN0JyVUZlOUJGWGdxVXRDWHowMSUyQk5Vc0tBRWE1dUNLJTJGaGhRa3ljNGFzUUozRDdmQVRmcDc1ZFBsdjJGQkFjRG9tdGJTY1klMkJrbFNTaDR6ZWROJTJCZmdBeTV3cjYwdGtYUmFxQ202N0VmVzJ0clBlZ0tBTVRqbXVuNU1Db3I2JTJCJTJGS3ZQdUFDN3o2a2I1NmtLYUdtR0R1WGRBQmdySlNXUnRmS0ZQelFaTGIlMkZYMzd0dDhEanNEJTJGJTJGdm1QYTB2YlY3RklBTURZbVg3ZHlyZHlXaDU2RFMlMkZ2OUhIeSUyRkJXN3lnSDglMkJaajluZHdLQU1UN3lpaXVma2w2NDR4ZGd3eXZ3M0xuSFYwZzZNZER3NG56VTkydldFQUNNcllwODd6SkpHMFBQWVglMkIlMkZBTnRuZ1h0JTJCNEZTRmUlMkZ2VXU2WXZYdk1VdXhJQWpQRUV2dnlSYlpLV2haNkQlMkI3NXZvTGElMkZTJTJCakJQcnpFemYlMkJYM1FnQXh1a1lMUDhWS2VoVTM4Y2p2UGM5Z2J1ZEhPcmFpZkl4bDg4QllKeHNzJTJGSmxrcllFSGtQbCUyQm9WempoMXlnZnNpUlNZJTJGSWNURVRMcTNjdG5xeDltRkFHQjh6R2hwM2VyU1RhSG5rTTduVHg1eWdlZnV5MllWNk8lMkIlMkYzWTFMTndBdzdzTVV4MkkzRzNxQkt4JTJGczVYT2xVakVGRGdEakxCJTJGMUxaYlVHM2dNODRaYzRDWSUyRktkQlR2cmFwaXpzZVlkY0JnUEUxZmZHYVRaSiUyQkYzZ00yYlZObVVsREt2QjlqZTFGemNXRFN3Q2dZSTdKZGtQZ0NhUkt0dTc1Zml4N0xQQ3VNMnFuU2o0cnlMVVM2V2IyR0FBb0RGYVNDdjZMYkhzYnFQZFk0RDVoMjhzMXlFZU5GcG5lcldXVGIyT1hBWURDVUhuOSUyRlk5SkN2eGp6U0VVZUtSZ3Y4RDIlMkI4T2I3JTJCeGhsd0dBUXVxdnNLJTJCTXVud0lFM2lnWDJCejUlMkZJNUFCUmVmOXROWWI5JTJGSGR3OVAlMkZ2aVFSVzRYSE9ERENsRmdRTkF3UTFYUGFXM1Nob0lPWU00OGhQM1clMkJEYnY4Q21Gd1NZenpPVmk5dmIyRlVBb0xCVTNkSzZRZEk5WWFkZzJmMFd1SmR0eTJnZk4wOHZZamVaNU93cUFGQ0FVM2pvdDFVMVpmWmI0RExQaEptTnJXQVhBWUFDUFVaSEh2cEhuUHVmd1BjMHBvY2diN3FUWFFRQUNsUGwzOHIlMkZKQ25rWHdtOTZKbXo1a3pjVDRFSE9ZRjNWOWUyUGNRdUFnQUZPb0czdHZiTGRWJTJGQUVVVGxaWnE1endJM1dZQUY3bmZhSXNYc0lnQlF3Q1VlNmE2UTM3OTdQcnZYQXQ5d2RxWkswcUhCTFFyWjNld2FBRkRZWXZld0MxeFJacThGSHFlaUlEJTJGJTJGanZuOEd3QUslMkYxZ2REZHdSZEFDN2ZNbDhwd0wzVkJ4aWdYc3F0bnZZTlFDZ3NFMWZ2T1lwU2Y4WDhBaSUyQjkwdm9pZ1A4JTJGTnUxdW1KcFc0NWRBd0FTTUlTR2ZjWDBpSFVMWjA3ZWM0RkhDdTRSb203aTgyOEFTSWpZTGVUUHdjMEdVclAzWE9DdW8wSkxJM0w5bVYwQ0FCTFNZRkVjOU5DVmltem1iZ1h1VFUwcG1WNFlYaHplemk0QkFNbVExOEJLaFh6YmE0JTJCTzNLM0F1JTJGcFd6NUNySkxRczBxV3BEbllKQUVpRzZZdlhiSkwwWkxnSiUyQk80RmJ1NUhCSmpFJTJCc25YclZ6TExnRUFpU3F4Y0FjdjAlMkI0RiUyRnZ5eFBLQWdlSHdvQUNTdXZ5M1lBbyUyQjF4d0wzSXdQTWdzJTJCJTJGQVNCcHMxY1Vib0diZElUdmVPVDM4NyUyQkZIdUFsZE9QemJ3QkkycEU3SCUyRlNYajh2V0xjZ2NRb0ZiekFRT0FBbXpOVlcyU2dyM0FWVFJqaSUyQnlCVjNnVVQ1YXhhNEFBTWt5bzZWMXE2VEhRbjMlMkZGa1ZIN1ZyZ29YMEdudU1XcWdDUVdNRU9ZUGI4Q1h6SFkwUW5CNWJCNDZ4JTJGQUVncWZ5emN0MjclMkZLUEI4bVlWM0J6WjNDaHdBRXR0aEZ1NHhQTkklMkZDanh5bjhiR0J3QWtSaHp3TWR4MTZEOG1jRmRWZUFsUTRBQ1EzQ0VzRHJqQXZmcTVBamVMcWdNOGZYdUNYUUFBa2lrZkJUeUVtZjJqd09VZTNBVHV4cGZZQUNDcERsN2N2bFpTVDZCdmY3STNaVXAzRkhoNGw5REwwaWtLSEFDU09vUktidkpnbjBxMmRwdFY3cmlFSGx5QjkwNjZidVU2ZGdFQVNDNlhQUmJxZTAlMkJiVjBmYlF3aXV3RHN0NUFmQ0EwQnhUT0glMkZGJTJCeDdIMGhWNzdnVG00ZjJKYmIxTEgwQVNQd0VIdXl4M0NLdjJ2RVp1SVZWNEtZdWxqNEFKTDdCZ3oyV3glMkZHT1MlMkJnSzdETndjJTJCdGs1UU5Bd3Z2YjRuQ0hzVWhWeno3TXBJcU5EZ0JJVkljRlBJeVplM1gwWk5POENaSkt3enB0NHhJNkFDUyUyRnhRSSUyQmxwdXFva245UFdXaHZXODNMcUVEUU9LUDVYSEl4M0k3S0VwYlhCcmEyNDc0REJ3QUVpJTJCT29tQW5jSlBLb20zOVZoTGVhWnR2WU9rRFFMSnQycndoMkdITTNjcWl0SGx3RTdpYjliTDBBU0Raamw3eFdLJTJCa2JZR080S1hSZ0R5NHo4QmpWeDlMSHdDS1FwREhjM2VWUmxHQUUzaUtBZ2NBQ2p6SkE3aDdXUlFOS0xnQ2oxTkdnUU5BY1ZSWmtKZlFYU3FMOGhaZWdhZkVCQTRBeGRGa2NaZ1R1S2swaWdJczhEaW13QUdnU0lvczFPTjVXUlFIV09CNTV4STZBQlRGQUs1Z2olMkJlbGtTbThBayUyQlhVdUFBVUNUQyUyRkJtWnJDeXkyS1BRM25hOExSNWd6UU5BVVFoMElQUFNLTVRmUktlaThINDZCd0JGS2glMkZrJTJGQzNsbzFTVTZnJTJGdGpmZW5Bcng5TEFBVVo1R1ZoZmklMkJYZW9MY3dJZllBSUhnQ0lwc2pDUDU2YSUyQktQYUI0QW84Q3ZEMnNRQlFwTUlzY0ZkZmxFcUhONEdIZVBNYUFDaFNvUTVrWVY1Q2p5aHdBR0FDVHpDVCUyQnFLMGUzQUZIbFBnQUZBVVF2ME0zRjE5VVlpM0ZUVlI0QUJRRk1kekMlMkZRU2VxUyUyQnFGOVJjSGV4OGRnbXNPd0JvQ2hHOEpKQTMzZCUyRlZKWVBjQUtQVk1XcUI0Q0VkMWhUVTBwU2VhQnZ2eSUyRmFOaVhBMjlERlhzM1NCNEJrMjd6NWtTcEpVWWp2M2FSdDBYVE43cEVVTTRFREFKS2sxJTJCTEtVTiUyQjd1JTJGVkYxdHljbDdRaHFBR2NDUndBRWklMkJ5JTJGTFJ3Mzczbm9oMnplRmRRRTdoRlRPQUFrUFJqZWNCWFU5MnNLNUlrODdBS1hNNEVEZ0NKTCUyRkNRcjZaYXZMM0EzYXd6ckRmT1olMkJBQWtIU3hSY0VXZUJScmU0SEw0NkFtY0plWXdBRWc2Yk9ZZThDWDBKOHRjQVgyR2JoVTVYVjFhWlklMkZBQ1Jhc045Q2wybjdsOWhjZ1YxQ2w5SzV5ZXRtc1BZQklORWxGdXh4UEk2dE01S2tLTEJ2b1c5JTJGOTZraldmMEFrT2dHRCUyRlk0bmslMkZ0dUlUdWNZQUZibjRFaXg4QWtzeURMZkNEeTU3OUhYZ1UzQ1YweVowSkhBQVNhbTFUWnBJVTdDJTJCS05sbHpSMThrU1hFJTJCSDk0RUhsSGdBSkJVcWQ2Z2olMkJGZDBvNmJ3S2ZrejRRM2dSc0ZEZ0FKWlI3MDk1ZzZueXZ3aXEySCUyRkUzU1FHQUI4Qms0QUNSMkNBdDRBbmQlMkY4cmtDdHhVckJpUTlIVmdFVE9BQWtGUUJmd3pxWm84JTJGViUyQkE3UEI1WUJnZXRiNWo3QXZZQ0FFaGtpd1U4Z2V1SlhRcmNud2d0QTdOOGhyMEFBQkxwdUdEZnVmbXVFN2c5SGw0S1RvRURRTktPM0UxTktVa3p3eDNBZDV2QUZkd0VIc1ZHZ1FOQXdxemY4dENMSlUwSTlmM25vMTAlMkZBN2Z3Sm5DUExNdXVBQURKa282QyUyRnZpejklMkJERjdXdDNLbkNQNHZBdW9idG5YREoyQndCSTByRTczT0hMNUUlMkJZNURzVmVMNDB2RXZva2laMUw1akY3OEVCSUZIOUhmTDNsJTJCeTVybjZ1d0E5dTd0Z3NoZmRRRTdjVWw5RUJJRm5DTFhEJTJGeDAlMkIlMkJvMTJhUGNCdm92TTVPQUFrcHI5cWEwc2tIUnRzQU5FZUp2QWQwVHdVWEgxSFhzc3VBUURKMERXajUxaEpwY0dld01UJTJCNkI0TDNOdzZnZ3ZEZFRLN0JBQWtaQUQxMUVraHYzOUx4UjE3bThBN0FzempjRzZwQ2dBSkdicWtlUUclMkYlMkZiakhKNnpaWTRFUGVLbzl5RE1hRzJBS0I0QkVITEE5NU9QMW96TmFXcmZ1c2NDblRUejJMNUo2d2xzUDluTDJDZ0FvYk9zV3pwd3MxJTJCeGdBJTJGQ2RyNUx2JTJGQmw0YzNOZTBrTUJ4aktQWFFNQUNuell5cGUlMkJYRklxMkFBaTIzdUI3eERpWmZRVHZDbFR5dTRCQUlVclpYSFlIM2U2cmRwZmdZZjRSYmJ5RFZ0c0Ryc0hBQlJ3ZjhtQ3ZscHFjYnklMkZDZHlEJTJGQ0tiRzVmUkFhQnd5MXNtS2VTZmtPVTNUNXl5WnA4RkhublVFZVRpTUwyYVhRUUFDbE5uWTgxTVNkTUNQb0Y1OVBEbU8zdjJXZUJUVDJ4N1ROS1dBUE41OVk1YjlBRUFDa3dxOWpORGZ2JTJCMmg0JTJCM2R5dHdXNlRZcEZVQjVqTWw5NExlazloTkFLQUFKMUJUMEFVdTI3MlhvejBHNWJvbnlIeGlPNFBkQkFBS3JMenI2dEtTWGhsMEJ2TDdCbFhnWm41M2tBRjU0R2Q0QUZDQXVnJTJGcVBFWFNsS0FMM05OM0RhckFCJTJCTGQlMkY4VXdSbkM5dk91TTJxbnNMZ0JRT09JbyUyQk9IcXlXbExIdmpib0FwODJySUhIcGEwUHNDUTBqYWg3MVhzTGdCUU9DTDVXU0clMkZmelBkdGVkYzlqaUl5aVg5S2NTZ1BQQnZPZ0pBSWVtdXI2bDBxVGJrRE9KWWR3JTJCNndDWEozRUs5akQ2ZlhRWUFDa1BlNHRNVjh2M1BKVm5rUXl2d09BcnppMnlTanM0dG5QMVNkaHNBS0lTWnlob0RENkMlMkZWJTJCWDNEVzBDN3ltN1cxSWNZbDZlajE3TGJnTUE0M3dzM241enJZYWdNNGoxd1BPZkFUNm9BcSUyQjZwWFdEWEE4R2VjSmozc1N1QXdEanElMkJ1UTN0TWxWUVU5Z0p2djllUHNhTiUyRiUyRm9ZTDhITnhseDY2dno4NWk5d0dBOFJORnh0VlF0N3VIVmVDJTJCaiUyRiUyQncyS1hNV1RnQU1GNjkxZFNVY3VtYzBITklwWVk1Z1h1VXZ6M1l4U1BPJTJGQUJndkd6b1hmVktTZE1EajJIOWxNVWRmeGxXZ1ZlMXJGb2wwOU9CQm5kODklMkZ6c2k5bU5BR0RzeGJJTGdnJTJGQjlic2Q5MlVaZW9HYjVITGRIT3dDU3VsOGRpTUFHT1BlV3FSSTBybkI1MkIlMkJ5NzclMkI5MmdRWndBM0I1emZoZXhLQURDMnV2OVVjNnBjaDRXZVE4cFNCMWJnQSUyQjYzYUI4amZKR2J5MDFkQUdDTVJmNDJRdEFqRlMwciUyRjNwQUJYN3dzbzVuWkdvUE5VSDM2QjJzSXdBWUc4JTJCY05XZWlTOXlMdyUyRlolMkY5VHNhMUolMkZqSHU1bGROZUZQdiUyQllNbllyQUJoOVpXWGVKR2x5OFAwZDY1WVJLZkE0RHZwejhLcXVhTUpDZGlzQUdJdVp5Ym5xS2VXakFWOHhJZ1clMkJMVlglMkJCMG5iZ2owVHNwZ0ZCUUNqckx0eHp0RnklMkZiJTJGZ2d6QzdkJTJCcU5IVjBqVXVBeldscTN5blJId0dtZTNYbE85bkIyTHdBWXhiSFQlMkZaMlNMUFFjZkpDJTJGJTJGb29HJTJGeWNHZlJrOXN0ajRTUmtBakZacExWSms4cmVTaEJURkkxemdrZHROWVo4UiUyQlR0MzNGd0FBRERDdXU3TG5pN3BDSkxRbG9xSjhhQWVKRGJvUXBwNll0dWZKWHNxMUVSTmVrbnVudXg4MWhZQWpNSXhOdGI3U1VHUzdMZlczTkUzb2dWdWl4Ukx1aTdvV0tXTFdWd0FNTEs2RyUyQmNjTGFtUkpDUlQlMkZLdkIlMkZydER1aVFjV2Z6cmtJTjEwNWxkQzdOeldHSUFNSEx5SG45SVVvcjJWbiUyRlVyeVdqVXVCVHkyZiUyRlh0SzZvQU4yJTJGMmQyTndBWUdlc1d6cHhzMHR0SlFwTHIxc0g4Zkd4WUJXN056WGx6TFE0N1lIdkx4dk9PcTJhbEFjQ0JpJTJCTFNmNUkwaFNRa21RM3BLdmVRdjFYdFElMkZ3TGl0Q0VnZjcwZTFocEFIQ0E4MUJUVThyRVZjMGQ0bnpmd0pBRzVDRVhlT1hUcFRkTHlnViUyQm12UUJyNjB0WWIwQndQQjE5YXc2VDlLTFNFS1MlMkZQYnBONjUlMkJlbFFMM0ZwYiUyQnlVdEN6em9HYmxEZTElMkZMZ2dPQUF4aUZaUHl5NTlrc1hFTyUyQnVoME5MM1Q5aXJUdEU4NHQlMkZ3QmdXRG9iNTV3czZWU1MyRDRWeXVNaCUyRjB4N1dBVyUyQmVjTGszMGphRW5qZ2M3cnJzJTJCZXg3Z0JnT0lPZ1gwWUt6dzNGOTFZdVclMkYzNG1CVDQ0YzEzOXBqMG0lMkJCUG1VeWY1dmFxQURDTTZkdjlOU1R4YkpjTTc4dmh3eTZmV0dvbWRtVzdXMnQ0VmpnQU1IMFBXOTVzV0hjNUhYYUJiOXk4JTJCUVpKM2NHZk9ibGZ4bWZoQU1EMFBieXpHYnQ3JTJCdUtWYThhMHdJOWU4Vml2WFA5RCUyQmpxJTJCdXo3RFBYd0JnT2w3T0ZQZ05jUDlUdyUyRm84OXZZNDZ0SlgzSXpwbkFBMkklMkZ1QmRrVDVINDJTVHluTjNJYjlpQjhRQVUlMkJiZG1xdSUyQlZheFRiUXkzS04yWHBpQUlCOURIMlJmMFlNTzg5M1E4WFN0bUhmR08zQXYwRnR1b1p0SU1uMWVXOXE0bWs2QUxBSG5mWFpVeVNiVHhMUHE0MTQlMkJKZlBSNlRBJTJCeVA5V05JQW0wSnp1bnBYdllNWUFHRFglMkJVWm0wcGRJWXFmcDk2bXFpYk52SHRjQ1AyUnglMkI5OWx1cEdOSWNudDg1M3pqJTJCR3BPZ0R3UExuR21qZks5QXFTZUw3NHg5YmNuQiUyRlhBdDklMkJkdVY4bVUyU1NRY3JYZllSa2dDQTdmNWFkMVM1M0M4bmlWM3EyNklmSGVpZk1TSUZYbFd1RmtucjJDU1N1WDJrcXpGekJFa0FnRFIxOHFSJTJGazNRa1Nlemt6bWt0YlE4V1JJRmJjMGVmU3o5bm0waVNKc2p0czhRQUlIU2J6cHR6c0Z5WGtNU3VwV2slMkZHb2slMkZac1R1NHgzRlhFWiUyRm5qZDNOODU1R1RFQUNObEFmJTJGeDVTWHd2YUdjOWxrcU55RTNRUnF6QUs1ZDEzQyUyRlg3V3liWjg5bjRxOFNBNEJRNVJveWMxM2lsem03Y09rWGxkZmYzMTFRQlM1Skh1a2JiSjduMUhYVlo5NUFEQUFDTENsejJkY2tjVyUyQk0zVXJYdno1eWY5WUlxdG8wN2RlU25tQVRiV2RtWCUyQnV1cjZra0NRQWg2VzZvZWJ1a09wTFl6WXJLSlIwUEZHU0IyNG9WQTNMN0Z0dm91YlBRUTJMNUYwZ0NRQ2cybm5kY3RjdXZJSWs5RG5WZkg4ayUyRkx4cnBGeGhKMzVXMGhVMzE3QmJUUDNVdHpIQURBd0JCR0JoSWYwM1NkSkxZZGFMenh5cktqMnNwNkFLdldOcVdrJTJCc25iSzNuWlJ4SDMlMkZHbVRDbFJBQ2htdWZyTXElMkJTNmtDVDIwTiUyQlJ2bkdnZDE0YjlRS1hKRSUyRjdOeVE1bSUyQnk1UkRLNXJjWWQyZ0FVclNlYjVrM3d5TDRubmphMko1dXRwJTJGeUhJejhkam9McUd6cFdtZXNXdHRuem1QNWozY0k1TXdrQ1FER2EyTHZ4TXJsZVRCSjdIT0t1cWJxbGRVTWlDbHpieCUyQiUyQnZzOUYyVXBiT3gxYzZaNmNBaWt5dUlUTlhzZyUyQlR4SjdyTUIlMkJscmhxTlAzalVDcnp5eFBibEpuJTJCSWJmZThyV2c2TTllUXZZZ2tBQlROY2EwcFUlMkJxeUg4aFZRaHA3dEh6NjRwVnJFbFhndGtpeEs3cVNiYmVicjZ4Yk1QZFlZZ0JRRk5OM2p6NHRxWllrOW5LQzR6NXFOemlMUnZPRjkxcnBEOFZUeW5ZMU1SWGxmJTJCYTF0Wnl0QWtpMHJzYk1xWko5bENUMjZ2NnFwUjAzSmJMQVo3UzBialU1dDFmZFhXM1hZZHN1SlFZQWlTM3ZNMnFueXUwbjRuYXBlMld1ejlvbyUyRmlJckd1MDM0TDNsVjBycVpsUHVzbUdsU3pzYjU1eE1FZ0FTcWJ6M1clMkJJNTMlMkZzNnluZFVuTmglMkIlMkZXaiUyQkRhTmU0RHUlMkJPdiUyRmZiTXpkcE0zam42NWJPSE15VVFCSTFQVGRVSE9oWkc4aWlYME1yNjVQMnlMRmlTNXdTVXFYREh4VjBtWTI2VzVlbFBMMFY0Z0JRRkowenAlMkZ6UXNuNWd2SyUyQnJhNDZzZTFYbyUyRjJYakVtQlQ3bnV3VTV6JTJGeDdiZEUlMkJuYWZhZVhHUE5PUVFCb09BUFYwMU5LVXZIUDVYRVV4YjN4Znl6b3oxOWoxbUJTMUk2THYwQ1UlMkZoZWRncjNhOWMzMWh4SEVnQUtXYTdud2N2bE9vMGs5bkU4bHg2dUxKJTJGOXk3SDR1OGFzd0NjdiUyRiUyRk02OFZuNFh1T0o1TDk4cXJIMklLSUFVSkRsM1Zoemp1VDhaR3klMkZ3N2MlMkJNOUlQTFJuM0FwZWtkTW5BRlpJMnNZbjNlTnBXVSUyQjdidmtzUUFBck51Z1Z6ajNYNWo4U3RvUGZUM3ZwTDVaWnB2eGlydjI1TUMzektkUTkyeXNTWEglMkZidXdxN0dHbTYxQ3FCZ3JHM0tURXBGOGElMkZsbWtvYSUyQiUyQnR2JTJCNXl0V0RGUWxBVXVTVkZzWDVGcEE1dDZiNU80ZjMxOVklMkJaRWdnQXc3b2NqeVVwNjdZZVNaMGhqdng2dDJGVDlrekh0MDdGJTJCaHhWTDIzS0s5U1cyOVY2VlJXNiUyRjJ0aDQ3RFNpQURDZWNnM1pqN2lyaVNRR2RiWnoyVmhPMyUyQk5TNEpMVUc1VjlUYktuMk9KN2RmaUFsJTJGN0VGNDNQOWdHQVhFTzJUdExsSkRFb0QxU2UyUDZ6c2Y1THg2VWdaclMwYm5XTEwyT2I3OVBaM2ZkbXZrd01BTVphOSUyRnpzaTEzNnBhUTBhUXhpJTJCSTc5NDJQeHUlMkIlMkJDS0hCSnFpcWZmYlZrSFd6NmZTd0syWWU3R21vJTJCUUJJQXhzckc4NDZyamxOYUttazZhUXpLaXVwbEhiOFpqNzk0M0FyY21wdnpadUtKWFB1djhhJTJGbDZqTUx5UUhBcUI5dG1qS2xBd1BwWmtrelNXTndrVVZ1SHhtdnYzeGNQMk90YkdtN1FhWSUyRnNBYjJLZVZtUDhrMVpPWVNCWUJSYXlMSmNqMzJZN2xlUlJxRFR1M25GVXZiV29Nc2NFbXl2RjhzS2M5QzJLZkpybWhaNXpuWnc0a0N3R2pJTmRSOFVkTHJTV0xRZWl5T1B6bWVMMkRjQzd4eVdjZjk1cnFHdGJEZk03MFpscmNiMWpabEpwRUZnSkhVMlpoNXQlMkJTWGtNUVFqc2pTbHlxWHJYNDg2QUtYcEhScDlFbHU3aktvSmZQU2RJOSUyQjZYVjFmRE1Vd0lqb2FxeVpiMjQ4cDJKbyUyRnRiZkY0MzdyNFFLb3NBblg3ZHlyZHo1dmVHZzJQemM1SFhmZE81SkRPQ0FKJTJCODVKOHVkbjRzTmZmeiUyQiUyQktFM3JkeENnZTlRbWQlMkYyZFVtUHNESUdzM2pzUGQwTm1hOFFCSURoNm02Yzh6THplTGtrUHBZYm1yc3FsN2IlMkZ0QkJlU01FVXVDMSUyRlpKdWIlMkZwbTFNZGdUUVB0d1owTjJFVWtBR0twMUMlMkJmTWRJJTJCWFNhb2dqU0dKWSUyRm5GSmprRnZvdnFsdmFiM1BScjFzZ2dUM3FreTdvYU1uenhCTUNnYldpWTlaS1V4N2U2ZEFocERIbDAlMkJ0YTBKUjElMkZLcFJYVTNqMzJvNzBJVW1iV1NpRHJ2RXZkdFZuMzBjT0FQYW5xekZ6UkY2cG0lMkJVNmpEU0dQREQ5M2RJbG55cXN1aXd3MVRlMFB5bjVaMWt1UTFoWHBtOTJObWJmUlJRQTlxWnolMkZwd1h5dTFXU1VlU3hyQ090QiUyQnR2UDclMkJiZ3A4UHlxZkx2OHY3cE0lMkJ0S1Zscm0lMkZuR3JMbkVRV0FYYTFka0RrMFN1ViUyRkslMkJsRnBER3M4djVEUlV2N1R3cnRaUlZrZ1Z0cmE3JTJCaSUyQkNKcDdKJTJGdWttQnBsMzZSYTZ3NWx5Z0FQR3Zkd3BrejBwSDl6bVhIa3Nhd2JJdGp2YmRRdnJoVzhBVXVTVldMTzI2WHVMbkFFSlc2JTJCJTJGJTJGbUdyTnZJUW9BdVFXemprekZKYiUyQlhOSXMwaGpsUW1sMCUyQmJXbjc2a0o4YlZFaEI5ZlhaeCUyQlQ5RmVXMEpDazNIVjFycUhtSFVRQmhEeDV6NW5wVWVvMlNjZVF4ckN0cVJqb3VhSlFYMXhCRiUyRmloTjYzY0lqTiUyQkd6NmNFcGYlMkZJRmVmJTJGU0JSQU9IcGJKeWRTWGw4cTZRWGtzYXd4VEolMkZ0eTElMkZaQnNGUGt4VkxXM0w1Zlp6MXRLUW1adSUyQjN0bVklMkJWZWlBTUxSdlNCN2dubjBlMzRxZHNDSDBQJTJCdWF1bTRyWkJmWVpTRUdOUFJ0bjh4NmU4c3FLR3ZRSFA3ejY3Nm1vOFJCVkQ4Y2czWnVqalM3eVJWazhZQmNIOHNIJTJGVjlvdEJmWmlJS2ZFckxRJTJCdGxkaEdyYXRpeiUyQkJjNzZ6T2ZKZ2lnZUhYVlolMkJ0ZFdpWnBNbWtjV0gyYjlNN3BpOWRzS3ZoRGU1SlM3V3lzdWNiYzM4YjZHdWFxbEs2dWVycnNJbXR0N1NjTm9IaDBObWJlYmJKdnlWVkNHZ2Q4blB4RzlaTDJpNVB3V3FNa0JXczlwUmRMZW9JbE51eXp0WGQwSDdadFdkY1p0Vk5KQXlpS3NySE9odXdpYyUyRnNlNVQwaUhzMVA4RXNUZEV4UGx1NkdPYWZIaW04V3o4TSUyQmtLM2U1cEhxdDklMkIyRmtBUyUyRmJYdXFQS3BreVpkTGVrTnBERWlZbmxVVjdWMDVSJTJCVDhvS2pwQ1Zjc1dUbGJ5WCUyRkptdnRnRTdiYXl5djI3c1cxTlFRQnBBOGYxJTJCWVBhUmkwcVRmVTk0amVtRDhVcExLTzVFRkxra2JObSUyRjVxS1NWTExnRGNyZ2l2Nk9yc1dZJTJCVVFESjBkazRPMU9TOTd0Y09vazBSa3hyNVFSZGxyUVhuY2dDUDNyRlk3MXU4WnNrOWJEdURzZ2t1UyUyRnVhcXpoRyUyRjVBQW5RM3pEbmRQTHBOWmtlUnhvalprbyUyQmlDNjI1bzQ4Q0h5UFZMYXM2elBSeDF0NEJTOHY5MjEyTm1lOTRiUzFmZ2dFS1ZGZDl6WHRpaTVkTHFpQ05rZU9taTZjdlhya21pYTg5MFY4RWM4bHlEZG5Ga2hwWWhpUGl0bnglMkYlMkZuWFRiMXo5TkZFQWhXSGR3cG1UVSUyRm1TNzh2ME90SVk4UTY1cm5wSiUyQiUyRmxKZmYxUmtzTTN5VXRLb25mSlJPR01qRk5USmVsN08lMkJ1enB4QUZNUDQ2RzJkblVuSEpQWlQzcUhnaTNlJTJGdlR2SWJpSkslMkJCU1pmdDNLdHlkNG9hWUQxT0NMbnBEUE05SHR1dndxTXI2N0d6QnZObzdza3pTU05FVGVneU44MDljYU9yb1FQc2NXeTJMT1h5dlU1MXVXSWx2blBlcTM4bjJhMHRHNGxDMkNNOXJxNnVuUnU4cnJQeVkyVDZOSEsyUFdSNnFYdFgwMzYlMkJ5aWFBdmRGaW5LdE5VdmwlMkZocVc1NGk2UDhycmdvcmw3WDhoQ21CMGRaNlRQZHp5JTJCaDlKODBoajFMUlVMbWslMkZ4eVJQJTJCaHVKaW1XTDJDTEZxYjc0UWttUHN6NUgxUEZ4U24lMkZ1cXE5NUQxRUFvMWplRFprTExLOCUyRlU5Nmo2c2wweWNBN2lxRzhpMm9DZjI0bnFNJTJCZVlxWmJKWld5VmtkNnNkaiUyRlJ2M3hSVW4lMkYzQWdvSkxsemo2JTJGd2dZR3JKRjFJR3FOcVd4ekhyNXkyYk5YZHhmS0dvbUxiUXRWTDIlMkIlMkJRNjBPczFaSG44Z3Z5SmRiQjNkdUFrUnM0ZkdDZ2xmSWVrJTJCUFhCNHVwdkl0eUFuJTJGdXJMWWglMkJ6MlgzczJ5SFoxOXdhVXJxJTJGSzlsOWp5UjdZUkJ6REVIYWkydHFUcnNHMlhtdlR2a2xJa011cCUyQlhMV2t2ZWdlUlIwVjY5YXF5UGQlMkJ3S1ElMkZzVzVINThUUHBIJTJGSnBTYTA1aG95YzRrREdNTFVmVTVtZHU2d3ZydE51b3p5SHBQRDFaJTJCM1RKajgzcUo4WjhXOW8yUVBWMTczbW5Rd2kzalU5TXIwdWNxbnlyNWtyYTM5eEFIc1plcWVmMHhaZDNyQ3g5ejlrNUxLU0dRTU1wZldLcVVUaXZYUnlVWCUyRlRPMnUlMkJqbiUyRlR4YmZJcjdVTnRyYVhmYWU2aVZ0ZHhJRnNMTmNZODByM2YzYmtvNGpqVEhUWjdHZFdibXM3UTlGZTIwaGlKMm5Qdk0yTjd1RzlUd0dKN3ptMyUyRk9CYlIlMkJ0WHY3SVJ1SkE2THJyYXlyejVvdE0lMkJvQ0slMkJDUEx3bXczZTI5VlM5dDNpdm90aHJJdHUlMkJxelg1YnBJNnpxTVZsVlQzdHNGMWN2YldzbURJU3FzNzZtU2VaWDhSSGVlSFMzdmxyWjBsNzB4JTJGdGdDdHdYS2NyZGslMkZtMXpNNWhlWSUyQlpKWjdTJTJCNHYxOHlkZ2oxUDMlMkZPeUw0NVMlMkJKZWtzMGhpWDl2NU5aZmx4RGRiY25LZkFpOGphcHN5a2RJJTJGZExta09xM3pNYkhIcEsxc25UTDdpOE9ZN2U0Z0R4WHg4U2ZYWVIwejZtS1J5RWhrWHE5VmJOcSUyRnFsdFlOUVp5cmhMWjExemZNZlVHayUyRkoyU0RtZXRqNm4lMkZNJTJGbWxGVXM2cmkyVzJ4Z0MwbzZIajB6c2ZLZVpmOGFsUTBoazNEeGo2ZlM4eXV2dmZ5eVlpdzBoYnVXdSUyQmpsWldmeEhTUldzJTJCVEZmY1BlNCUyQlllcldqcHVJdzBrZmlDb3J6a2ppdnclMkY1YW9oalhHMU5ZN2pWeGZibmRZbzhMM0lOV1RyWFBxTiUyQkQzbWVGa1NXZlF2RlMwciUyRjBvVVNGNXhaMmRGcHE5SVdrQWE0eTV2WnElMkJ0YkdtN0ljQ0JLRnk1aHN4YlhYWk42RG1Nb3g3SnY1N3ExNWQ1UUFvU2NjdzQ5JTJGaWpORER3S1pmZUxuNFdWaUF0VnZ3JTJGRjZQQTk2S3JNWHVwWEo5akx4aFhHJTJCVzZNalhnJTJGMG1Sb3hCMU44NDUyajMlMkJwSnZlSmxjSmlSUUslMkYyTFZrbzVQQkh2dXdnS1FjZzJacjdyc3d5UXg3amJMJTJGSnVwUG4ySklrZWhUTnp4d01DJTJGbW5TUiUyQkxpdDBGeGJ1YVQ5YlNGJTJGS1pZQ2wlMkJTU2RUZGt2JTJCJTJGU08wbURJZ2R5NXg1JTJGbE9mN1B5RzNkMHBLazBqQlZkZml5czNWcjdVVkt3YUNUb0dGc0tQRWEydExjb2R0JTJCN1drQnRJb0dCdmx1ckklMkZwU3NQV2R6JTJCZCUyQkxBYU90c25KMHhqeTZSOUNhS3UyQmI2OVlObXpZdk9IckZZNzFFZ2VjODJUUnZ3c1NlVGNzbHZaSTBDa3FmbVc3STUlMkJPdmh2WXpFWXpCeWJ0a25mVTFwMGZtRjB1cTU3aFkwQjZ3ZExxdTh2cjd1NG1DaGJxYnJqTnFwNnA4MjI4bDFaSkdZWjU5VyUyQnhmcXppeFk0a3RVa3dnR0s2MVRabEo2VjY5MVZ3WHUlMkJ4WUVpbDRENWJrUzA2YnZQelA2NGlDQXQlMkJyM0xuSFYlMkZqQXdHOGx2WXcwQ3RhamN2dXVsYVMlMkJ3OWs0aG1MZDJiTU9pMHBTRjVuMFFVbFZKSktJcHZwTDN2cFBtNzU0elZPRVFZSHYxNmI1TDUzZW54cTRWZklNYVJTMGJwbXVqUlJkVTlHeThqN2l3SjU0WFYwNk4ybmRmSmU5dzZSRzhmbDJrand1ODlPcVdqcWVJQW9LZlBBbGZ0NmNnJTJGdjc0bHRsbWswYVNUaEthNVZrUHk0cHRhc25YN2R5TFlGZ2ZYMTJWaFQ1MiUyQlQyTmttSGtramklMkZDM0s2NVVWeTl2JTJGUWhRVSUyQk5BUEFBMXpYeEJaJTJGdmR5dlpnMEVxTlAwazN1OXVPcVowcXZ0OWJXZmlJSlI5Y1p0Vk5WMXZkNnlkOHEweXRJSkxIV2VjcnJxbSUyRm9XRVVVRlBpd2RaNlRQZHp5JTJCcDJrWTBnamNVdjhLY2wlMkZHcHMzVjdkMDNNdVQwSXJUazAzekprenEyZlFhbDE0djZSenhPTSUyQmtGOVBmWTR0UHIyNVoxVUVhRlBnQlc3c2djMmc2aW03aE0lMkZGa0glMkJkZHVzN2RXcXEzVks4SSUyRlNZUVNmZFVZJTJCMUI1ZDU3dW1STmtzNlZOSmxVaXFPODNhTXpxcGF1YkNjTkNuekViRHB2enNIOUElMkZFdFBEcXdLS3lYdEZ6eTVzcW55MyUyRkRaZlpreUoxN2ZFWGNueiUyRlR6QnNsblM5cElxa3dlVlBnR0Z5SnozJTJGcDlQNVUlMkY4MlM1cEpHMFZqblpzdk1kWE5KaWQzTUYlMkJBS2gwdld2U0F6MXlNNzA2U3ozUFJLSGlaU3RIWDBWRDZ5VjA5ZnZISU5XVkRnbzJiRDJabXFnYlRkYUtZVFNLTVlPME1QU0haVDdMcDUwNVpOdDNITHhqRSUyQm0xbzRjMFk2bno3VFRXZTU3QXlURGlhVm92ZGtTdm5UcHk1WiUyRlRCUlVPQmpjWkNablBLU0clMkJSNkZXa1V0YTJTJTJGdWl1bTJWMlIxVyUyQjV6NWIlMkZzZzJZaGs1YXhka0RpMUpSUyUyQlBwVHB6bmNuM1RJSTdZMzQ0aXZOblZpNWIlMkZUaHBVT0JqdCUyRkRtSDFQV25TciUyRnFVdXZKWTFnRE1qMWtDSyUyRnpWeTN4JTJCYXRmRjQzaEgybXJpN2ROWG50VEl0VHI1RDVxWExWeWpTTFkxR3c3YjBxbiUyQm8lMkZrenVzVWVEamRrREtUVnIlMkZBMGx2SlkxZyUyRmMxa2Q3cmllMlJSbSUyQlVIVmpGTmJQOXAxJTJCVGVMYlBpT0o1dGtZNTMxOHUxJTJGUmtERTFneWtObmRxYjU0QVk4TXBzREglMkJTUlMxdFZZODUlMkZtJTJGaUhTd0E0YkphMHlxVDAyWHlXejlsajlIY1U0YVhoVHBqUzN6WTVUM21jcnNocDN6VEtwUnRMUmtsSXNCZXloZVc3TlclMkY4NTB4ZXYyVVFZRkhoQnlEVmtMM2JwUHlWRnBJRzk2SlgwbEVtUHV2bWo3dmEwdVQwVlM0JTJCbXBVZW5IblRjNDliY25DJTJCb2dwNSUyRlRObUdhTUlMQnFRWHBTeWU0UjRkcGloJTJCa2JtOXlLVVhTVHBDM0ZzY2d4OTRydHM2WWZLRmh6ZmYyVU1hRkhoQjZhclB2RUZtMTBncUl3ME13elpKYXlWMXVxd3JNdTkwVjZkY25XN1dGWm02M09QTzJLT2VsS3ZQVEZza2FTRFNsblNzUGtteWdiamIwNUZMVW4lMkJxYjBKSnZyUmNrdHpqS1daUmFpQ0tJOFhSVkVreTgycHpWU2xTbGNWZUhVZFJsYmxYYSUyRnRUdXFva1RkdnhmOEJJTk02VmxiWHRIJTJCSlJ3QlI0d2Vxc3o1NWlwaHM0OEFIQTlzSGJwYzlVTDJsZlJCUVVlT0dYJTJCRG1aMlphM1paS09KQTBBQVJ0dzAzdXJXOXAlMkZRQlFVZUdLc08zdldZZW1TMUEwdW5VZ2FBQUxVSFNtNm9HTEp5dDhTeGNqankxYWphUHFOcTUlMkZ1M3J6NU5KbCUyQlFob0FBdlBYMkhVSzVjMEVubWd1V2E2JTJCNWhLWlg4NUpFNEFBM0ZWU0VwM0Rjd1dZd0l2aExNbXJsclpkNFc1djBQWmJjd0pBY1I3dlRNMWJKa3glMkJOZVhOQkY1MDFqZG1Ub3pjZmkzcGhhUUJvSWpFTXYxSFpVdjc1YmI5b1VDZ3dJdlB4c1pqcCUyRlY3eVM5TWRqcHBBQ2dDbTh6c3JaVXRiZGNUeGRqaEV2bzRtTkx5MFBxcXpkTmZJJTJGTXJTQU5Ba3JuMHNLZjhaTXFiQ1R3NFhZMlpOOHJ0JTJCNUlPSWcwQUNiUE0wdWtMSzYlMkIlMkZ2NXNvbU1DRFU5WFM4WE9UbiUyQklTRDdJSGtCUjVjJTJGdVB5aFBhR3lsdkp2RGdyVnM0YzNJcUx2bXVwRGVRQm9BQ3R0N2QzMXk5dE9OR29xREE4VHk1aHN4YlhmWnQ4Y3hrQUlWWEdQY296amZ4dkhzS0hIdlJYVjlURzV2JTJGVXRzZjFRZ0E0ODFOJTJGbDhWVDVkJTJGM0ZwYiUyQjRtREFzYyUyQmRNNCUyRlpvcWx5cSUyQlM5QmJTQURDTzFrdiUyQnpxb2xIUzFFUVlGaktFVmVYOU5rNXQlMkJWVkVFYUFNYTRJVzZOUGZXV2FVc2UlMkJCdGhGQjYlMkJoVjdncXBlMk5WdWNQMTdTYmFRQllJd011UFRweXZKWloxTGVUT0E0UUY1WGwlMkI2YXZPNCUyRnpPMFRrdElrQW1DVVBCTEg4WnVuTFZ0MU4xRlE0QmhCdVliTVhKZjlTTkpjMGdBd3dxNGRtT0R2UDdpNVl6TlJVT0FZQlglMkJ0TzZwODZ1U0ppJTJCVDJFVWtwRWdGd2dFWHdkNWYlMkZFMTlVbzhBeFJqb2JhdVpKJTJGaU9UWGtJYUFJWlZBcWJtVkhyZ2ZWT3VlN0NUTkNod2pLRW5tJTJCWk5tTmk3OFRLbWNRQkRuYm9sdjZSeVNjZVBTWU1DeHpqS0xaejlVbyUyQmo3MHQ2R1drQTJPJTJGVXJiNzNUMmw1YUQxcFVPQW9BRjVYbDg1TjdQdzNtWDlhVWhtSkFOajVJT0dQZVdRWFZiZTAzMFFZRkRnSzBQcjY3S3pJOUMxSmRhUUJRTktBbTEyVkw0OCUyRnhUZk1LWEFrUUZkRHBsR3liMGw2SVdrQXdib3ZObiUyRnZ0SmFPZTRpaXVIQW50aUpXdGFTalJiMWxXWmUlMkJJU2xQSWtCUXVrMzZVT1dFV1NkUjNremdTUEtldlAwSloxZEpPcGswZ0tMbWtxN3RqM1RKSVl2YiUyRjA0Y0ZEaUtZNiUyQjJydnFhQzh6OHk1S09KQkdnNkxRcThvdXJGbmZjVGhURmowdm9ZWjJ0ZWZYU3R1WmVLNXN0dDQ5TDRzc3NRSEhzM0UlMkZMN2FMS0U5cFBvcnlad0JHQXJzYk1FWXFqTDhyOERhd0ZJSkY2SmY5YVBocTRmUHJpTlp1SWd3SkhZTHJyYTJyenBpJTJCWiUyRk5Xa0FTU0NtJTJCbCUyRlRkSEhLbHBXJTJGcFU0S0hBRWJuMTl6Um1SNlV1U3Y1UTBnQUp0YnZsdlU1YTZwS0psNVgya1FZRUQlMkZ6ZzRMRkxVZlUlMkZtTFc1Mm1hU2pTUVFvbU1QMW56Mk9QMW05ck9NM1pBRUtISHN2OHRyYWt1N0RldCUyRm9zc3NrdlloRWdIR3oydVJmckRpaDR5ZTJTREZ4Z0FMSDRJcThLVk9hMnhxOVhhYkxKSjlCSXNCWTdYeiUyQm1CUjlvZktnNDM1Z3pjM2NpQWtVT0libnlhWjVFeVp0M1hpUm0zMUUwZ3RJQkJpbDNwWWVqbVJmcU5oY2ZhMnRXREZBSXFEQU1XSVRlWGVQM2lEcFVwY2RTeUxBaUIyT08wenhseW8yVCUyRjhaeFEwS0hLTlg1SFYxNmR6RTlXJTJCUTlBbVpacE1JTUd6M21ldnpGU2UyWDg5bjNLREFNWFpGTGxsbmZjM3BrZm5Ga2hwSUJCajB6bk83ekslMkJvWE5LeHhMYmZ2eHlnd0RFJTJCY2dzeXgzdGtINWJwRFhLVmtBaXcyeEczMzZUcjglMkZJdjg0UXdVT0FvT0YyTm1TUGs5Z0ZKNzVKVVJTS0Exa3YlMkIlMkZWanBxNll0ZWVCdnhBRUtIQVhONXg5VDFoVk5XR2ptJTJGeXBwSG9rZ3dFUHNuJTJCWDZkbTlVJTJCcE1aTGExYnlRTVVPQktuc3o1N2lzayUyQklQUHpKWldSQ0lwWW42VHJGUG1WUEJrTUZEaUtSdTdjNHl1OFAlMkY4Nm1iOWYwbHdTUWZFY1RQMGg5JTJCaUhKYVYyOWVUclZxNGxFVkRnS0ZyZDlUVzFjUlMlMkZSMjV2a2pTSlJKQkEyOHkwT0IlMkZiZDZ1WHR2MldiNU9EQWtkUW5teWFOJTJCR2dyWnNielB5dGtsNGpLVTBxS0hDdEpsMmJzcjZmVG1sNWFEMXhnQUpIOE5ZM3pIMUJTdmtMWFBZMkhtdUtBdk9FekglMkJlTW4xJTJGNnVLT1I0Z0RGRGl3RjdtR3pOelk5RnJ6Nkh6Sk15U0NjVGhDJTJGa1Z1djRvViUyRjZwNlNjYzlYQ0lIQlE0TVVYZmpuS1BkNDRYdWFwTHBGTll1UnRHakxpMHg4JTJCYktsbzdiS1cxUTRNQUk2V3JNSEdGdTUlMkIwbzgzbVNJbExCQVhHdGNsTnp5cTJsWW1sYks0R0FBZ2RHMmJxRk0yZWs0dlI1cnVoOGs1OHFxWlJVTUFoNW1kMnJXTmVsVXZHdiUyQkV3YkZEZ3dqcDVxckQyb05PNDdKWXJpTSUyQlIyaHFTWHNjYnh2S1BkMHliZEp2Y2xVYiUyQldUTDJ4bzR0UVFJRURCV2pUZVhNTzd1dnpWOXIyUWw4ZzZZV2tFcFF0SnQzcGJyZEUwaTFjR2djRkRpU1FTOWJka0prVG01MXByak1sblNycElKSXBLZ09TN25YM215elN6WldicHQ5bEsxWU1FQXNvY0tDWUNyMnBLZFhWMjNGYzVGYnJwbGNvdGxObG1zVSUyQmtTalBTTHJYcFZaM3U2MHZLcjJEQjRhQUFnY0MxSFZHN2RTNHJPOUVNeiUyRlZwRnBKcjVCVVNUSUZNbDI3SGxMa3Q1bnI5dGk4dGFwbDFTcCUyQjRnVUtITUFlcCUyRlRjdHRVWjVlMWtSWDY4WExNbFpTVlZrODZvMmlwcHRadTFLJTJGWTJTJTJGbGRXOHFtM0hkNDg1MDlSQU5RNE1Dd2RkZlhWTVpSbkZFY3pYYnpUQ1ROOXUxUFZwdE9Pa002JTJCdlFyMXNNV3FTTjJyWkpiaDZMOHFxcnl6SVBXM0p3bklJQUNCOFpFNXpuWnd6WGdzMlZSeHN5UGt1c29TVWRLT2tKU1JhQ3g5SnI4Q2JrOUx0UGpibnJNM2RmRVVhcHQyc2FxdiUyRkFsTTRBQ0J3cGExeG0xVTFYYWQ0U2klMkJDZ3BPbEx1MjRzOXNpTWxQMEt1S2tsbENYdGJzYVF1bVo2VzZ6SEpIM2V6eHlVOTRmbjQ4VmoyJTJCTUhMT3A1aDZ3TVVPRkRVbmpscnpzVFNzbnkxNVZWbEtWWGw0Nmphekt2bHFqTHo2dGhWWlJaVnVlS0pKbnQyb2klMkZSczg5U04wMlFxM3pIUDU4aUtiV0hQWDZEWFBHTzh0Mnc0NTl1MCUyRmJQblNYVEZybHZrYXhMcGk1M2RVV3VUcmZ0JTJGMyUyRnNjV2RKcEM3UFI1MFZTOXR5YkRVQUFFYUJTJTJCYnpqeWtqQ1FBQUFLQUElMkZIOEtRJTJGcGtMY0JLTUFBQUFDVjBSVmgwWkdGMFpUcGpjbVZoZEdVQU1qQXlNQzB3TXkweE9WUXlNam94TURveU1Tc3dNRG93TUZINWh5a0FBQUFsZEVWWWRHUmhkR1U2Ylc5a2FXWjVBREl3TWpBdE1ETXRNVGxVTWpJNk1UQTZNakVyTURBNk1EQWdwRCUyQlZBQUFBQUVsRlRrU3VRbUNDJTNCZm9udFNpemUlM0QyMCUzQmNvbnRhaW5lciUzRDElM0JpbWFnZUJhY2tncm91bmQlM0RkZWZhdWx0JTNCJTIyJTIwdmVydGV4JTNEJTIyMSUyMiUyMHBhcmVudCUzRCUyMjElMjIlM0UlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlM0NteEdlb21ldHJ5JTIweCUzRCUyMjE2MTMuMDAwMDAwMDAwMDAwMiUyMiUyMHklM0QlMjIyNTcwJTIyJTIwd2lkdGglM0QlMjI3NC42NCUyMiUyMGhlaWdodCUzRCUyMjkwLjQ0JTIyJTIwYXMlM0QlMjJnZW9tZXRyeSUyMiUyMCUyRiUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRm14Q2VsbCUzRSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUzQyUyRnJvb3QlM0UlMEElMjAlMjAlMjAlMjAlM0MlMkZteEdyYXBoTW9kZWwlM0UlMEElMjAlMjAlM0MlMkZkaWFncmFtJTNFJTBBJTNDJTJGbXhmaWxlJTNFJTBBdcr10QAAIABJREFUeF7s3QeYXVW5N/D3TE1mMgkQCCQgndBBkCagSShiBPEq2Gkq4KUqXJUmJCBdkc6HFEFBP5UiSK8htEtHQDoGlA6BkMxkJlPP9+0TT5iEzMyZTDvlt5/HJ8PM2muv97d2Ngf3f9ZKpdPpdDgIECBAgAABAgQIECBAgAABAgQIECDQTwKtj90bqZFLR8X4DfupR90QIECAAAECBAgQIECAAAECixNICf64MQgQIECAAAECBAgQIECAAAECBAgQ6C+B1oenxdxfHBi1J10WlRtv1V/d6ocAAQIECBAgQIAAAQIECBBYjIDgj9uCAAECBAgQIECAAAECBAgQIECAAIF+EWi575ZoOn9qpBvmCP70i6hOCBAgQIAAAQIECBAgQIBA9wKCP+4QAgQIECBAgAABAgQIECBAgAABAgT6JpBOR7K9V+Pph0e6qTHTlxV/+kbqbAIECBAgQIAAAQIECBAgkIuA4E8uStoQIECAAAECBAgQIECAAAECBAgQINClQOsj98TcEw5Y6OeCP24YAgQIECBAgAABAgQIECAw8AKCPwNv7AoECBAgQIAAAQIECBAgQIAAAQIEilag9YHbo/Hc4yLdMHuhGgV/inbKFUaAAAECBAgQIECAAAECeSQg+JNHk2EoBAgQIECAAAECBAgQIECAAAECBApJILO916mHRXre/O29Oh+CP4U0k8ZKgAABAgQIECBAgAABAoUqIPhTqDNn3AQIECBAgAABAgQIECBAgAABAgSGUKD1kekx94T/7nIEgj9DODkuTYAAAQIECBAgQIAAAQIlIyD4UzJTrVACBAgQIECAAAECBAgQIECAAAEC/SPQ+uAd0XjOsZ/Y3qtz74I//WOtFwIECBAgQIAAAQIECBAg0J2A4I/7gwABAgQIECBAgAABAgQIECBAgACBHAXS0frYfV1u79W5E8GfHEk1I0CAAAECBAgQIECAAAECfRAQ/OkDnlMJECBAgAABAgQIECBAgAABAgQIlJJA22P3RsPUH+ZUsuBPTkwaESBAgAABAgQIECBAgACBPgkI/vSJz8kECBAgQIAAAQIECBAgQIAAAQIESkOg9ZFp0XjmUZGun51TwYI/OTFpRIAAAQIECBAgQIAAAQIE+iQg+NMnPicTIECAAAECBAgQIECAAAECBAgQKH6B1sfvjcZTfhzpeU05F1t78u+icqMtcm6vIQECBAgQIECAAAECBAgQINB7AcGf3ps5gwABAgQIECBAgAABAgQIECBAgEDJCLQ+cV/MPW7/XtVbNmbFqDv76kjVLdWr8zQmQIAAAQIECBAgQIAAAQIEeicg+NM7L60JECBAgAABAgQIECBAgAABAgQIlIxA66PTo/HXR+S8vVcCU77OxlF7zHlRtvSyvXNqb4t0a0ukKqsiyit6d67WBAgQIECAAAECBAgQIECgRAUEf0p04pVNgAABAgQIECBAgAABAgQIECBAoDuB1sfvj8aTD410c+7be5WvsV7UHn1OlC2/Ys64HW+/Hs23/jlabrsq0g1zIobXRvVOu0fV5G9F+Yqr5tyPhgQIECBAgAABAgQIECBAoBQFBH9KcdbVTIAAAQIECBAgQIAAAQIECBAgQKAbgdYnH4i5x+7bK6OyFVaKujOT7b1G5Xxees6smL3fThFz6z9xTmqpZWPkJbdFalhNzv1pSIAAAQIECBAgQIAAAQIESk1A8KfUZly9BAgQIECAAAECBAgQIECAAAECBLoRaH38vmj81U97t73X2htF7c+T7b2Wy922rTXqj94n2p97ostzylZcLerOvTZSVcNy71dLAgQIECBAgAABAgQIECBQQgKCPyU02UolQIAAAQIECBAgQIAAAQIECBAg0J1A6xP3R+NJh0S6eV7OUPO39zo7ypZfKedzkoYdH82MOd/fMaKlm2uVlUfdr/8c5Wuu36u+NSZAgAABAgQIECBAgAABAqUiIPhTKjOtTgIECBAgQIAAAQIECBAgQIAAAQLdCLQ9+WA0HPuDXhmVrfCpqDvr6kiNGNmr85LG7c8+FvVH7NnjebVTfxOVm32+x3YaECBAgAABAgQIECBAgACBUhQQ/CnFWVczAQIECBAgQIAAAQIECBAgQIAAgU4CrX9/MBpPPTzSDbNzdikfv2HU/vz8KFumF9t7deq9bcYL0XDoV7u/XioVtSdcEpWbbJ3zuDQkQIAAAQIECBAgQIAAAQKlJCD4U0qzrVYCBAgQIECAAAECBAgQIECAAAECiwi0PflANPzioIiW5pxtyldfJ2qPPjfKVujd9l6dL5CeWx9z9tsp0nNmdX3diooYecGNUTZulZzHpiEBAgQIECBAgAABAgQIECglAcGfUppttRIgQIAAAQIECBAgQIAAAQIECBDoJND21EPRcMz3emVSNnblqDvzqiXa3mvRC8391c+i9Z4burx+5YSdo/anv+rV+DQmQIAAAQIECBAgQIAAAQKlJCD4U0qzrVYCBAgQIECAAAECBAgQIECAAAEC/xFoe/qRmHvKoZGu78X2XmttELXHXrDE23stip9unhdNF54QLXf89RPzUrntF+eHfsrLzRkBAgQIECBAgAABAgQIECDQhYDgj1uDAAECBAgQIECAAAECBAgQIECAQIkJtD7xQMw9sXfbe5WttnZme6/ysZ/qX610Olr+965oe+LeiHlNkaoeHhVbTIjKLbeLiFT/XktvBAgQIECAAAECBAgQIECgyAQEf4psQpVDgAABAgQIECBAgAABAgQIECBAoDuBtqcfnr+9VzqdM1TZ2FWi7sy/9Mv2XjlfVEMCBAgQIECAAAECBAgQIECgRwHBnx6JNCBAgAABAgQIECBAgAABAgQIECBQHALtzz8ZDScc0LvtvdZMtvc6P8pGj8k/hI6OaLxgagzf88eRGrVM/o3PiAgQIECAAAECBAgQIECAwAALCP4MMLDuCRAgQIAAAQIECBAgQIAAAQIECOSDQNuLT0fDUXtFtDTnPJzyVZPtvc6JsnEr53zOoDXs6Iim358ZzVdfEpWbfT5qfnZGpGpGDNrlXYgAAQIECBAgQIAAAQIECOSDgOBPPsyCMRAgQIAAAQIECBAgQIAAAQIECBAYQIH0h+/H7B9Ojmiam/NVysb9Z3uv2pE5nzNoDdPpaLrwxGi+6Y8LLlmx1fYx4phzI1KpQRuGCxEgQIAAAQIECBAgQIAAgaEWEPwZ6hlwfQIECBAgQIAAAQIECBAgQIAAAQIDLFD/P9+K9hefyvkq5WusH7XHJdt7LZ/zOYPWsKMj5p43NVrv+mtEe9vHly0rj2Ff3y+G7fmjQRuKCxEgQIAAAQIECBAgQIAAgaEWEPwZ6hlwfQIECBAgQIAAAQIECBAgQIAAAQIDJdDWGnPPPS5a77ou5yuUrzI+ao9JtvdaJedzBq1hZnuvs6L56osXf8lUKmqn/J+o3GzCoA3JhQgQIECAAAECBAgQIECAwFAKCP4Mpb5rEyBAgAABAgQIECBAgAABAgQIEBhAgdZH74m5JxwYkU7ndJWyFVeNul//OVJ5ur1X429OipYb/9BtLamlRsfIi2+P1PCanGrWiAABAgQIECBAgAABAgQIFLKA4E8hz56xEyBAgAABAgQIECBAgAABAgQIEOhCoOOjD6L+kP+K9KyZORmVr75u1B73f6Js2Tzc3ivdEY0XnBAtt1+z8PZeXVRWue3kqD3ijIhUKqfaNSJAgAABAgQIECBAgAABAoUqIPhTqDNn3AQIECBAgAABAgQIECBAgAABAgS6EWg85+fzgzI5HMlKP0nop3zFVXNoPQRN2tuj8eKTo+XmP0V0dPQ8gKrqqDv1yigfv0HPbbUgQIAAAQIECBAgQIAAAQIFLCD4U8CTZ+gECBAgQIAAAQIECBAgQIAAAQIEFifQMfvDmPO97SJamnsESo0eE3XnXhdlI5fuse2QNkinY+4pP4rWB+/IaRipuqVi5OXTIlU9LKf2GhEgQIAAAQIECBAgQIAAgUIUEPwpxFkzZgIECBAgQIAAAQIECBAgQIAAAQJdCbS3x5wf7x4dr77Qs1FlZYw4+XdRse4mPbfNgxbpprkxd8r+0fbcEzmNpubw06Jqu11zaqsRAQIECBAgQIAAAQIECBAoRAHBn0KcNWMmQIAAAQIECBAgQIAAAQIECBAg0IVAEoppOGLPiHTPW2IN3+/IqP7K3gVl2f6vl6P+R7tFtLX2OO6yVcZH3dlXR6qisse2GhAgQIAAAQIECBAgQIAAgUIUEPwpxFkzZgIECBAgQIAAAQIECBAgQIAAAQJdCMz95c+idfoNPfqUr75O1J15VUR5RY9t861Byz03RuOvj4jo6DncVPPjk6Nqh6/mWwnGQ4AAAQIECBAgQIAAAQIE+kVA8KdfGHVCgAABAgQIECBAgAABAgQIECBAYOgFOt7+d8w5YJceV8NJjRgVdef+NcqWGzv0g16SEaTT0XDUXtH2j8d6PLt8nU9H3WlXRpSX99hWAwIECBAgQIAAAQIECBAgUGgCgj+FNmPGS4AAAQIECBAgQIAAAQIECBAgQKALgabLfx3NV1/co0/V5G9GzYFTIlKpHtvma4O2Zx+PhqP3jmhv736Iw4bHyItvi7Kll8vXUoyLAAECBAgQIECAAAECBAgssYDgzxLTOZEAAQIECBAgQIAAAQIECBAgQIBAfgnU/2i3aP/nc90PanhtjLp8WqRq6/Jr8Eswmrmn/0+03ntzj2dW77ZvDP/e//TYTgMCBAgQIECAAAECBAgQIFBoAoI/hTZjxkuAAAECBAgQIECAAAECBAgQIEBgMQLpprkx+ztbR7S2dOtTvft+MXyfw4vCsO3Zx6LhiL0iIt1tPalk1Z8/PBCp6uFFUbciCBAgQIAAAQIECBAgQIBAVkDwx71AgAABAgQIECBAgAABAgQIECBAoAgE5l19Scy7/IweK6k786ooX2uDHtsVQoN0S3PM2W+nSH/wbo/DHfGrP0XFOhv32E4DAgQIECBAgAABAgQIECBQSAKCP4U0W8ZKgAABAgQIECBAgAABAgQIECBAYHEC6Y6Y/b1JkZ75Xrc+ZcuNjZG/vTMiVVY0ji13XheNZx3VYz3DD5wS1V/6Vo/tNCBAgAABAgQIECBAgAABAoUkIPhTSLNlrAQIECBAgAABAgQIECBAgAABAgQWI9Dx4XsxZ++JEenut7wafugvovoLuxeXYXtbzP7utpFumN1tXZUTvxy1Pzm9uGpXDQECBAgQIECAAAECBAiUvIDgT8nfAgAIECBAgAABAgQIECBAgAABAgQKXaDtxaei4Sff7j74Uz08Rv3unkiNGFno5X5i/PU//U60P/9kt3WVjV05Rl58W9HVriACBAgQIECAAAECBAgQKG0BwZ/Snn/VEyBAgAABAgQIECBAgAABAgQIFIFA64N3xNyTD+22krIVV4uR518fUVFZBBUvXELj+VOj5ZY/91BXKkZd/VikhtUUXf0KIkCAAAECBAgQIECAAIHSFRD8Kd25VzkBAgQIECBAgAABAgQIECBAgECRCMy76qKY97szu62mYqMtY8RJl0WkUkVS9cdltNz9t2j89RE91jXijD9Fxdob99hOAwIECBAgQIAAAQIECBAgUCgCgj+FMlPGSYAAAQIECBAgQIAAAQIECBAgQKALgcazfx4td1zTrU/V5G9GzUFTi9Kw/bWXov7gr/RYW81PfhlVE3fpsZ0GBAgQIECAAAECBAgQIECgUAQEfwplpoyTAAECBAgQIECAAAECBAgQIECAQBcCDcfuG21PPtCtz/D9j47qXfcsSsN0S3PM3m2TiHS62/qG7fM/MWz3fYvSQFEECBAgQIAAAQIECBAgUJoCgj+lOe+qJkCAAAECBAgQIECAAAECBAgQKCKB+h/tFu3/fK7bimqOOTeqPrtDEVW9cCmz99g20h990G191V/7fgz//k+L1kBhBAgQIECAAAECBAgQIFB6AoI/pTfnKiZAgAABAgQIECBAgAABAgQIECgygTn7T46Ot17rtqoRp18RFettVmSVf1zOnAN3iY5//7Pb+op5u7OinViFESBAgAABAgQIECBAgEC3AoI/bhACBAgQIECAAAECBAgQIECAAAECBS4w+/s7RPq9N7utou7Mq6J8rQ0KvNKuh1//492j/ZVnu62vaoevRc2PTypaA4URIECAAAECBAgQIECAQOkJCP6U3pyrmAABAgQIECBAgAABAgQIECBAoMgEZu/7hUi/83q3VY341Z+iYp2Ni6zyj8vJZbuzqi/sHjWH/qJoDRRGgAABAgQIECBAgAABAqUnIPhTenOuYgIECBAgQIAAAQIECBAgQIAAgSITmHPgrtHx75e7rar2hEuictNtiqzyj8uZ88PJ0fFm99udVe38nag54NiiNVAYAQIECBAgQIAAAQIECJSegOBP6c25igkQIECAAAECBAgQIECAAAECBIpMoP6IPaP92ce6rarm8FOjaruvFFnlH5cz+5tbRHpufbf1VX/zv2P4nj8qWgOFESBAgAABAgQIECBAgEDpCQj+lN6cq5gAAQIECBAgQIAAAQIECBAgQKDIBOaeeli03n9rt1UN+9aBMWyPQ4qs8vnlpBvmxOxvbdljbcN/eExUf3mPHttpQIAAAQIECBAgQIAAAQIECkVA8KdQZso4CRAgQIAAAQIECBAgQIAAAQIECHQh0HT5GdF89SXd+lR8docYccy5RWnY9vyT0fDT7/RYW+2x50flltv12E4DAgQIECBAgAABAgQIECBQKAKCP4UyU8ZJgAABAgQIECBAgAABAgQIECBAoAuBltuvjsZzju3Wp3zNDaLujD9FlJcXnWPzDVdG029O6rGuuv9zY5R/ao0e22lAgAABAgQIECBAgAABAgQKRUDwp1BmyjgJECBAgAABAgQIECBAgAABAgQIdCHQ9tT/RsMx3+/WJ7X0cjHy0tsjVTWs6Bzn/vIn0Tr9pu7rqqyKpa55MqKsrOjqVxABAgQIECBAgAABAgQIlK6A4E/pzr3KCRAgQIAAAQIECBAgQIAAAQIEikSg/Y1Xo/6AnSPS6a4rSqWi7tzronzV8UVS9cdl1B/yX9H+6ovd1lU+fqOo+/Wfi652BREgQIAAAQIECBAgQIBAaQsI/pT2/KueAAECBAgQIECAAAECBAgQIECgCATSzfNi9re2jGht6baaqolfjpqfnF4EFX9cQrppbsz+9mcj2lq7rav6K3vF8P2OKqraFUOAAAECBAgQIECAAAECBAR/3AMECBAgQIAAAQIECBAgQIAAAQIEikCg4bTDou2+W7uvpLwiRv3+nkiNGl0EFc8vofHiU6Pl+t/1WE/NEb+Oqs9N7rGdBgQIECBAgAABAgQIECBAoJAEBH8KabaMlQABAgQIECBAgAABAgQIECBAgEAXAu2vPBv1h329++2+IqLmp7+Kqgk7F4Vjes5HMXuvz/e42k9SbN2FN0f5SqsVRd2KIECAAAECBAgQIECAAAECWQHBH/cCAQIECBAgQIAAAQIECBAgQIAAgSIRmPO97aLj/be7raZiwy1jxMmXRaRSBV91y/23RuOph/VYR2r5FWPUpXf22E4DAgQIECBAgAABAgQIECBQaAKCP4U2Y8ZLgAABAgQIECBAgAABAgQIECBAoAuBuScfGq0P3tG9TyoVtcdeEJVbTCxsx3Q65hy8a3T865Ue66g58syo2vaLPbbTgAABAgQIECBAgAABAgQIFJqA4E+hzZjxEiBAgAABAgQIECBAgAABAgQIEOhCoPXhu2PuLw7q0ad8jfWj7oz/G1FR2WPbfG3QfOOV0XThST0OL7XU6Bh56Z2Rqh7WY1sNCBAgQIAAAQIECBAgQIBAoQkI/hTajBkvAQIECBAgQIAAAQIECBAgQIAAgW4E5vxwcnS8+VqPRjVHnRVV2+zUY7t8bJBuaY76A78cHe+83uPwKj+7fdQefW5RbG3WY7EaECBAgAABAgQIECBAgEDJCQj+lNyUK5gAAQIECBAgQIAAAQIECBAgQKCYBVruvj4af31kzyVWVkXdOddG+afW6LltnrVomPrDaHvs3pxGlalx9XVzaqsRAQIECBAgQIAAAQIECBAoNAHBn0KbMeMlQIAAAQIECBAgQIAAAQIECBAg0I1AevaHMft720W0NPfoVLHpNjFi6kURZWU9ts2XBi333BCNv/pZTsOp/NzkqD3i1zm11YgAAQIECBAgQIAAAQIECBSigOBPIc6aMRMgQIAAAQIECBAgQIAAAQIECBDoRqD5tquj6bzjItLpHp2qd/luDN//6III/7T/6+Wo//HuEa0tPdaVNBjxyz9Gxbqb5NRWIwIECBAgQIAAAQIECBAgUIgCgj+FOGvGTIAAAQIECBAgQIAAAQIECBAgQKA7gXQ6E5Bp/+dzPTuVV8Twg6ZG9Rd267ntELZIt7ZE/f6To+P9t3IaReXWX4jaI88siEBTTgVpRIAAAQIECBAgQIAAAQIEFiMg+OO2IECAAAECBAgQIECAAAECBAgQIFCEAq2PTo+5xx8QET2v+hOpVNQc+ouo2jE/wz8db/07Go7bNzreeT2nmUotMyZGXnhTpGpG5NReIwIECBAgQIAAAQIECBAgUKgCgj+FOnPGTYAAAQIECBAgQIAAAQIECBAgQKAHgcYLToiWm/9vbk5lZTH80BOjeruv5NUqOUnYp+HYfaPj7X/nVkcqFcN+cEQM+6+9c2uvFQECBAgQIECAAAECBAgQKGABwZ8CnjxDJ0CAAAECBAgQIECAAAECBAgQINCdQHrOrJjz/e0jPa8pN6jyiqjeda8Y/oOf5tZ+gFu1v/WvaPjJtyOpI9ejctsvRu3Pzsir8FKuY9eOAAECBAgQIECAAAECBAj0VkDwp7di2hMgQIAAAQIECBAgQIAAAQIECBAoIIH2V1+IhqP3iXT97JxHXbnldjH8gGOjbNkVcj6nXxt2dMS8qy6KeX88P6K9LeeuU3Wjou7sa6NszLicz9GQAAECBAgQIECAAAECBAgUsoDgTyHPnrETIECAAAECBAgQIECAAAECBAgQyEGg+W9XRtMlp0R0dOTQen6T1Milo/Z/TovyDbeIVFV1zuf1qWE6He1vzIjGc4+L9uee6FVXqZoRUXf21VE2dpVenacxAQIECBAgQIAAAQIECBAoZAHBn0KePWMnQIAAAQIECBAgQIAAAQIECBAgkItAOllB5+KY9/uzcmn9cZuysihfbZ2oPersKFthpd6d29vWba0x9/yp0Tb9pki3NPf27Kj5yS+jauIuvT7PCQQIECBAgAABAgQIECBAoJAFBH8KefaMnQABAgQIECBAgAABAgQIECBAgECOAunmedF08cnRcutVOZ7RqVllVVRuMTEqJ+wSVVttH1FW1vs+ujij/ZVno/nuv0Xr9BsjPfvDJep3+P7HRPWu303WKVqi851EgAABAgQIECBAgAABAgQKVUDwp1BnzrgJECBAgAABAgQIECBAgAABAgQILIFA41lHR8td10Wk00twdkRqmTFRveueUbnJ1lG27AqRGrlURCr3IFC6aW50zHwn2l+fEc1/+U20z3i+V1uQLTToyqoY9s0fxrBvHhCREvpZogl1EgECBAgQIECAAAECBAgUtIDgT0FPn8ETIECAAAECBAgQIECAAAECBAgQ6KVAW1s0/fG8aP7LRRGxZOGfzBXLKyI1vCZSo5fPbAdWscHmUbn+ppFaetmI6uGRKiuLdHNzpBtmRfuMl6L17/8bbS8/E+l334j03PqIttYlDh9lKx7+w2OiepfvCv308hbQnAABAgQIECBAgAABAgSKR0Dwp3jmUiUECBAgQIAAAQIECBAgQIAAAQIEchNoa43mm/4YTb8/O6K5KbdzcmmVrLqTbANWVj6/dbojor1j/p/9eZRXRs1PTouqbb8o9NOfrvoiQIAAAQIECBAgQIAAgYITEPwpuCkzYAIECBAgQIAAAQIECBAgQIAAAQL9I9D6v3dG04UnRccH7/RPh4PQS9lKq0ftcedH+bhVB+FqLkGAAAECBAgQIECAAAECBPJbQPAnv+fH6AgQIECAAAECBAgQIECAAAECBAgMqED6o5nR8IuDo/3Fpwb0Ov3RedV2X4nh//3zSNWM6I/u9EGAAAECBAgQIECAAAECBApeQPCn4KdQAQQIECBAgAABAgQIECBAgAABAgT6KNDeHi13XRdNfzgn0h+818fO+v/0snErx7A9D4uqz24fUVHZ/xfQIwECBAgQIECAAAECBAgQKFABwZ8CnTjDJkCAAAECBAgQIECAAAECBAgQINDfAun6j6LxNydH2+P3Rrp+dn933+v+UnVLReWkL8fwPQ61yk+v9ZxAgAABAgQIECBAgAABAqUgIPhTCrOsRgIECBAgQIAAAQIECBAgQIAAAQK5CqTTkZ41M5quPDda7rwmoqMj1zP7r10qFVU7fyeG7XFIlNWOjEil+q9vPREgQIAAAQIECBAgQIAAgSISEPwposlUCgECBAgQIECAAAECBAgQIECAAIF+E0ino/2tf0XbQ3dFyz03RPtrL0Wk0/3W/eI6Kl99najc7itRtdX2Ubb8SgI/A6qtcwIECBAgQIAAAQIECBAoBgHBn2KYRTUQIECAAAECBAgQIECAAAECBAgQGEiBjvZoe+mZaLn9mmh/6enoeO/tSDc19C0IlEpFqqYuypZdIcrW3iiGffEbUb7m+hFlZQNZib4JECBAgAABAgQIECBAgEBRCQj+FNV0KoYAAQIECBAgQIAAAQIECBAgQIDAQAqkI9raIt3cHO3/eilaH7orWv/+YHS88WpES3PPF66qjrKVVo/KTbaOyq22i/KV14xU9fCIisqez9WCAAECBAgQIECAAAECBAgQ+ISA4I+bggABAgQIECBAgAABAgQIECBAgACBPgnqujY5AAAgAElEQVSk5zVFuv6jSDfMiXTT3IjWloiO9oiy8ojKqkjV1EaqdlSkRo6KVPWwiEj16XpOJkCAAAECBAgQIECAAAECBOYLCP64EwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgUoIDgTwFOmiETIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEPxxDxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoQAHBnwKcNEMmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIPjjHiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQgAKCPwU4aYZMgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQPDHPUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgAAUEfwpw0gyZAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgOCPe4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAAQoI/hTgpBkyAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAcEf9wABAgQIECBAgAABAgQIECBAgACBIhH48MMP47TTTltsNeXl5bH66qvHhAkTYq211upVxa+88kpcfPHFOZ/z+c9/Pnbeeeec2/el4bXXXht33HFH7LnnnrH11lv3pSvnEiBAgAABAgQIECBAgACBghMQ/Cm4KTNgAgQIECBAgAABAgQIECBAgAABAosXSAI6uYR6TjnllDjyyCNzZrzzzjtjxx13zLn9T3/60zj99NNzbt+XhkcccUTmWpdddlnss88+fenKuQQIECBAgAABAgQIECBAoOAEBH8KbsoMmAABAgQIECBAgAABAgQIECBAgMDiBToHf66//vpIVvlJjo6OjpgxY0bccsstcdttt2W+d/fdd8ekSZNyonzvvffi3nvvXajtjTfeGL/73e9ivfXWi+OPP36hn40fPz422mijnPruayPBn74KOp8AAQIECBAgQIAAAQIECllA8KeQZ8/YCRAgQIAAAQIECBAgQIAAAQIECHQS6Bz8aW1tjYqKioV82tvbY/LkyZmtsQ4++OA499xzl9jv/PPPz/SR9HfzzTcvcT99PVHwp6+CzidAgAABAgQIECBAgACBQhYQ/Cnk2TN2AgQIECBAgAABAgQIECBAgAABAp0Eegr+JE1PPfXUOOqoozJbd5100knxq1/9KkaNGhUXXXTRJywPOOCA+PDDDzPbgm2yySYL/byn4M9NN90Uv/nNb+Lhhx/OnPeZz3wmDjrooNh5550X9NPW1hZ77rlnjB07NjOmZAy//e1v4/e//31ss802kfw8GV+yetGzzz6bGecOO+wQxxxzTKy55pqZfrLBn+S8ZIWjZCWi6dOnxwYbbJC51mGHHRapVMp9QoAAAQIECBAgQIAAAQIEilJA8Kcop1VRBAgQIECAAAECBAgQIECAAAECpSiQS/Dn8MMPjzPPPDMTuDnrrLNi9OjRGaqnnnpqoe25kqBNEp5JjtmzZ8fIkSMXIu0u+JNs/TV16tRM+zFjxmT+TLYLS46f/exncdppp2W+bmlpierq6kybFVZYIZ5++unM9++8885M8OcLX/hC3HfffZnv1dXVRX19/YKvX3jhhRg3btyC4E/SR/YanQd63HHHfWIrslK8N9RMgAABAgQIECBAgAABAsUpIPhTnPOqKgIECBAgQIAAAQIECBAgQIAAgRIU6C74k/ws2eLrwAMPzMhcdtllsc8++8Tuu+8e11xzTSYck4RksseJJ54Yxx57bOyxxx5xxRVXfEKzq+DPk08+GZtuummmfXK9ZIWedDodt956a3zpS1/KfD8J82y77bYLgj/Zzs8555zM99dee+3M6j/Jaj1JoCdZwWedddaJ5557Lvbff/944IEHMoGfZPWi7Io/SR9JqClZpWiNNdaISy+9NPbbb79YaaWV4vXXXy/Bu0HJBAgQIECAAAECBAgQIFAKAoI/pTDLaiRAgAABAgQIECBAgAABAgQIECgJgc7Bn2SFnM5HdrWc5HvJajr33HNPVFRUxHXXXRdf/epXY/z48fHiiy8uOGX99dfPBG1uvvnmmDx58if8ugr+fPvb344//elPccghh0QS5Ol8HH300XHKKafE3nvvHZdffvlCwZ9kFaBkNaDkSIJCybZeyZiTbb523XXXBd3cddddmTDR5ptvHo888siC4M/EiRNj2rRpC9plVxNKvpFsV7b00kuXxD2gSAIECBAgQIAAAQIECBAoLQHBn9Kab9USIECAAAECBAgQIECAAIEBFUiCBJ2P5EV89kh+lqzasegxYcKE6NxO+4WF+Mz3cP/Md+jufkilUrHiiivGWmutlWm7aPBn+PDhsd5662VCMz/5yU8yW2wlR1NTUyy//PKZkM0zzzyT2d7r+eefz7RN+vjggw+isrLyE393uwr+JKv1vPTSS3HVVVdlVhPqfGRDRtnQTudwzmuvvRarrLJKpvk777wTY8eOzXz97rvvLtguLNtXQ0NDlJWVRU1NzYLgz6IrFiVtk5V/ZsyYkQkwrbvuupnTk+dQ9lnl75e/X53vT/fDkt0Pn3g4+AYBAgQIECBAgAABAoMqIPgzqNwuRoAAAQIECBAgQIAAAQIEik8geYE+adKkTxS26OobyUv5qVOnfqJd8r0pU6Z84vvazyfhM9/B/dDz/ZC0+O53v7sg+NPa2ppZ0SeXI9ke68ILL4xf/OIX8fOf/zxOPvnkOOaYY+LHP/5xnHnmmYvtYnHBn/b29gXXfOONNzJBpM7HU089FZ/+9KczQZ4k0NM5+JOs8pM9HnroofjsZz+bCR7NmTOn2xKyW31dfPHFse+++y7UNhtC6hz86Xwv+fvl71fnG8b90Pf7Ifl3fzbM21WQKpdnkjYECBAgQIAAAQIECOQuIPiTu5WWBAgQIECAAAECBAgQIECgpASyK2IkL8mzR+dtdDpjJCuNJEfnlXuSrzsHeqzYMl/MihLzHdwP/X8/LLriT2+CP/fee2/m3kxW+Xn22Wcju81XEsDZcsstF/vsW1zwJwnvJCvxJEcS8tloo40WOjfZAizZCmxxK/50Dv48/vjjsdlmm2XO7amObPDnsssui3322Weh6y0u+GPFn49XYsti+fvY/38fS2mFuyT8u+iKf4loV0GqpO3iVvorqQ9ZiiVAgAABAgQIECDQjwKCP/2IqSsCBAgQIECAAAECBAgQIFAMAl2t4JPU1vnFfDHUqgYCxSbwyiuvLNGKP8lKPePGjYv33nsvrr766swWXauvvnok/WWDfYtadbXV12c+85l44okn4txzz42DDz54odMOO+ywOOuss2KPPfaIK664ossVf2bNmhXLLLNM5txHHnkkExTKHg8++GB88YtfjK222ipuv/32BVt95Rr8KbY5Vw+BfBLoHCJb3Gp+yVizq25lVwHsql0+1WUsBAgQIECAAAECBPJZQPAnn2fH2AgQIECAAAECBAgQIECAwBAJdN66K/tCzm/nD9FkuCyBXggsafAnucSxxx4bJ5544oKrJdt9HXXUUV1evavgT7afbbbZJu66666orq7O9PH+++/HpptuGskWYDfffHNMnjy5y+BP0j67isjhhx8eZ5xxRqaPJHy48847xy233BJHH310nHTSSYI/vbg/NCWQDwJdhQmTVQV91siHGTIGAgQIECBAgACBQhMQ/Cm0GTNeAgQIECBAgAABAgQIECDQR4Hkt/Gz23cloZ7FvWSzDUcfkZ1OYIgE+hL8+cc//hEbbrjhgpG/9tprscoqq3RZSVfBn48++ihWXnnlqK+vz6zK87WvfS0T8Pn9738fL730UiSBoPvuuy+zklDy/WwwaNEVxR599NHYYostMtffbbfdYt11140//vGPMWPGjKirq4tkvMl1ervV1xBNjcsSILCIQPazSHblH6sKukUIECBAgAABAgQILJmA4M+SuTmLAAECBAgQIECAAAECBAgUnEA28JP8mT38dn3BTaMBE+hWIAnFrLHGGpk2ra2tUVFR0SuxjTfeOJ5++unMqjo33nhjt+d2FfxJTkoCSN/85jczW351Pr7zne/ERRddFLW1tQvGWFVVlfl6cS/977///kzoJ9mCLHtstNFG8Zvf/CYTKkqOI488Mk477bTobquvF154IdZee+1eWWhMgMDgCXQXOE4CQrYDG7y5cCUCBAgQIECAAIHCExD8Kbw5M2ICBAgQIECAAAECBAgQINBrgeyWOdkTk1V+ulrtp9edO4EAgaIR2GWXXeKmm26Kv/3tb/HlL3+5T3W1t7fHq6++Gs8991wsvfTSsf7668cyyyzT6z47Ojoyq/y88847MW7cuFh11VWjrKys1/04gQCBwhNIQj/ZFYGSPydMmGA7sMKbRiMmQIAAAQIECBAYYAHBnwEG1j0BAgQIECBAgAABAgQIEMgHgexqP8I++TAbxkAgPwWSkM7qq68eY8aMiTfffLPXqwXlZ1VGRYBAIQskn1+mT5++IPyT1JINAlkFqJBn1tgJECBAgAABAgT6U0Dwpz819UWAAAECBAgQIECAAAECBIZYoLutMoZ4aC5PgECeCtx5551x9913Z1b6Sbb5uuCCC+KAAw7I09EaFgECpSqw6Oo/gj+leieomwABAgQIECBAYFEBwR/3BAECBAgQIECAAAECBAgQKAKB7Io+yZ/Tpk2zDUYRzKkSCAyWwHnnnReHHHJI5nLbbbdd3HzzzVFdXT1Yl3cdAgQI9EogCQAJ/fSKTGMCBAgQIECAAIEiFxD8KfIJVh4BAgQIECBAgAABAgQIFLdA58BPUunEiRMzL8OSPx0ECBDIRWDmzJnx7LPPxgorrBBrrrlmlJeX53KaNgQIEMg7AaGgvJsSAyJAgAABAgQIEBgEAcGfQUB2CQIECBAgQIAAAQIECBAgMBACnbe8SPqfOnWq34AfCGh9EiBAgAABAnkvkP1c5PNQ3k+VARIgQIAAAQIECPSzgOBPP4PqjgABAgQIECBAgAABAgQIDJZAstrPpEmTBH4GC9x1CBAgQIAAgbwVEIjO26kxMAIECBAgQIAAgQEWEPwZYGDdEyBAgAABAgQIECBAgAABAgQIECBAgAABAoMjsGgAaNq0abZAHRx6VyFAgAABAgQIEBgiAcGfIYJ3WQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKD/BbLhn4kTJ0YS/HEQIECAAAECBAgQKGYBwZ9inl21ESBAgAABAgQIECBAgEDBCyTbeSUvr5LDi6uCn04FEBhSgfb29rjiiiviwQcfjIcffjheffXVWGeddWL99dePgw46KDbbbLOFxnfhhRdm2vzoRz+KcePGDenYXZwAAQJLIpB8jkrCPw4CBAgQIECAAAECxSwg+FPMs6s2AgQIECBAgAABAgQIEChogc5bVfiN9YKeSoMnMOQC77//fuy5555x2223dTmWww8/PM4444wFP//85z8f9913XzzxxBOxySabDFgNF110UTzzzDNx6KGHxlprrTVg19ExAQIECBAgQIAAAQIECBAoRgHBn2KcVTURIECAAAECBAgQIECAQMELTJo0KZLfUk+OqVOnxpQpUwq+JgUQIDA0Ao2NjbH22mvHG2+8EXV1dXHOOedE8oxZccUV4+23345LLrkkTjjhhMzgzj///DjwwAMzXw9W8GfXXXeNG264Ie6+++7MuBwECBAYaIEkXO2z1UAr658AAQIECBAgQGCwBAR/BkvadQgQIECAAAECBAgQIECAQI4CnVf6Sbb3skVFjnCaESCwWIFf/vKX8bOf/SwT+nnqqaditdVW+0S7fffdNy699NJMmw8++CAqKysFf9xPBAgUpYDPWUU5rYoiQIAAAQIECJS0gOBPSU+/4gkQIECAAAECBAgQIEAgXwWSl1ITJkwQ+snXCTIuAgUikKz2s8IKK0R9fX1mG69kO6/FHe+8806MHz8+0+7RRx+NzTbb7BPBn4ceeijOPPPMzLMpuypQtq9f//rX8fDDD8dxxx0X66+/fubbc+fOjbPOOiuuvfbaePnllzOBo6TfZJWNlVdeOWbOnBkHHXRQ3HLLLZnrbrPNNpmtvi677LIFQ7z11lvjD3/4QzzyyCMxatSo2H777eP73//+QluCXXPNNfGXv/wlfvSjH0VDQ0Ocd955UVZWFtddd12BzJJhEiAw2AJWVhxscdcjQIAAAQIECBAYSAHBn4HU1TcBAgQIECBAgAABAgQIECBAgACBIRR4+umnY+ONN86MIAnXjBgxIufRLLrV11VXXRXf+MY3Yu+9947LL798oX523333SAI42e262tvbY/LkyXHHHXdk2q233nrx+uuvZ8aQrCr05JNPRlVVVSYA1PlIfjZnzpzMt4499tg48cQTM18n30/OzX59/fXXL9gWLNmmLAkT7bTTTnHbbbdl2iQhovvvvz/nWjUkQKD0BDqv/GNb1dKbfxUTIECAAAECBIpJQPCnmGZTLQQIECBAgAABAgQIECBAgAABAgQ6Cfz1r3+Nr33tazFmzJh49913e2XTl+DPAw88ENtuu22stNJK8cwzz8RSSy0VbW1tcdhhh2VW5EkCPcccc0xmPLvuumvccMMNC0JDyffuueeeTLAnCfwkP0tWGWpqaorTTz89khf0yffff//9qK6ujmzwJzlvu+22i6OOOiqzItAqq6zSq3o1JkCg9ASy4R/Bn9KbexUTIECAAAECBIpJQPCnmGZTLQQIECBAgAABAgQIECBQcALJC6dkpQoHAQIEBkLg3HPPjUMPPXSJVsDpS/DnyiuvjD333DMTOJoxY0bU1tZmynvrrbfiwgsvjDXXXDP22muvzPcWF/zJXvvII4+MU045ZSGaLbbYIrMdWRJq+q//+q+Fgj/J9mI1NTUDQalPAgSKVMBnsSKdWGURIECAAAECBEpIQPCnhCZbqQQIECBAgAABAgQIECCQXwLJahbJqhYTJ06MadOm5dfgjIYAgaIQuPrqq+PrX/96bLrppvH444/3qqa+BH9eeOGFWHfddTPXS1b9+cEPfpBZtWfrrbfOrNLT+Vg0+NPR0RHl5eWZJmeddVasv/76C7U/55xzMqsAJVuBJav9ZFf82W+//eKiiy7qVY0aEyBAgAABAgQIECBAgACBQhcQ/Cn0GTR+AgQIECBAgAABAgQIEChIgc6hn2TFnyT84yBAgEB/Czz99NOx8cYbZ7bGmjNnTrfd/+lPf4rXXnstdtppp9hkk02iN8Gfxa3ac/3118f+++8f77333kLX3XvvvTOr+IwdOzbz/UXPffPNNzNhoZ6OZCWjs88+e0HwJ1nd6OCDD+7pND8nQIAAAQIECBAgQIAAAQJFJSD4U1TTqRgCBAgQIECAAAECBAgQKAQBK/0UwiwZI4HiEGhoaMiEfpLjoYceii233HKxhc2aNSuWWWaZzM/uvffe+NznPter4M/aa68dL730Utx9992RPOOyR1tbWzz22GOZVc1uuummeOCBBzI/2nzzzeORRx7JfL1o8OfDDz+M0aNHZ3522WWXLfh60YGvttpqscEGGwj+FMetqgoCeSdgC7C8mxIDIkCAAAECBAgQ6EJA8MetQYAAAQIECBAgQIAAAQIEBlEg2doreSlue69BRHcpAiUukF25Z+edd44bb7xxsRrnn3/+gtVy5s2bl9mOa9EVf6699trYbbfd4itf+Upcd911C/ppbm6OYcOGZf45G/z561//Gs8//3x8+9vfjiSgkz0efPDB2GabbTL/OHPmzEyoZ3GrBY0cOTLq6+vjL3/5S2arss5HEiB66qmnYvLkyZmVibJbfVnxp8RvdOUT6EeBJPQzdepUn9f60VRXBAgQIECAAAECAycg+DNwtnomQIAAAQIECBAgQIAAAQKLFfAb5G4MAgQGU+DFF1+MddZZJ3PJffbZJy644IIYPnz4giFcddVV8Y1vfCPzz+ecc04ccsghma8XDf784x//iA033DDGjBkTr7zyyoKVhI488sg47bTTMudkgz9HH310Zjuv4447LpJnXvZIzltrrbUy/5gEe0aMGLEg+HPDDTfELrvskvnZ9773vbj88svjq1/9alxzzTWRSqUy33/jjTdivfXWy5ybbGOWjEfwZzDvJtciUDoCVmgsnblWKQECBAgQIECg0AUEfwp9Bo2fAAECBAgQIECAAAECBAgQIECAQA8CZ511Vhx22GGZVsnWX9tuu21mtZ1ku61ki67kSFbz+fOf/xzl5eWZf140+JNs25VsB5aEbjbaaKPYfvvtM+dnt+9KzskGf5588snYdNNNM/0ceOCB8dnPfjZef/31uPLKK+O5557LrOKTrOaTHEcddVSceuqpMX78+EzQJ/n6rbfeihVXXDHz85122imzuk+yBdiZZ56Zuf4PfvCDuOSSSzI/F/xx+xMgMFAC2dChlRoHSli/BAgQIECAAAEC/SEg+NMfivogQIAAAQIECBAgQIAAAQIECBAgkOcCt99+exxwwAExY8aMhUaaBIHOPvvszGpA2ZfcSYPsahfJtlpJ0Cc5Hn744dhxxx0z4ZvscfDBB2e+PO+882LatGmZrXGSIwnm7Lfffp9QSbYKu/TSSzPBo+RI+t9rr70yK/gkRzqdzvz57LPPxne+850F3+98vWSFoZqamsy3TjzxxDj22GMz1z/ooIPyfBYMjwCBQhLIbtGajLnz862QajBWAgQIECBAgACB4hcQ/Cn+OVYhAQIECBAgQIAAAQIECBAgQIAAgYxAR0dHZrusZJWfZAWfddddN1ZeeeWFAj89USV9JOGhmTNnxhprrBHLLbdcl6fMnj07Hn300UzbUaNGxZprrrlgq69FT0pW+Rk2bFhmVaHs0d7entlW7IUXXsisVJQEkJZddtmehujnBAgQ6DeBJPwzffr0mDJlSr/1qSMCBAgQIECAAAEC/Skg+NOfmvoiQIAAAQIECBAgQIAAAQKdBI4//vjMP3lR5LYgQIAAAQIECBAgQIAAAQIECBAgQGAgBAR/BkJVnwQIECBAgAABAgQIECBQ8gKdt4aYOnWq8E/J3xEACBAgQIAAAQIECBAgQIAAAQIECPS/gOBP/5vqkQABAgQIECBAgAABAgQIxKRJkyIJ/wj9uBkIECBAgAABAgQIECBAgAABAgQIEBgoAcGfgZLVLwECBAgQIECAAAECBAiUrECyxVcS+Jk4cWJMmzatZB0UToAAAQIECBAoVoEk4J181nMQIECAAAECBAgQGGoBwZ+hngHXJ0CAAAECBAgQIECAAIGiEsiGfpKi0ul0UdWmGAIECBAgQIAAgbCyo5uAAAECBAgQIEAgrwQEf/JqOgyGAAECBAgQIECAAAECBIpBIAn/JMeUKVOKoRw1ECBAgAABAgQIdBJIVvtJtnVNjmR1Ryv/uD0IECBAgAABAgSGUkDwZyj1XZsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoOAFbuxbclBkwAQIECBAgQKBoBQR/inZqFUaAAAECBAgQIECAAAECBAgQIECAAAECBAgMlECy6k+y+s/UqVOt9DhQyPolQIAAAQIECBDoUUDwp0ciDQgQIECAAAECBAgQIECAAAECBAgQIECAAAECCwtkt/wS/HFnECBAgAABAgQIDKWA4M9Q6rs2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgULACSfhn4sSJBTt+AydAgAABAgQIECh8AcGfwp9DFRAgQIAAAQIECBAgQIDAEAocf/zxme0dpk2b5qXPEM6DSxMgQIAAAQIECBAgQIAAAQIECBAoRQHBn1KcdTUTIECAAAECBAgQIECAQL8JpFKpTF+2eOg3Uh0RIECAAAECBAgQIECAAAECBAgQIJCjgOBPjlCaESBAgAABAgQIECBAgACBRQWyq/0I/bg3CBAgQIAAAQIECBAgQIAAAQIECBAYCgHBn6FQd00CBAgQIECAAAECBAgQKHiBbOgnKSSdThd8PQogQIAAAQIECBDou8A999yT6WTixIl970wPBAgQIECAAAECBHIQEPzJAUkTAgQIECBAgAABAgQIECCwqMCkSZMiebFjtR/3BgECBEpbIMl+zmtNx9X3z42nX22JfXYYEet8qirKy0rbRfUESlEg+WyYfEZMQj/Tpk0rRQI1EyBAgAABAgQIDIGA4M8QoLskAQIECBAgQIAAAQIECBS+QHbFH6v9FP5cqoAAAQJLIpAEfp5/vTXueXpe3PRIY7wzqz3TTVVFKrZYuyomb14TW4yvjmXqJICWxNc5BApVIBsOT4I/Vv0p1Fk0bgIECBAgQIBAYQkI/hTWfBktAQIECBAgQIAAAQIECBAgQIAAAQJDKJBs7jjj7ba4+Jb6ePKfzfFhfUd0LGbHx+rKVKy2fEXs/rna+PKWw6OiPDWEo3ZpAgQGS8CqP4Ml7ToECBAgQIAAAQJZAcEf9wIBAgQIECBAgAABAgQIECBAgAABAgR6EJjXko43Z7bFVfc3xo0PN0ZTy2LSPl30scqYithvcl1sPr4qlqkrjzIZIPcbgaIWsOpPUU+v4ggQIECAAAECeScg+JN3U2JABAgQIECAAAECBAgQIECAAAECBAjki0BrW8RjLzfHTY82xkPPN8esho4lGlpFecTaK1XGxA2HxeTNh8fYZSqWqB8nESCQ/wJW/cn/OTJCAgQIECBAgEAxCQj+FNNsqoUAAQIECBAgQIAAAQIECBAgQIAAgX4TeOGNljj9qjnxj9daon3J8j6fGEsqFVFTnYrvf6Euvv652qgdZvmffpswHRHII4HjjxKHM+sAACAASURBVD8+JkyYEBMnTsyjURkKAQIECBAgQIBAMQoI/hTjrKqJAAECBAgQIECAAAECBAZEIPnt7WJ/eZO82H72Xy3xzqz22HSNqlh2VPmAWOqUAAEC+SpQ39gRj7/SErc82hjTnm6O9o7ct/TqbU2fWq4ivrJVTWy7wbBYbfmKSFYFchAgQIAAAQIECBAgQIAAgd4ICP70RktbAgQIECBAgAABAgQIEChZgeyWDQlAOj1wL4GHEviVt9ri0tvq4/FXmqNxXjqSF9K7bVsTX9umNsosSDGUU+PaBAgMgsC8lnTc9fem+PO9jfHau60xd97gPOuTx+vY0RXx2XWrY58dR8S4ZaR/BmG6XYIAAQIECBAgQIAAAQJFIyD4UzRTqRACBAgQIECAAAECBAgQGEiBZLuGqVOnZv43ZcqUgbzUoPbd1JKON95vj7/c1xC3PNoUyT8veqw4ujx++KWRscXaVbHsyPJItqlxECBAoBgEkhxnfVNHZiuvC26sj+dfbx3SspLn67cn1Ga2AFthmfKoqvDAHdIJcXECBAgQIECAAAECBAgUgIDgTwFMkiESIECAAAECBAgQIECAwNALpP6TdimW1X6SLb3+9/nmzFY2yZ+zGzu6RU62nxm/YmV8boNhscsWNTFutBUphv6uNAICBPoi8P7s9rjr7/Myq/w8+c+WyKfF3JYbVR6f26A6vrDp8Nh0zeooL+tLpc4lQIAAAQIECBAgQIAAgWIWEPwp5tlVGwECBAgQIECAAAECBAj0i0Cxrfbz3L9b45Q/fxQvvN4aHb3cySZZe6J2WCr23KE29phUF8OqrEbRLzeZTggQGDSBtvbIrHJ2xV1z48P6jmhr7+WDcJBGmuRNh1WmYsNVq+Kwr42MtcZVWnFtkOxdhkB/CyRbxibHxIkT+7tr/REgQIAAAQIECBAIwR83AQECBAgQIECAAAECBAgQ6EEgu9pPIW/zNXtuRzz+ckvc+nhT3PePedHS1vcX3cmqP7tuWRMTNxoWq61QGcmqQA4CBAjko0Cyms/r77fFg883x5V3N8TbH7bn4zC7HFN1ZSp2+PSw2HmLmlhvlcqoG24JoIKaQIMtaYEk9DNp0qRM6GfatGklbaF4AgQIECBAgACBgREQ/BkYV70SIECAAAECBAgQIECAQBEJJCv+JMeUKVMKrqp5Lem488mm+Mt9c+PVd9qisbnvgZ/OCGWpiBWWLo8t1xkWe+9QG59arqLgjAyYAIHiFUieeG/ObIs/TJsbj77UHP9+ry2SrQ4L9aipTsXGq1fF17apjc9vMEzgslAn0rhLTiAbIk+CP1b9mT/9Xa2ClHw/+9m7842SuC3us7j285X4fHxfldL9k/275LlS2P9aSe7Z7DNxcZUkz77FzXFX52k/X5HPfAf3w+DcD8nf4enTp8eECROG7LOe4E9h/7vA6AkQIECAAAECBAgQIECAwCcEku276hs74qkZLXHhzfXx4hutg6JUlkrFNz5fG7ttWxOfWrY8KitsAzYo8C5CgMAnBJJwz6z6jrj2gbnx+7sboqmfQ4/5QL7G2Ir4yW6jYqPVqiJZESjZGsxBgEB+CiQr/iQvhEp51Z/sC7Hkz84vuNPJkmydjuwKSYvOZFd22s+X4jPfoZTvh+QeSP43lC+d8/MJPPSj6hxQXNzKb13dt9mRdxUazf67ZdEKtZ8vwme+g/thaO6HoXgmC/4M/fPeCAgQIECAAAECBAgQIECAQL8JfDCnPW57oinu/vu8+PuMlljkXUq/Xae7jpYbVR5br1cdO31meGy6RpUA0KCouwgBAolAa3s6XnqzNW59rCnueKIp3p9dwMv75DClFeWp2HLtqpi08fCYsOGwWKbOFmA5sGlCYNAFbPf1yRew2dUrunoJvrhJ6mpVk65WytB+viKf+Q7FeD9kAyWLznEphwwH/QHfxQUXNzfdzUt3K/4U473r2fTxjWN+i+PfVdnV5qZOnbrQU2EwV3sU/MmXfwMYBwECBAgQIECAAAECBAgQ6INAsqXXVffPjd/e1hBz53XkxVY2yQoUyZY0h39tZKw1rrIP1TmVAAECPQv86922OP/GOfH4Ky0xe27HkAQfex7lwLSoqkzFciPL4ntfGBE7faYmki3BHAQI5JdAduWBwXwBlE8C2S1XutpyJJ/GaiwEClEg+9I5u7pYIW5TXYjuixvzoiv4dN6Kz7ZsxTLL6iDQvUB2pcPBfBYL/rgrCRAgQIAAAQIECBAgQIBAgQokW3r9+722ePC55kzoJ/k6H49ky6/tNh4Wu25VE+uvXBl1NVakyMd5MiYChSiQhB6T7QxveqQxrn2wsaTCPl3N15pjK2KP7UfEZmtVx/JLlUeZR24h3trGXIQCpRB8ya5Y4cV2Ed7ASioKgWwoqCiKyfMikme+bdfyfJIMj8AQCqT+/z7NyepA/RkMEvwZwgl1aQIECBAgQIAAAQIECBAgsCQC6Yh4Y2Z7XHlXQzz6UnO8MbMtL1b46amWEcPKYv1VKuOrW9fEdp8eFuVlVqToyczPCRBYvEBbezoeeqE5rnmgMZ55tSVmNRT3ll5Lch+MX7EyPrdBdey1w4hInr8OAgQIDJRA5y1tbDE0UMr6JdB3geRFc3b1GQG9vnvqgQABAksi0HlVsP4M/wj+LMlsOIcAAQIECBAgQIAAAQIESkJgIH4Dpy9wbe0Rs+Z2xJ+nN8Sfps+NpuYkAlSYx6eWq4gjvzEqNlqtKoZXp0IEqDDn0agJDJXAv95ri8Mv+jBeezc/VzobKpfFXffgXUfG93YckU9DMhYCBIpIIFnVInlplT1KdSuzIppSpRSpwKLbT/Xny+YiJeu2rGzgsfM2XqXooGYCBJZMYNHPT/3xTBb8WbK5cBYBAgQIECBAgAABAgQIFLlA9j/C++M/vvtKlQR+nvt3S9z+RFPc9nhTfFhfHCtbVJanYrPx1TFxo+R/w2PZkVak6Ou94nwCpSLw+CstmeBPQ1NxPA8Hct42Xr0qfnvYsgN5CX0TIFCiApMmTYrO23sloR8HAQL5LdD5ZbPVf5ZsrhY19OxbMkdnESAQ0fl50tfwtOCPO4oAAQIECBAgQIAAAQIECCxGIF+CP/98qzXO+ducePrV1qhv6oh04S7y0+V9lgSAxixVHvvsWBuTN6+J4VXW//GXkgCB7gWufWBunPzn2UX5TOzvua8dlorrpywfS48QruxvW/0RKHWB7IoXU6ZMyWwf5CBAoDAEOr9ozodfdCkMtfmjZFdIs2WsBApDoHOIui8jFvzpi55zCRAgQIAAAQIECBAgQKBoBZJtvpIjPQRJm8bmdLz4Rmvc+nhjXP9gU7S2F2Hap4s7Z7UVKuK7E0fEVutWZ8JA5d5TF+3fMYUR6IvA8X/4KP72UGNfuiiZc6sqUnHOAcvE5uOrS6ZmhRIgQIAAAQI9CyQvm4X2enbKthD6yd1KSwIEBl9A8GfwzV2RAAECBAgQIECAAAECBPJcIPk/QJOtC5JjMIM/za3peOTF5rj6/sb4x79a4qOG0tzCJslcjV+xMrZZrzp2/1xtLL9UeZ7fMYZHgMBgC+x+0vvx6jutg33ZgrxeWVnE4V8dFd+eWFuQ4zdoAsUmkLw4Tj5rWiWn2GZWPQQIlIJA8gyfMGGCwFQpTLYaCRSYgOBPgU2Y4RIgQIAAAQIECBAgQIDAwAtkgz+Dtex5W3s6Xnm7NU7985x45rWWgS+wgK6QhID23akuvjWxNkbVlMV/FmIqoAoMlQCB/haY1dAROx71TpTOWmh9F/zqNrVx1DdGWUWt75R6INBngSRcnnzWnDZtmhfHfdbUAQECBAgQIECgOAWSz4vTp0/PhMVzOQR/clHShgABAgQIECBAgAABAgRKUmAwlj5PVvU567rZccPDTSVpnGvRY5cpj+P3WDo+s1ZVrqdoR4BAkQrc+EhjTLnioyKtbmDKSrb5Ou37S8eoWvsnDoywXgnkLpANmCfb6yThn0I4stvbDFYovhBMjJFAsQr09kVzsTqoiwABAkMtkPrPb77l+vlL8GeoZ8z1CRAgQIAAAQIECBAgQKCkBZ77d2scdtGHMXN2e0k75FL85M2Gx4l7L51LU20IEChigaMumxW3PyEs2ZspTsKTvzl02VhxtK0Te+OmLYGBECi04E/nLXBzffE0EG76JEBgcASyL5qtSjY43q5CgACBrgSywevk57k8kwV/3EsECBAgQIAAAQIECBAgQGAIBaY9PS+OuHRWtHfYtKanaRg9sjxuOn5MVFakemrq5wQIFKlAS1vEl6e+KyzZy/ktS0VcethysdFqlb08U3MCBAZCIPtiPZ3O/89/2a3JhH4G4k7QJ4H8E+j8orkQnlEDJZg4JEeuW+wM1Dj0S4BAaQv05pks+FPa94rqCRAgQIAAAQIECBAgQGCIBc6/YU789vaGIR5FYVy+ujIVv/vJsrHWOC+uC2PGjJJA/wu89EZr7Hv2zJg7L39eliehmrqaVHx61bIYNzoVj73cEf+e2RHNrf1ff196PGTXkbHPjiP60oVzCRDoJ4FsmCaX397up0suUTfZl02FtC3ZEhXqJAIEFhLIPqNK9e9+55XO8v057dYlQKD4BXJ9Jgv+FP+9oEICBAgQIECAAAECBAgQyGOB/z73g3j0peY8HmH+DK3i/+9QM3WPpWLyZjX5MygjIUBgUAVuebQpTvjjR9HSNvTBn5rqVHx6tVTsObEyll86FcMqU5E8p+a1pKOlNeL+F9rj6gfb4u0P09HeMahMi73YVutUx/kHjR76gRgBAQKRvFROjuSler4enV98l/KqH/k6P8ZFYKAFsiuTleJqX9nQYynWPtD3lf4JEFgygST8k6xA1t1nR8GfJbN1FgECBAgQIECAAAECBAgUqUDykmOwXsI0t6bjC8e8Gw1NefBGuADmM5WK2HuHEXHwl0dG8rWDAIHSEkh2xLngxjlx2R0NMdi745SXRSxVm4rVl0/F2KXLYtv1ymKT1ctzehbNaUzHrU+0xytvd8TrM9PxxgcdMa81Br2GmuqyuOPk5WNYlQdoaf3NUS2BJRcohIDSklfnTAIEuhPIhv9KLfzSm2113EEECBDIJwHBn3yaDWMhQIAAAQIECBAgQIAAgSEXGMzf7nvilZbY7+yZQ15zIQ1g0sbD4oQ9l45kpQ0HAQKlJdDUnI7jrpwVd/993qAUngQMR49Ixbbrlcfma5Vlgj+rjimL6iXcbTAJK82ckwR/0vHurI64+YmOmPFue8xrGZRyMhe55MfLxiZrVA3eBV2JAAECBAgQKFiBwfylmHxBKuWVjvJlDoyDAIElExD8WTI3ZxEgQIAAAQIECBAgQIBAkQpk986eNm3agK/8c871c+J3dzYUqeTAlLXWuIo454DRMWap/7/vl4MAgZIS+GBOexx4/gfxylttA1J3WVlkQj1L1aRio9XKYt8dKmPpEQMbMky2AJv+bHtc82BbvDc7HQ1N6WjrGLjVgP77SyNjv8kjBsRPpwQIECBAgACBQhdIfhEoOZItdRwECBAoJAHBn0KaLWMlQIAAAQIECBAgQIAAgQEXyP6GX3qA95FJuv/u6e/Hi2+0DnhNxXSB2mGpuOzw5WKNsRXFVJZaCBDIQeDVd9piz1++H00t6Rxa59YkWdVn7NKp2HJ8eYwZlYqNVi2LtVcsy+3kfm6VbAn28Esd8eaH6XjlrY54fEZ7tPZzxmnLtavjvANHRxJychAgQIAAAQIECBAgQIBAcQgI/hTHPKqCAAECBAgQIECAAAECBPpJYLCCP+/Mao9vn/p+zGns6KeR9283ycvwAc4+LfGAf7HX0vGlzYcv8flOJECgMAVuerQpjvv9rH4f/LIjU/GDHSpj63XKMtsIJs+/oTqSFYDe+KAjLr+rLR54vj06+i/jlClplTEVceGho2PMKKumDdUcuy4BAgQIECBAgAABAgT6IpBsxZgcEydOXNCN4E9fRJ1LgAABAgQIECBAgAABAkUnMFjBnwefa46fXvphzOvHlSuWdDIqyiKWGpGKNVYoi7HLpGLbdctjjRVScedT7fHSmx3x75npeH1mRzS15EcYaNetamLKd5da0nKdR4BAgQocd8WsuOmRpn4ffTbomPw5flxZfHWrilhuVCpWGp2KpWpTUT5Aq+Mk4crm1nS89WE63p0d8fcZ7XH9I23R1j6/xLJU9HvwZ5m6sjj9B8vEJmtU9bujDgkQ6J1Asp1M8tIm2U6m80ub3vXSv61tcdO/nnojUGwCyTMrX55XxWarHgIECOQqkHxemzp1auZ5PG3atAWnCf7kKqgdAQIECBAgQIAAAQIECBS9QPJ/ZE6aNOkT//E8EIVfcVdDnPu3OZGs7jAUR/JCeXRdKj63fnlsvmZ5LD0i4lPLlkV15SdH80F9Ot78IHkxnY5bHmuLl9+eHwIaqmPc6Ir425QxQ7oqx1DV7roESlUgWfjmS8e+G+999J9UTD9BLDcyFV/fpiIefKE9nnujI1pbI5JrVVZErDm2LMYulcr8+YVNyqNueP+EgJpbI55/oyPueqotZs2NePmtjkies8mRhI+SFYi236g8M5A/3d+/e31VVqTi598eFbtsUdNPgrohQGBJBZLPnMlnz+SFTb68SB+sAPySmjmPAIGhE8g+swZ6S+yhq9CVCRAgUBgC2f/vMhlt52ey4E9hzJ9REiBAgAABAgQIECBAgEARCbS2pePUv8yO6/63cdCqSlasGFaVygR8Nl61PPacWJF5ubwkRxJWeuCF9rj2wbZ4e1Y66pvS0do+uKsB/W3qmFhxdMWSDN85BAgUoMBr77bGbie+3+8jX3VMWZz1g+oYMXz+M+yRl9vj/Fta48M56WhpW3jFnWT1n+/vUJFZFS3ZEqy8PCKXp2iyXVdrW2RW9vnNbS3x2CsfJz6T88vKImqHRWyzbkUcunNlJnSUHI+81BFHX9nc7zXvs+OIOPjLI4Un+11WhwR6J5BvwZ+ufnu8d1VpTYBAsQrk2zOrWJ3VRYAAgVwEFvdMFvzJRU4bAgQIECBAgAABAgQIECDQjwKz53bE/1z8YTz5z4FdNqeyPDJbdyUr+iy/VCo2XKUs1hrXv3vWNMxLx6Mvd2RWBHrxzY545t8d0Tgv3e/b0yzKf9x3l4qvbGXFin68LXVFIK8F/vpgY5z4fz/q9zF2Dv507nzuvIh7/tEWr72XjhnvdsRzr3dktuBKwkHJqjyrjknFxA0qYpkRqdhglVSMW6ZswZZgSZvGlnQ8+6+OeH1mOl55pyOm/6M9EyRKjiTos2xdKjZZvSyzpVgSJEpWFVr0GKjgz9brDYsz9186KspziS31O7kOCRD4j0C+vUTPBn+SrSOS7cccBAgQ6CwwmKvjDqZ8ti7PvsFUdy0CBPoqsLhnsuBPX1WdT4AAAQIECBAgQIAAAQIEeinw9oftsfcZ78cHc/p/n69kC6/kRfKXN6+I7TYqj6qKiJHDU5kXzQN9JNt/zZ2XzqxqceU9bZmtbJpa5m9f09/HlzaviV/stVR/d6s/AgTyVODnv58Vtzza1O+j6yr4k71QEuKZ05SOD+akMyucJc+2V9+bHwJKjmQ1tWT1tGQbsE+vXhbjx5XFDY+2RX1jOt6fM/+ZmBxJxCZZ1eeLm1ZktvGqGZaK5UeloqK865IGKviz7MjyuOH4MVFVIfjT7zeUDgn0QiDfgj+2+erF5GlKoAQFutpaptAphB4LfQaNn0DpCiz62U3wp3TvBZUTIECAAAECBAgQIECAwBAJPP5yS+x/zsx+vXoS+Fl/5bI4ZOfKWGXMxytP9OtFetFZ8rI8WTHjxsfa4srpbTGvnwNAa46rjMsOXzaz3Y6DAIHiFmho6ogfnvtBvPB6a78X2lPwZ3EXTEI/dz3VFrc80R6zG9Px7ux0tLZGdI45JqsCjaxJxZhRqVh5uf/H3nnAOVV0bfxJNtkGuwtLLwqICKKC9C4oCqJSlKaIiiAgzQY2FMEO9gYIKDbEggXUVxRFBRVBiqCCNJHe2cb2Tfm+MzeTvbkkm765yZ75vb6b5E4588zsJZv55zkG3HKpGXXT/btfhQv8oTl99GBNnFuX0yWGfENxh6yAHwro6bA5Vp08/FgOrsoKsAI+KKA3YNGHkL1W0dO92GuwXIEVYAVYAZUCdP/q3r07evToIV5l8Ie3ByvACrACrAArwAqwAqwAK8AKsAKsACtQzgrM+SoHb36bG/JRKbVXo1pG1K5qQJM6RvRuFYe0SgZn+pmQD+imw8ISYOt+G77bbBEH4v8esSMjN/SuP7WqxuHl29PRpK65PKbFY7ACrEAEFdh1uAR3z8sAuaWFugQC/qhjyMy1Y/N/NpzIsePDny3Iybfj4kZG9LgoDg1qGNH8rMBBzHCCP+OvScGo3imhlpP7YwVYAT8VIOBGHtb42TQs1fUWT1gmyZ2yAqxAwArQPYIOmum+FSspAdntLODtwA1ZAVZAZwow+KOzBeFwWAFWgBVgBVgBVoAVYAVYAVaAFWAFIqcAfZBJJdwHMLc8fxJ/7y0O6UQp3UyCCSiyAFZVBrHUZOCWy8zodn4cKicZQHAQOVGEqtBYRSXAgZM2vPFdCf7YUzo4jUPjUbqx3MJQjaj0Q04/j99cFT1aJIa2Y+6NFWAFdKfA6r8K8dA7mcgvCj1EGCz4I8WidGB3zC/GwVM2DO1qwuhewUOJ4QR/LmhgxrtTauhurTkgVoAVYAVYAVaAFWAFylMBBn/KU20eixVgBcKpAIM/4VSX+2YFWAFWgBVgBVgBVoAVYAVYAVaAFYgqBcrD5jsn34Yrph4FpYoJZaHD61m3xOOvfTbsPGzDgRN2bN5rRWExQGm3CMI5q7oB3S80oVploEVDI+qmG2GK8y8KkcKryI4/99pw4KQduw7b8Os/VpQ45kP9UTqb1ufEoVqqAd3ON+JwBjB1UZF/A3mpTfO5o38qbupZGSHkmEIaI3fGCrACoVFg0Q+5ePHznNB0puklZOBPvh2TFhTjUJSAP3QP/WFmbaQmG8OiK3fKCrACrAArwAqwAqyA3hWQaQ5nzJgRMw5Getec42MFWIHwKcDgT/i05Z4rqAJFJVbkFlmQX2RBdkEJ9p/Kw6GMfBzLLsDJ04XIyitGblEJCostKLZYYbMp31YzxxmQaI5DpQQT0pLikV45ATXTElG3SjLOql4Z1VMSUSnRjLTkeFGPCyvACrACrAArwAqwAqwAK8AKhF6B8gB/ftlWhDvnngp58NrDa3LGOJkDnDptxwerS/D3fhuKLcqw5A6UnmJASqICAA27xOw1JRi5+mzcY8WHqy04XWAX/eY7WB46QK6WYsDAzia0O9eISgkGVE81OJ2FwuVacVW7JMwYXrVcU5mFfOG4Q1aAFfCqwLR3M/H1+gKv9QKpEA7wZ0gXE8b01rfjD2k1Z0I1dGiWEIhs3IYVYAVYgQqrQH7GNuSf2oK8U9sA2JGfuavCahELE0+uei4AIypVaw4YzKh+7qBYmBbPgRVgBVgBVqACKsDgTwVcdJ5y6BUgdGfP8Vxs/O8U/j1+GoczC3AspwA5+SWw2+3iP/ojoPQxfePWLr52K7Afeij+j+ooL5ReFxeRHB+HGmlJaFQzFe0a10SPC+shJTH4D5FCrwb3yAqwAqwAK8AKsAKsACvACkSvAuUB/ryyLAfvfJ8bcpG8HV5TSq61O6xYus6KnHw7jmTYUFCiuAFRoTRg13aIQ+vGcUivbEByAnA8x46T2XZ8ssYinIRkIXCIQJ8aaQY0qWvETT1MSEv27LsTLvDn3LpmLLq3Oswm9vwJ+YbiDlkBHSkw+Mnj2HPUQS6GOC5v905fh6P76sQFxTh8yoZoAX/Or7QeTZI2+zpFrscKhE2B7t27O/sOd7rVsE2CO455BfJPbsGJ3UsAuwWVUushOe0sMWf5M+YFiNEJ5mcfEDPLz94PGBOQl30AlapdiOpNro/RGfO0WAFWgBVgBWJVAQZ/YnVleV7lpsChzAK8/sMubNmfCavNBqsEehyfnqsBH+djJwhUFvRDvI9NgYIc8JDCBNnFt2ZrpCTioUHt0LZxzXKbKw/ECrACrAArwAqwAqwAK8AKxLoC4QZ/Six2TJyTgQ27Qpv2itbFn8PrvEIlVdfJ03Zs3G3D77usTjcgQmhqVTUIsGfnIZszhZfRCNRINaD3xXGok25E4zoGNKppdLr6lLU3wgX+xJsM+OrRWqiWyqlqYv13k+dXcRXIzLXhyoePwWJ1UIohlsKfe2dZQwvwZ34xDmfYMLiLCWOjwPEnc9cy7P3uTthtJSFWlbtjBYJXgAAg+o+gIIaBgteTewhOgX1rpwH2EtQ4qyODPsFJqfvWJ/f/ChjjkZd9CA06Pq77eDlAVoAVYAVYgYqtAH2OSWkLp0+fDgZ/KvZe4NkHoYDFZsfKrUfx/pq9OJlb5HDvURx71A4/pa4+Z7r4iLqK3Y+mjdoBSHELEhnBnO5B9NCGBHMcbuzWFIM7N0GVSmzNHMRyclNWgBVgBVgBVoAVYAVYAVZAKBBu8OfwKSsmzT2FvcdC71wR6OE1/V1Cf2/sOGTHi18UYf8JO8gdiAp96SDeBPRuZcKoK8xIMgMGI+Cvv064wB+KsU3Kj6iXsJt3MCugWwWkkwUfXAe2RF/9XoDp72UG1tiHVoHeO7VdE/gzYX6xcFMb1NmE268M3qU5nPdOij/dfBxtU1Yg0RieNGo+yM9VWAGhAB1WyKJ+rJZHgkB0qBErJdzvO33VSS9x+Bpvedfbt/ZhVEqtjepndSrvoXm8CCpw8sAa5OUcRYOOT9BfRRGMRH9Dy/s0v7fV39pwRKwAK1DxFFC/j2Pwp+KtP884BAoQ2LPsj0N495f/UFRiVRx5nKm8aAAV5KNy/lGAIAnweErvpYF+7ML3RwP9lKYOo0v9252DO66+GJU49VcIVpe7YAVYAVaAhEc00wAAIABJREFUFWAFWAFWgBWoyArQh5j0RzN9iBmOg6WNu4px/8IMkINFqEsoD68nzi/C4Qx7VBxek2PFf9+OD7Wc3B8rEDYFZsyYIfoOxz0mbEFHsOMpb2Tgxy2FYYsglPfOCfOKcCTTjoGdTRgXBeBPrapxeHlsOprUCx5SCtsCcccVVgF6P0aF3ptpYSC6j8bCPVQvwI1e4tDjZhfQT0otVD+7sx7D45jCrAC5/+SdPoYGHZ8M80jR1T3fM6JrvThaVoAViG0FGPyJ7fXl2ZWDAgcy8vHo0r9wJLPA6dQjHHlgR5I5DuY4A0osNuQVlTjTdLk6/yh1z3AHEi8r0JBM62VzpgVzOAMp9kCOtsphAfHmk/u3waDOTZg9L4f15yFYAVaAFWAFWAFWgBVgBViBQBX4cl0+Hl+c5XTUCbQfd+1CeXg9aUExDp2yYWhXE0b3Cv5AOJyuFWZDMa6s9i4Myl9RXFgB3SkgD6zduVjEooNFKBeg2GJHzweOIr8ofL/fobx3jp9XhKME/nQyYVwffd87aZ1MccALY9LRpXliKJeN+2IFwqKABIEkPEmDRDtIqZfDc73EEZaNE0SnJ3e+B1iy2eknCA1joani/EPwDzn/cCEF+J7B+4AVYAVYAf0owOCPftaCI4lSBb7cfAjzf9gNq80mPlomUIdgn+7NaqHH+bWQXjkBOfnF+G3XCXy75SByC4udIE+p6Y/DFUi6A5EWGuhH7STkmg7MUdcJAdmF28/Cib3QqFZalKrKYbMCrAArwAqwAqwAK8AKsAKxr8Dzn2Vj8Y95YZloKA+vneBPFxNG99b/4fWHD9REk3qmsOjKnbICoVbA3eE1jRErDhah1Gv7gRLc+MyJUHZ5Rl+hvHeOn1eMo5k2XNfJhPFRAP6QGLdflYLRfVLCqjF3zgqEWgF5wCH7pfsnpVWMtrQzejk810scod4nwfR3ctfHOLH7U5zf9b5guuG2MaLAvr8/Ro0mw5BcvWWMzCi4acTSPcNAua0dZ3zBqcKtWQFWgBWIjAIM/kRGdx41hhR48dvt+O7vI2TaA+nI0/382rindzMkmOOcMy2x2rDgxx34dN1ep8OPFuCx2x0W/w7oR77JkK4/Ij2Y85ri9KO4B5WmE1Pa2NC5aR28MOoyxBk552wMbTeeCivACrACrAArwAqwAqxADCkw5pVT2LirKCwzCuXhtQR/hnQxYUwUgD+PDKuC/p2Sw6Ird8oKhFMBTw4WsZDCJhS6Lf1NcUkLZwnVvTM7344JrxfhaJYd13Y0YcJV+ocmSdeOzRIwe0K1cErMfbMCYVPAHQAUTfdPvRye6yWOsG2UADo+ueMdxe3n7C4BtOYmsaZAfvYBnDi4nlN+ORY2lu4ZDP7E2m8rz4cVqHgKMPhT8dacZxxiBSa+ux57juc64RujwYDXbm6Pc2pWPmOknIJiDHxxJayUC0z8T52qS1A8ztRdSvov5TnhQPKxfF0N/bgCRDbRpmaVZCycdCVqVakU4hlzd6wAK8AKsAKsACvACrACrAArEAoFLrn3KPIKHfB/KDpU9RGqw+ucfDsmzi/G4QwbBncxYWwUgD+DulbCg0PZ/TTEW4q7K0cFov3wOlxSzVqSjY9Xh8clTcYcqnsngT/jXy/CsSgDf5LiDVj9XB3wd8jCtYu53/JQQH0PjSb3NL0cnusljvLYK76McXL3Jzixawm7/fgiVgWqI1x/mt6M5PQLKtCs3U81lu4Z5Qr+HPkJOEr/rQLosbbU6aG8cvF05ad8XuF3HAvACrAC3hSQacUNdkEWcGEFWAFfFSCHn+Fz1yAzr8gB/gCVEuLwyR3dQQCQtlD9QS+tRFZusQLyCLjnzFRd1E5epzbKb6YEgUqvOR2AlAaONjbxs1JCPGbefAk6Navr63S4HivACrACrAArwAqwAqwAK8AKlJMCW/YUY+SLJ8M2WqgOr9Xgz6DOJtx+pf5dK8ixYubIqkhJMoZNX+6YFSgPBdSH15Sy5scffyyPYXU5xukCG6a+lYk1/4THJU1OOlT3TjX4M6CjCROjxPGHdFh4d3W0PCdel/uAg2IFfFWAAUpfleJ63hQ4uesDoPgkqp/d2VtVvl6BFBCuP4c2oUGHxyrQrN1PlQ6Y6Z5L71WjyWXN3WzKBfz5Ywbwx6NnDt+wg+tre9e5PifwhyAgBoAq/O8cC8AK+KoAgz++KsX1WAGHAsUWG26c+ytOFxLIo8A3CWYjPrmjB+JNZ37IbLHa0PfZ71BUYhFwjmfXHoXBE6nDHKm8FLCHXlUAnzPAISdIpLQxm4x4cFBH9Gt/Lq8XK8AKsAKsACvACrACrAArwAoEoID8lgx9iBnq8tLSHLy3MjfU3Tr7C9XhNYE/E+YX4UiGHdEC/jSqZcILY9Nxdg1T2PTljlmB8lKA7kOXXnqpcziCf8JxTyqv+QQ6zsGTFtz1egb+O2YJtAuf2oXq3kngz7i5RTiebUf/DiZMulr/0KQU6LYrUzDu6hSf9OJKrIDeFYhW9x+961qR4ju58z2gJJPTfFWkRfdhrkq6rw1o0PEJH2pzlWhRIKzgjxb4adNPkcW42bM85mbKtcPZgASBGACKlu3EcbICEVeAwZ+ILwEHEG0KEPhzw+yfkVtkcQI65PNzd5/m6N2iHrSeP5v+O4kp762jzFwqcEeb9kuBfiTco04H5pLmS5UKrBQCKgWFTEYjHhjYAdd2Oi/aZOV4WQFWgBVgBVgBVoAVYAVYAV0oEC7bcmL2r338OA6cCN8BdqgOrwX4M68IRzLtGNjZhHFR4PiTnGjAq+Oq4WJ2rNDF7xEHERoF1IfXFRH++XtfCca+chKFxeE1Kw/VvVMN/vRrb8Id10QP+HNBg3i8O6V6aDYu98IK6EABhn90sAhRHMK+tQ+jRv22SE47K4pnwaGHWgEF/FmPBh2fDHXX3F8EFQgb+KOGfgj4KQv28TR/goDUAFCr6UCrGRFUi4dmBVgBvSvA4I/eV4jj050CBP5cP/tn5BWVKCCP+J8dddISMbV/CzSrW8UZ88GMPDz+2R/YSf84l+nao4Z+qCql7qJuXFN9lQJBMmWYhH6UNgT+3D+oI65j8Ed3+4YDYgVYAVaAFWAFWAFWgBWIDgXCBf4cy7LiqmnHwipCqA6vCfwZP68IRwn86WTCuD7RcXj98A1puLZzpbBqzJ2zAuWtgPrwWvkCUMUoNNXP1+TjyQ+zwj7h+tUNeP7WBFRLOTN9uz+DE/hz+9winMi2I1Tgz8otVjz9abE/YQRUt1qqEYvuq4GaaXEBtedGrIAeFVC7p1X01Il6XB89x/TP8qE4v+t9eg6RY4uQAv/88gzO7/NRhEbnYaNGAQn9UCqvumlAyfbgQicAaM0KpQ+Gf4LTkluzAjGuAIM/Mb7APL3QK0Dgz9DXVgvwh4oC/yiADqX86t6sNs6qVhnHcwrww9+HkZNPH9DIVF2ihbON8lgL/ahTepWCRU7IyG4TfcgxFT5IaWM2GnD/4E4M/oR+2blHVoAVYAVYAVaAFWAFWIEKokC4wJ9VfxXinvkZYVUxtOBPMY5m2nBdJxPGRwn4c02HJDw6vGpYNebOWYFIKEBpv+gAuyIdXFv//6OPGYsy8fX6grBLbo4DzqtnxF39zGhU88wU7r4GIMCfOUU4kWNHv3Ym3NE3cGgyvwh4+4cS/LzVKvoLd6mUaMBzt6WjfdOEcA8l+j98+DBuuukm8fj666/H6NGjzxg3Ly8P1157LaxWKxo1aoQ33njDbWz33HMPtmzZgqSkJHz11Vchj//LL7/ESy+9hLZt22LWrFkh7z9UHf7333/Ys2eP0KF169ZITEwMVddR3Q/DP1G9fBELnsGfiEmv+4EZ/NH9EkU+wOWXAkd+AgJ1+fE0A7X7D8M/YVvnGTNmiL+5KmKa5bCJyh2XqwIM/pSr3DxYLCjgBH8KS4TTj4RuaG5OCEh5cqZrzxmputxAP4qFEOwC8FGDRYqzEDn7iL4d0JBzfLsdpjgjHhjUCdd15lRfsbDXeA6sACvACrACrAArwAqwAuWvQLjAn/lfn8a85afDOqFQgT90eD3+9SIcy7Lj2o4mTLgq8MNrOeHfd9owdVFRWOd/Vg0Tlj5SM6xjcOesQKQUkPAPfRg9ffr0SIVRbuOWWOwY/NSJsKZH1E7GaAB6XRyHIV1NOKu6EQY/DYDo3jl2ThFO5tjRt50JdwYA/lAf+47bMevzYhzLDD/wIzUwxQH3DUrDwK7l45pGME/VqlVx+vRpXHbZZVi5cuUZe2vFihXo3bu38/Xjx4+jRo0aLvUsFgvMZuXfKE/9BLtp586di/Hjx4et/2DjO3DgAMaOHYvly5e7dHXFFVfgnXfeQZ06dYIdIurbq+GfinIPjfpFi/AEGPyJ8ALoeHgGf3S8OHoITe30U+NIeCI6UQfYuy4kzj/0b+KqVauccXbv3h30WkUs6vcKNH/6eysatKAY6TMsWQhYqojrSOun1kGuYSQALnexUNrucBaaO41L+5bBn3AqzX3HpAIE/gx5dZXi+ONw2qGJukI/jufqVF0uabtKoR5q53TtcUI/Z6byUvqX7Qj+cUBD9MAG2MjxJ86ABwZ3wsDOTWNSe54UK8AKsAKsACvACrACrAArEG4FwgH+FJXYMX1RFr7bFF7ninCAPwM6mjAxSsAfOrT/YkYt1EkPfaoadqcI32/e2rVrUVRUhEsuuQQGf0mL8IWlu57VH0bTB4eR+BCzPEUhx5+Xl2Zj8U95ji9Vlc/oxPpUSzXg8pZxuLK1CfWr+U7/ZOfZMXauAv5c086Eu/wEf37624r/bbDgz7020PzLs1StbMRLY9NxYcP4cht26NCh+Pjjj8V4dA+Ij3cde8qUKXj++eed8VDdwYMHu8T3xx9/CHcbKjNnzsT9998f8vj1DP5kZmaiY8eO2Llzp5h3SkoK0tLScPDgQfG8efPmWL16NapVqxZyXaKtQ73CP+F43xnI2ugljkBiD0cbBn/CoWps9Mngj7KOdE+lEuvvR/3ateTyQ24/lN4rXNAPBaRO+zUyOEhcfrFAzrMiuYtq11arBV3Xc5plLaiknk9FXEd3ekTqb2YtjFUee0n9Po7BH7/u3FyZFQAU8Ocn5BVanM47rg487qEfrQOQAvw4XIEcjyXMI1OAEeijTuWlThOmtFWgH9mXyWjEg0MY/OF9ygqwAqwAK8AKsAKsACvACgSqgPx2Dn1YEipXjRPZVkxZkIm/91Ea4PCVUII/4+YW4Xi2HQM6mDDx6uhw/CFlp91QBQM6J4dcZHanCLmkokMCqurVqyceFxcXO507wjNa9PcqP9CsKB/mZuXZ8MDCTKzfGV63MHc7g3Cf5EQDRl9hEhCPL4XAnzFzinDqtB3XtDWJ1GG+lEOn7Hji42L8e8wGWzkDPzK+V8dVQ+fm5ZPmS465YMECjBkzRjz9/fff0a5dOxe5mjZt6gRa6MKoUaPOSPf1+uuvY9y4caIdQYQdOnTwRXK/6ugZ/Jk2bRqeeOIJMZ8333wTI0aMgNFoFFp06tRJvE6wlASs/Jp4DFbWI0CpF+BGL3HoZdsx+KOXldBfHAz+KGvC9ww3e1Om+OrcCyjZHt7Na7sY2PhF0K4/DP6ULpM755xwu7QEs0ncgUqyv0gBL8HMJ9i2DP48Khyq6D8Gf4LdTdy+wikgwJ9XfkKuw/GnFMYRHJAjHZcW/lFcfUpdgRzQjtq1x/HYpT+XVGKyjeOn6M+mZP5yQEDmOCMeHNwZA7uw40+F25g8YVaAFWAFWAFWgBVgBVgB3Sqw63AJxr92Chmnw3uiGw7wp38HEyZFEfjT8+IkPDOqalj2ArtThF7WCRMmYM6cOaJjBn9801d+yFtRPtD9Z38JJr+RgWOZVt8ECkOt8+oaMaizCV3Oj0NCGSyPGvy5uq0Jd5cB/tjswO4jNvy2w4pP11iQX/5sk1AqMd6Akb1SMKp35TAoV3aXO3bsQLNmzUSlV199FRMnTnQ22LdvHxo2bCieT5o0SVyvWbMmjh496uIMduONN2Lx4sWiXklJCUymUkjryJEj+OWXX7B582ZxjdxvunXrhsaNG58R2Lp160TasYsvvhipqalYsmQJKL6RI0eKFFqeUn1RnLt27RL9NWnSBA0aNHD2TS5G5EhE4+fk5KBNmzZo3769cOVRF0pXpnZOyMjIwKeffgqKnwDkuDj3LnYEpMr5jh49GvPnz3fpl9ySyDWJCvVJqdW4APIeqheAUi+H53qJQy97lMEfvayE/uJg8EdZE75naPamTPHVph9g3Oxx427cnog2zQq9bmyqR6XMuiGAfxj8KV0K+QUw+Z5Mz6m+3EEu6i+tRUOKMq+/BH5WYPCHwR8/twxXZwVKFbDa7Fj06x4Ul9CHTkpKLsf/lEoS/hEPlWuldRTrPQKE5Os7D2di3a5jDts4R19OByAJ+aigH1U6MLtNcQ2SbkKU6uvBIQT+KB+ccGEFWAFWgBVgBVgBVoAVYAVYgcgqQG/9V/9ViCkLMkAHveEs4QB/+rU34Y5rfHOtKGtuv++0Yeqi8J9sU5qvj6fWRHKC7+l5fF0TdqfwVSnP9QoKCrBq1Sps374dn3zyCX799VdnZQZ/fNO3orn+kCpb95VgwuxTOF0QXniyrBUg4Of8+kYM7GxCx/Pi4C4rXZbD8SfjtB1XtTHhnv7u750WK7BgRQl+3mYVzmqRLFe0TsLD16ehcpIxImHUqlULx48fx5AhQ/DRRx85Y3jrrbcEdEOwz4YNG3D22WeLa1u2bEGLFi2c9WT7a6+9Fp999pnzdQJnbr31VgHzaMuTTz6Je++918Vh7IILLsC2bdvwzjvv4OWXX8amTZtEM7pfbd261S348/fff6Nz585ijHPOOUfUrV+/vmhH0BDN6c8//zxj/IULF4rYZDlx4oSYJ5XvvvsO1113nTNuLcyk7mz//v1O0IjaXX755S5jqcGqDz74ANdff31E1liPg8qDTjoYC5W7Y6Dz1MvhuV7iCFTHULdj8CfUisZOfwz+KGsZS/cMmWo4qLROCx1/e7ZT3q9oy7xlVTB/WZp4eUz/bIztn+Xxl0Jdl8Cf+fcdc1+XwZ+w3Fjoby29p7CLRCqpsIgdwk4Z/GHwJ4TbibtiBYJT4LO1/+KZpRsdcJDiDKSAPGqoRyGFFMegUucgm6OeiMBuhynOiKkM/gS3INyaFWAFWAFWgBVgBVgBVoAVCKECVhvw2pc5ePf73BD26r6raikG3NnXjFbnxCEpPvDhsvPtuH1OEU7k2NGvnQl39A0c/KG0NUcy7Vi6zoLP11oCD8rHlmmVjJgzsRqa1Q88Zk9DsTuFokyg7hTU9p9//hGuG+4Kgz8+bvL/hxH0dGjte9TB1VzySx5e+DQHxZbIgjJxRqBr8ziM7W1GemUDTCozFgH+zC5CRq4dfdqYMFkD/uQV2vHbDhvmfF2CnILIzoNWo1bVOLx/Xw1UrRwZ6IdioPRdBMKQCw654sgiHdZkei8J5rzwwgu4++67RTW1K9Ds2bMFnEOFoEJKb0WFICECaehQb8WKFU7Y8PHHH8fDDz/sHE/2r96lBPNQiixKQ6Z1/CGgp2vXrgLQOe+880AOXHXr1hXNyQGIXqNC87rllluQkJAgoB4JAhF8NHXqVFFHDf6ox6c+CDpSuxipr//www/o2bOneImgysRExR1AFvoMMS0tTcT41FNP4cEHHwzulzCGWusp5ZdeDs/1EodethmDP3pZCf3FweCPsiaxdM8IGvw58hNAab4adgBqHHG7aduMLHUEpAoE83hy8/GnLk7UAfauA0YG9r5S6/ijZ5cb/d0NIhcROzWdqT2DPwz+RO43kkdmBTQKfLZ2txP8UZyANKm8xItKWi9X6Kc0nZhsQ6m+pg7two4/vMtYAVaAFWAFWAFWgBVgBVgBnShQYrVj9Eun8Nfe4nKJKN4EtD8vDpe3jEOnpnGgQ2p/C4E/Y+cU4WSOHX3bmQRMFEgpLAYWrSrBj39ZcSwrsA8j/R03wWzAtGFp6NM22d+mPtVndwrXQ2p/3ClI4GPHjuGJJ55wak2OGdJOncEfn7agqFQRXX9yC2x4cWkOlq7J912oMNasWsmAS1vEYUAHE+qmK9/yJvBn9OwiZBL409qEyQOUeyfdC1dvtWDln1Zs2WsDOf5Eupxdw4TnRldF4zqB3d9DFf/777+P4cOHi+4ImDn33HMFXJieni6AFQJvCOIhaGXmzJm44oorBMBDhRyCpIsN3UsI3qH0WtTHwYMH0bt3b3z++edISkoS9W02G0aMGIH33ntPPN+5c6dIz0VFDf5QHXL9oZRfVObOnesC/lD6ru7du4v4CGQkAIf+bZCFQCMaVwsE0bwoJdfbb78tqmZnZ4sxtODPa6+9hrFjx3oEfuQ4lNqL6mmhKfXayHkRLEXQFJdSBeShdaRTfunl8Fwvcehlj0Yb+PP7xq34dNlKId/5TRthxI19PUr5/Y+/47sf14rrnTu0RP+ru4dMdrrP3nnfc4iPN+P5pxRI05+y/Ls1+OnnDbjmym7o1rmVP03LrS6DP4rUsXTPCBr8IeiH4J/OvYCS7YpAp3KAgmKIb+NUS4WEeQj2oTReZYE/Y56pJeo4/72XkBD1mXEaqF8dSEpQLgfp+lMW+EOuMuRmKAtBQe6ccOjvEvn3nKyrTTXlSx31L7F2bPU1eg/maRz5ukzb5e7GoG5P12Ws3mLUXictpB7aeGkM9XVPNyh/45Sx0rpoNZcOhu7GVbeTsfgao1Zr7Z6g654ckqRmvuyjYG/iZYE/2vnT3D2lQ9O+XpaeMmZtnbIcmdR7Rb1mwc6f2ss9YbAH5V8WilC4D1YgcgoQU3MgIw+7juVi66Es7D2Ri5Oni1BYYhWgjcLclKbSUqfVErCNuOz46XTkIXBHaed06HE8dunP0baoxIKCIosqZZcEfai9w8Za7QBksztSBKgdgJR6pjgDHhraVQF/SvYAOR8Cdk8HDAbAmAzE1Qbiz1X+i6v+/2/bQm+JH7kV5pFZAVaAFWAFWAFWgBVgBViByCpQYrFjwGPHcTSzfE96Cfhp2dCIp25KcHGk8EUNNfhzTTsT7vIT/KG/e5ZvtGDuNyXi887yLPQ30T3XpWLoJZXCMiy7UwTuTuFuQRYtWoSbbrpJXGLwx78tKw8pyGlE73b0/s3Mc+2CYjvGv3YSf/5XEqoug+qH0n2lJBrQv0McbrjEjPyiUvDnytYmTBlgxsnTdjz6QTF2H7FBZIzXQamUaMDDN1RBr9YKEBPJQoDOWWedJUKg+8GNN96ItWvXolOnTuI1gmKqV68u4BrpbkPATeXKlXHnnXfilVdeEWmyjh49Klx9KMXXoEGDRFtyy9E6jGVmZgqoiAoBNhMmTBCPJSBD9SmdmNplRw3+PPPMM8Jxi2IgN6Hvv/8eNWrUcEpI6cKoLyru0m+dPHnSWZ/Sit18880u4A85C5F7kS9l8uTJAuYhwIgc6dwVciWilIrDhg0DQVZcXBWQB54V6T7Ke8A3BaIN/Ln/kVfwzEvvism1a90cv/+kPNaW/IJCNLqwH46fyFDug8/dhwljhvgmig+1duzah2ZtBqJLx5b4ZcWbPrRwrXLdjffi8y9/xFdLXsLVvbv63b48GjD4o6gsgQV6DxrplInBrnvQ4I+7NF8HTwIFjjTXTeoJkGfeF2me03a5mQSl/KIi0oJRX9QnFYJ+CP6RZf1+oNV0oNUMv6VwB/5QJwR2uSvuHIF8STvlSx0az129sial/ffbHfxRVns1/OstRm3fEoQirbQQjhzTE34hf388tdPGLOPUrpe3NfJFT28uTxKE8bQnKAZtHxL48dRG3jdC+Tesu7WnuMqKgfaPtsj7gXzdnT7e6rjTvaxYvK2Bv7/YDP74qxjXjxkFjucU4uPf9+OPfZk4kVMIi5VAHyW9luK8Y9Ok3VK78cg6Au9xuPSQNA5YyAnquKbtUoNAikuPw8mHmsoUXk5gSBlfaeNI9WWTbWQasFLXH6pnNhlLwZ/iXUD2O4Dd8QbD7copqcNEcvq4dCD5MiCpLQCVV3XMrDhPhBVgBVgBVoAVYAVYAVaAFfCugPzwJZQfQmz5rxgPLMzE8azyP/WtnAj0b2/C5S1NOKuGb5B/NqWrmVOEU6ftuKatCXf1880Rgg69N/9nEym9yNWC0nyVd+nTNkkcaCfG+zZXf+Njd4rA3Sncac3gj787sLR+RT2wPnTKirtez8Ceo/qAf2hF6COVBjUMGNzFLIDH3AI7WjeOQ71qBgFB6sHhR+4civXmnpUxoW9qQI5wge9Yzy2bNm0q3HfGjRuHOXPmgNJwPfLII2jXrp1Is0WFUlklJytObl9//TX69OmDli1bitRZlEpLuug8/fTTIoUWQTkE8LgrjRs3xp49ezBp0iQBDlGR4I+7D94l+EPOOlQI+qGybt06tG/f3mUINXhE7ye06beocr9+/XD8+HGRsozAHbXjD4FEEnDypvVtt92GN998E61bt8bGjRvdVieAikCqkSNHirpcXBXQi+sPr4v+FIg28Kdrr1H4da1yz0upnIycw6vdivrcK+/h3odfdl77beVb6NjuopAtwPsfL8fw26Zh8qTheO7Ju/zut1bjXgJKOrRjOerWKYUq/e4ojA0Y/AmjuBHqOiTgjzbNlwR10lOE409IisZFyNkngT91egB9zoQYvI3rC0ii7UMLs3gDZqh9oHW8xa8Gf3yBXLT9BQP+eIuNrrt7X+kvnET9BAL++KOHJ/DE11i1AJav+yqUvjS+xqpet0CgHmofCPjjbb+EEv5h8Meb2nw95hQghmbXsdN44Zvtwu1HAjcK8KN161Gn3Sp97IR2XKAf6cBzZhunM5ADLJLtS12BtONqoR/ikBzxqZ2EJBDkcBjyD/wpBYoUsMgGGMxA6mAgiT64CM8H5TG3oXhCrAArwAqwAqzuOZc9AAAgAElEQVQAK8AKsAIxpUA4bMutNuDzNXl4+qPsiGhlNAC1qxrQ48I4XN/NhOSEst/rq8Gfq9uacLcP4M9/x2yYu7wE2w7YUBih8/iOzRIwc2RVpCQFkN/Mx5Vhd4rA3SncSczgj48bz021ipjui2Sw2YGf/y7E1LczUVhcPikEfV0lclqj+OgjFqNR+enI3u5rF2Gv169DMu4fkhY2ODKQCUjnHulcI2EV+veYACBZrrnmGvzvf/8TwAy9XrVqVXHp3XffdTqH3XrrrQICGjhwID755BO34chUXFdffTW++uorUUeCPwT53H777S7tJPij7YzSjn377bcuH/5TOjJKS+ZLkTCOGvz566+/cOGFF/rSHNOmTROpE8855xz8+++/bttIyOn+++8XqdK4nKlARXRP433gXYFoAn9KSiyIr9bRZVIE/hAApC4nT2XhnIv64XRuacrMvGO/IDmpNKWQd2XKrnH3Ay/gpTmL8eFbT2HowF5+dbf/4FE0aH4NatZIx7F/lZSOeiwM/uhxVYKLKSjwh1J8UaovLfgTXEj+tSbwh8pI/98X+wpoqAPSAgqBQj1q6MOTWwsBL+7SYckvaanTj2lhDOkqU1Z7dconb/MIBCwh3bRQTFlxalN4yXnKOH1ZL/X6uBuLYnLnNOQOwvE0nlwX6ku7H9y1oToy3Zd67FDCLoGuj3be3qAemrO3OmVBV2rttL/ooQKhGPzx7xbKtaNcAavNjp93nsAbP/2LzPxih1OPdPkJBfRT6uCjQESqdGAeoR+Va5ATJHK4CInniquP+j9aBukEpDgOKQvjM/jjAIaUzulruDanqxAMCUCVW4DEFlG+2hw+K8AKsAKsACvACrACrAAr4L8C4QB/lPfvwMyPswUARCBQpErtKgY8OCgeDWoaUDnRPQCkBn+uamPCPf3dO/7QnI5k2vH+qhJ8t8UaEYcfqWODmiY8d1s6zqljCru07E5xQqTWoeKPO4W7hWHwJ7jtGtRBRXBDR7z1eytz8eoXORG9n0ZcBD8DaNEoXtwnq6WGD470MyRRfdmyZRgwYIB4vH37djRr1kw8/u2339CxY+lhNrkBUWouAoQoHRaBN1T27t2LBg0aiMeUKmzx4sUYMmQIPvroI7fhSKcgtQuOr+APfVh/2WWXOYGkt956CyNGjHCO89hjjzlTnowZMwZGIsA8lA4dOoi2gYI/pMHEiRNF7xaLBXFxZ7p3p6amCoeiZ599FlOmTAlkeWK+jTygUn/rP+YnzRP0qkA0gT9/bNmB1t1uRP16NVGnVnWs37QNf6/7GBecf47LPO958AW8OHsxrri0A777cR1at2yGjT8vctahNGAvvrYY3/+0Dhv/+AdpaZVxabe2eHrGRNSrq7zvkyU7Jxez53+MNev+xJGjJ9GjWxuMvKk/bh03Q4y/a/PnOPccJY0jlXUb/sbC977Ahk3bkJuXj16XdcSI4X3R5uLznXUoxRel+hpy3RX46O2nva5RpCow+BMp5XU6rgR/2vQDjJsjE+SJOsDedSEDfyRMIwEF+ndSXcoD/NH+m6wFKXxJ8VUWWBRIyjJPYIm6L3fAhzfwp6w4Pb030cI1nurJNF10Xe1o7UucngAe2SftCdJE3a87jfyZfzC/QN7Wx1P6MW/xBeIK5CnVl1o7X+oEqgeDP4Eqx+2iUoG/D2bhma+341RukQr6UWAd5VtY0rXHNYWWcOgRlyUc5Fsb+jy/NFWXlzaeoB/6uhjssJXhRiQXwyfwR4A+Sp8K9CO/gqZ6bKoJVLtTSf/FhRVgBVgBVoAVYAVYAVaAFahACoQL/CEJS6x2PPxOFlZuLoioCwS5UrRpHIferePQ/YIzDwqzHKm+Mk7b4Qn8OXTKju+3WLFiswXHs0v/TorEVokzGoTTz6UtEkXKnXAXdqcoBX/8cadwty4M/gS3Wytqui9SjT4qef7TbHzyS56uUmkFt6Lha12lslFAP60ax4dvkAB7PnXqFKpXry5aDxs2TIA7lFYrIyMDJlMpzLljxw4nFCTrad1u5IfontJf5eTkIC0tTYxFbjkPPfSQeOwL+EPA0ebNm2E2m0HQzqZNm0ScFFedOnVEPx988IGYAxVP98fi4mJYrVbRD80vUPCH3Ir69u3rcSyCqM4/XzlU/+GHH6A9uAtwuWKumfqgKFTftI45kSrghKIJ/Hnz3WW4beLjGHzt5TCbTFi85Bt8/ekr6HNFZ+fK7d5zAE0uvlbAQQToPDZzASaNHYpXnr1XuYds3Y0BN0zGnr2HxPPzzj0bO3crLiLkHLRj02eoU1u5T2/5a6cAdGRdOQjVIzch+pl9aJVwRLBabXhwxmt49uV3nX2pHYfW/fgO2re5QFyb+uhsPP38W3jh6Xtw9wTlPqrHwuCPHlclgjH5Cf60GdkAY/orLsBj+2e5DXzesirYuCMBbZoWeazj0jCE4I87gMQbZOLNKYdi9VZHe90b+KOFMdxBH/4CNd5i9AVq8aWO1i2mLMeZYMGfsn4zynKtcTcPXwBp7V7xBbAK1XsvX7T3pY43Nx/S1Fsdb3uJ+vDkcqWGgwK9szH4E6hy3C7qFCiyWPHo539jy4EsJ/RDk1CAGgWEUSAdelWd9ssBBblAP97bCF7HA0gkb2aurj3qPiVkpEA5FKNi7FOaTkz0rvGMLhv8UaX2cjr8qJx+ZLovsbJGIHUAUJm+PVUOn5xH3W7igFkBVoAVYAVYAVaAFWAFYlWBcII/pNn+4xbcOS9D/Ix0MZuA8+sZcc8AM+pXK3UlEODP7CJk5NrRp40JkzWOP//bYMHbP1hA9fSQxmbasDT071ipXKAfWjN2p2DwJ9K/u3L8igz+kAYZp224f2EmNu0u0suS6DIOo9GA18ano/15CeV2n/RXiDZt2giQRhZPjj1nnXUWKOWiLOR48+qrrzqfv//++xg+fLh4vm3bNif4IivQt3rJsYfK119/jT59+ojHvoA/1G7lypWi/oYNG9CuXTvxWJ1WTP36c889h8mTJ7tIcfLkSZGai1x4CHwkh6JAwZ/8/HxUqlRJ9D9p0iS88sorLmNJ9yGCk2jc+Hj9QV/+7pNw1a/o99Jw6RrN/UYT+DP2zqcw/63PMOuxO3A6Nw9PPPMm5r74IG4fNdC5BENHPIiPP/sOH78zE+8s/gr/+/YXvLfgMQwfehUys3LQ9pKbBMgz/cExePjeUTCZ4nDseAbadh+Og4eO48lHxmPqlJGibrM2g3D8RIYAh2ZMHYsqaZUFbHTTaCU149W9u+KrJS+Jx4/PegOPPPm6cBd6+/UZuOiCc4Xjz/DbpmHZ/1ah/9XdsfSD50XdS68ei59+3ojV3yxAt86tdLt9GPzR7dJELrCFBsBHx58xz9TCxu2l6fUkBETBE+yjveYJDnKZLIE/RUlAnx/91sAb1CN+Ny+91CU1lDcoh9pozy29gRDewB9tDHpx/PElDm+OMurrWhgkVOCPdLvRphJTbxg1pOMLIONus7nbK+7qqdN9afXxexM7GvgSsy91vEE9NJy3Ot72u5yjt3780YI+x6T50Toy+OOPclw3qhX4bMNBvPXzv7DZlNRe9D8B1DghHyVfVimM4wrfODgeF0jIPcCjSs2lStXlChOVAjxKLOrn3qCf0nRi2gXxDP64cfdxpvvSwj8OQCi+EVBjCmDgDwaieuNz8KwAK8AKsAKsACvACrACfikQbvCHglm7vQgPvZOJrNwI5vxSqZKcAAzqbEa35kY0qGFEToEdo2cXITPXjitbmzBlgBlFJcC6nVZ8+LMFOw/rI25TnAEDOiXjvsFpIBej8irsTsHgT3ntNW/j8GE1sOtQCe6Ym4Hj2VZvclXI6/FmA8ZcmYJbe1XW9fynTp2Kp58uTe2iTaElg6dUX5TyS5bPPvsM1157rfN5Xl6eAGuOHz+OLl264Msvv0TVqlXF9czMTHTt2lUAQc2bNxeOPDIVl7/gD/Un3d/osYyDPifs3r07fv75ZxEHgUINGzYU4xPsM2rUKCxZskQ8J0cjii1Q8If6GDt2LObPny/6U4NMlIZRpkK77777MGvWLF2vf6SDkwdBvnybPdSxlsf7Tl9i1kscvsRaHnWiCfy5oP0QbNu+Byu/nCvgndGTnsD9d9+CmY9OElKtXf8XOvW8Fe1aN8dvK99G1bN6CGeebeuX4PymjYRbELkGkWMQgUHq8tKcxbj7gRec124d9yjefv9LjLq5P954bZpL3fY9bhZpvh5/eBwevm+Uc1yqtH3jp2jaREnJSGXDH9vQrvvNwoHowD9fw2KxwpzeQVzLObxauAbptTD4o6yMPLhXp/nR65qFPS4Cfxp2AGoc8TqUFvwpq8HGhfvK7s/cDCjZDqzfD9TpEdXgD03UEwThC6xB7ctymwnEiYb6LMs1iK4HAv6UBVJpgRF3jjnu5urp/Yun9FbuNpa/Kcvc9aFdQ6+/EG409KWNuzq+7BNf6vgC43irEyj4E8z7UPX7OAZ/At1F3C6qFMjKL8GYheuQV2wVab1coZ/StF5OAMdxU3cFe9Tpv85MBSb/IaA2pc48rm2UlGFa1x5yFHLAP0onTuchmYKsFA4SFc4gZuVinAn+vA3YCjWpvSToQy/LtF+KJi7pv+hpjalAQuOoWmsOlhVgBVgBVoAVYAVYAVaAFQhGAfowgP5opj+66cOPcBR6671iYwEeX5yFgmLlCwiRLuTzWSfdgK7nx2FARxMmzFPAn14Xm3DJhUYsW2fBX/tsKCyOdKSl41/UMB7PjKqKmlXOTFcW7ijZnaKmkJhTfYV7p5XdPx/UKvqs36nAlKdy9AElRnZXuI7eq3USHhiShrRK5UhHBiCAGlSh5vv37we5+2jLF198gf79+ztfJmhGpgmTL6rTbZHbzeWXXw6LxSIOKQm+ofLdd9+J12UJBPzJzs4Gpf8iyKhmzZqg1FoE8tB9sUWLFqJrGp/eTyQmJoK+ZU11qUi3H3ocDPhDTj4EGhHMRKV+/fpITU11PqexV6xYIdKKcSlbAXmIE6qUE77qrZf7uF7i8FW3cNeLFvAnOycXVer3EHJk7P8BG//Yjiv6j3eCOrSfu/W+Db+u3YJVy+ejbp0aIuUXFUvm78jLL0Bave7iuTrtltRXgj+jR1wrQKJqDRTHtFP7fkB61VSXZRhyywNY8vn3WP7ZK7jy8s4YNeExLHzvC/To1gYPTRnlUnfP3oMgp6KaNdJx7N8VItVYi07Xo3mzc7D194/DvbxB9c/gjyIf3zNU22j5pQCl/CLXn41fKBfUDkC2i4GEQgHpkKMPwT+yDDurGIsPxIN+9kiyY8zOBHGJnICcbj+q9uIiPZfjEHC0dx3QajrQaobfe9ubmw916K2OL5BDoHXcTcgTDOMO6vAkiLt/673F6As0Emgdf+L0ZU2ojic96L0hvXek32F1YfBHUcMb1ONLHW97SequHYvBH79vYdygIiuwctsxvPTtdlgp/5YDrFEAHAdoo3bd8QH6kQCPO1DIpV+no1DpOBLyofVQwB7pOiReUZ4LDkemG3MDBXlYTFfwZyeQ9RZgLxRzVjpVxioFfNTwjyoVmASCKl0CpI+syFuH584KsAKsACvACrACrAArwAqERQGL1Y5Xlp3GBz/lQkkTrJ+SlAAUlwBWG5BgVn5adGamkZpswOIHaqJO1fKHfmil2J2CwR89/MbyoYuyCvRRx4er8vDy0hyUWHV2Qy1joxiNSnJ1useGo9SqasSSqbVQKVH/Kdxzc3MFJEOF3Hi2bt3qVpKsrCyng0/r1q2xceNGt/WWL1+OoUOHOkEfWYnAmKVLl4LgTXVp2bIl/vzzT8ybNw9jxoxxuUaOOuSsQw46BNGoC7n3UFoyKnfccQdefvll8ZhAnBtuuEH0qS40/pNPPombb77Z+bLaRY7mTfP3pxw+fBh9+/Z1SZVG7SleSn1Wo0YNf7qrsHUj5aCml/u4XuLQywaMFvBn9a+b0L3PGJx37tnYsekz7Ni1D83aDBSptTb+vEik0xpww2RnSi0CcwjQueLSDlixbDY+/GQFbhg5VcA5P/5v3hnyPzD9Vcx68R088sBoNGpQF+T407fPJfjioxfOqNum23Bs2rJdgDwplSshuVYXr8sp4yAXIeqb0pNRmjI9FwZ/lNXhe4Zql/4xA/jDAVG0HgtkbFZgHAnlyKoOGGjesiqYvywNP9UvRsr+eJw+W/lmDT3e2KwI84x2zL/vmNJKC/lUq3Um9EP1KM0Xuf74WbxBPdSdtzq+QA6+1HE3lnY6nqAfWU8bq7a9/HKXO6cqbzH6AvXQeFqYw10qq2Di9GVNfKlTlguSOy28ae9uTGrjzRXM23Vft3So1scXdyhvcJC3vSTnxOCPr6vL9VgBjQIWqw1zftiNb/487BH6UWAcaqhKuSXceRyMjColmJK9SwJErm0odZjSptSVRzoMndlGAXEUhyBVP+JlV2cgbZ+eFjnBHIfpw7qhb4fzgOIdQOZCBfwR8TrcfURn8rGEgBxgkGNeSn07YEwG6r4IGEvzjvIGYwVYAVaAFWAFWAFWgBVgBViB0ChwKseKR97LEqm/uPiuQLVUI6bfWAVdmkfu7xR2p2Dwx/cdG76afOhSqm1+kR3PLMnGl+vywyd4iHu+7QozGtYy4uFFof83oH71ODw/Oh3n1q24Ti+FhYX4559/BERELjjk6tOoUSNneq8QL+cZ3VmtVuzevVtAQEVFRTj77LPRvn17mEymsAx99OhRrFmzBgkJCbjkkkucIFVYBovBTuVBDx3WhMvx0Z1sermP6yUOvWytaAF/nn91EaY89BJG3tQPb85+BPkFhahUq6tIlUWuPBd2GIKdu/fjnw2foNl5DXHftFfw7MvvYtr9t+Gxh27Hk88uxMOPz8Ezj9+Be+8sBRJpHaiv2o17ibRgP3/7Bj774ge8OHsxnpg2Hg/d6/pF4f0Hj6JB82ucqbvkc+rHHSQk17l+3Vpo1bIpxt8zE3Pf+ETMgeai58Lgj7I6sXTPCMrxTQ39kDCdeynpt07UUeAfKgT8nDqmPHfAPztXpOK8xUoqUpfSrBAbB2SjTbNCgFJ5rVmhAERa4IfSisnr1AFBPxdP9xv+8Qb1UNfe6riDHLSwiy8ghLaOGgghhxp6XhYkogU/tHW9QSjeYgwVWEKaqoEPf+P0ZU3cxap1OSoLcHHX3hfwx9dUZeG4xwe6Ptp5edvv2vWj59o+vO0lauNrvL5qxam+fFWK68WEAtkFJXjqi63460Cmw0XHkX7LAdcojIt03Sl115EwkALsaNqo3YIcbRUzIXU/JF9Zrj2K249o4gSOHNCPA0SSAJAaJCprUdIqJeDlMb3QpkkdoOhPh+OPVZXSy42rzxkuQOo6dqD2dCChSUzsBZ4EK8AKsAKsACvACrACrAAroDcFsnJtGPPqSfx72KK30HQZT5wRGH9NKm7qWRn0OFKF3SmqC+kDcadQrxm5UQwfPly8VFJSErYD8Ujtk3CPG0uHLqHQ6nSBDQ8szIwamPKBgfFoVt+IES/TF7ZCV5ISDJg6tAqubJsEo/7NfkI3ce6JFQhCAXkAE0yahUCG18t9XC9xBKJhONpEC/gj02u9/tJUjB15nZCiVuNeOH4iQwA6BPWMHz0Ys5+/X1zr2muUSPtFMA4590ye+iJeeO19PPfkXZg8SXk/Jot04aF0XEd2fYOR4x/DO4u/cgv+PPLk63h81hsYPvQqvLfgMWfqLurr9JHVqFwp2dmvxWLFy3M/QFFRMe6aMAzJSYlo2fkG/Pn3LmxZ8wFaXKjvcwgGf5SljKV7RsDgj0zxpf7FUaf4Wr9fudLubOUnPVdfp9e2Jyr/EehDRf6kxxIekjCR7K/HECBvrasbkIzBz5RfvkAO3up4c4dxd53C1YIoahjGnUuOt3u9Ok5fIBVtf95gDV9BDX/cYAJ9z+FtTbyBP97WjLRx50rkDnChutSfLN7mL+tRjKFy+6E+Q7U+7uYt9yqNQfc++qkuvoA/6j3tKQ1bMOlmGfzxdofg6zGlwOHMAjy45A8czyl0gWxkyi3PDj0S9jkzTZe2DTn9yPRfWvcg9+OonIXU0I9NcfrRwki+/sLXrZaCxfcOQLXUJCD3GyD3fw7ox+F9rU735QR+VCnA5GvCHYiKDag6HEi9Kqb2BE+GFWAFWAFWgBVgBVgBVoAV0JMCm3YXY+rbmTiRrbN8WnoSSXwzDuh5cRIev7kK4k2xd5pd0dwpdLa9ojKcWDp0CdUC7DtuweQFGfjvaOhgyngTkJxgwOkCO2qkGkApunLygdxC17RilBoxvbJyPb8IyM6zu6RyNMUB1VIMoJ85+XZMuCr04A8Bkdf3qIy7+qeKOLiwAqyA7woEfPjr+xBn1NTLfVwvcQQhZUibRgv4IyGf9aveRdtWSppACfdIQY7s+ha1a1VDcXEJEqp3Ei8f3P416tWtKWAdgnYu694O3y2b7XREO3DwGHpcNQZ79h7C0g+eF6nCXn/zU4y7+2l06dgSP309Hyb6xwzAD6vWo2ffceLxq8/dh4ljhkDt+PPX2o9wYfPG4rrVasN9014WsJFMGZabl4+UOpeI68Wn1sJsDo8rWqg2CIM/ipKxdM8I+N6/0KC48Uj3ncPZLq4+zjRdEvyRabu08I+7zal2+6H+qRD4IyEg2Zd0AzJuBg6eAxz5CRjpe9pbbwAJDeutjieIwdvvnPrM051bj3T50fbjCRZxB5xQW3X9skCT8gJ/3DntuIurrFgDXRPZpxZckToRnCJLWetK/aj7UK+lJ9CL2tCarlq1ytnW13Nvb3uJrocT/PE2vi/gj799eKvv7rpcE4M9lMoGEgm3YQXCrMCfB7Lw0CebUWJR0ls5XXbsNjdpuc50/HF143HfxjU1F01Igj2labtKXXvU0A9dJ/CG+BwH9CNpV2e6LwnteBeqd+vGeHZUT/GBOE7OBEoOKCm7xEylk48b0McJBFE1mQbM8bNyN6A6vXnnT4y8rwDXYAVYAVaAFWAFWAFWgBVgBfxXwGIFlq7Jw9MfZ/vfuAK16Nw8EU+NqIKUJP7bpAItO0+1DAVi6dAlVAtNbsyr/yrE/QszYbH6fvBR1vgXNzKibzsTTp22o2k9IxLjgePZdiz6yYIdh5QvTjWubcT13UxoVIs+kDEgr9COL363YOWfCtBJUNCIy8xoe24cKKzjWTZUTzEiOREhc/yhkft2TMYDQ9KQYI49ODJUe4T7YQU8KRDw4S9LGnMKRAP4c/jICdRr2kdoX3iC0vzFi8e3jnsU5NZDRZ2W648tO9C6240gB59j/64Q17f+s0ekA6NCIM4Vl3XAocPH8daiL4Vr0KSxQ/HKs/eK6zt27UOzNgPF4949O6Fnj3bY9e8BLHj7c+f6//rdQnTu0EI8JxiIoKD69Wpi/G2DBSi05PPvsX7TNpx37tlY/c0bqFUzHWvW/YkuV4xEt86tsPqbBbrfSwz+KEsknS/oML880yOGY4MEfO+Xjj9qkEcL99BzKgTmUNG6AHmakKwnQR9rHyBjswIZuQOI5GuU8qtPKbzhTS9vAAm1D6SOdlwtKELXy3L8KStuCa+oIRV3cXrrgyAUtVNNpMCfsuKUv1vqOH1dE08Ajqfx3LkP+dqHt3RZnsYMxJnJU1+hAn98Adm0+zlY8CdQ5ydPWjD44+3Ox9ejXoGlGw/g9R92eYFx1Km8JCPjmrZLYDnS2UfJz+WAiIRHj+L4o0n1dWaqLlfox9nGkfLLZQyXPr0vQ5VKifjg/mtRv3oKULIXOPkiYC9xTMYB8TjhH0EaqWAgd2CQ43pic6DmvYCxkvcguAYrwAqwAqwAK8AKsAKsACsQ5QrIb8mE0nbYV0me/zQHH6zKdTiV+tqqYtSrXz0Oz41OR5O65ooxYZ4lK+CDAgz+uBeJPpr57Nd8PPVRlg8qeq/S5fw4zLg+Hhv+teHJj4thtdvxwHXxSIw34OH3i1A50YBHb6DnwLT3i5GRa8fVbUwYeYUJ97xZjN1HbLi1pxnXtIvDzE+Lsfk/G3peFIcJV8cLmChUqb4ubBiPZ0dVRc0qigsDF1aAFfBPAXm4GUiKEf9G4tp6VyAawJ/l363BVQPvQMd2F+G3lW85JX1s5gJMf2qeAHz2/LUMlZKTxDWZumvwtZfj43dmOusv+uhr3DT6EZclSamcjHmvPIQbBvV2eX3ews9w+11PubxGLj/vLv5KAD15x34RqbuoEJg04IbJ4nV1mTplJO6eMAzVq1URL89ZsAQTJs/C/XffgpmPTtL71gCDP7pfIr8DDBr8oRGl8w89lhAOQTtFicDGL0pTfKmdeqSTjzZimeJLAkXS/Yf6o7JmhWvKMNmn7CfEjj9a+MMTpKB13JHhyPpagEgL/vgKmWj7lc99ATa0Uqv/vS8v8Idi8KSVp82rfV/iC4xV1jgEqqidd6iup3X1lN5KHas7gMeX9dQj+EPzKit2ipm0ojWQxRv4405vT239voG5acDgTyhU5D50rcALy//Bir8PO6Addw48HqAfh+OOa9otSaJK5yBX6EeCP2em6hL/4peCQ/RUgkJ2sn4uBYlKAaIzqVdPQscZjbh/cCdc3/0CGGAFTr4AFO9xBXvcgj4SCNI6/ThSfVGb+LOAWg8Aplq6XmcOjhVgBVgBVoAVYAVYAVaAFQiFApE8SC8osuOR9zLx05+FLulhQjGvaO6DDtcfHV4VPS9OVNxNubACrIBQIJL3q2hYgllLsgUAFKzzD4E/9w4w48YXipBXpHx+07CmAbNuScDdbxahbroRUweZcccbRTh4UrleORF4aHA8TCYDnvioGM/eGo/tB+148YtiAXcmxQPTr49H7arGkIA/VSoZ8cyoqmjTJCEaloZjZAV0qQCDP7pclogEFQ3gTyiFyco+jb+27kZm1mk0bdIAjRvVd6by0o5DTkAbN29HetVUtLigCZKSPGqAuwkAACAASURBVP+7Q6m9du7eJ9yCqqSloOVFTVC1SmooQy/3vhj8KXfJwz5gQOAPpdQixx+CcxIKAZnmSzr0EKxDr8k0YCXbS+dRVsovd9eoL9me+mzQQXmurit7J8io1XSg1QyfdCOoQ5v2Sesu40sdOZhsS1AJFQlJ0GNtv+6e0982/hQ1cBEI+KOGXXyZpzZmaq/9wpi3OsHGSfr4EqvUUQ2oaF2OtP1oY1evhQSA5GvUl7t11bahdnI/yDbudPNn3T3V9aa9u3g9xaLdy+r9rNVN24cnXdUa+qJfoJow+BOoctwuahS4a9EG/HM4S8l05XC8UYx7Sl1uFKcdByejVFRScLmk3VIDQuqUYY4UXWW2KU0zJqEgEYtN5ntXpQZzxuibJTV98N2vQ1NMHdoZyQkmIO8XIPsjABYPrj4qqEftACQekwW1TAnmEMRYBag9FUhQcvFyYQVYAVaAFWAFWAFWgBVgBWJZgUgfpO87bsHEORk4fMoSNTL3ujgONasYRNqbUBf6e+fh66ugX8dkGDnDV6jl5f6iXIFI36/0Lt+JbCumvpWJTf8WBxUqgT9Du5pwx4IiZz/VUg148sZ4LF5tQZIZGN7DjJteKnQZZ9LVZlzZxoSJrxfi8eEJeP8nC5ZvKr1PTrxaSf0VrONPUrwBz96Wjo7NEhiODGqluXFFV4DBn4q+A0rnX9HAH1553xVg8Md3rWK65h8zgD8edXXekbAPTdyTm48URbr6SFCIXpfOPmr3IE8iugOEKB3YpnlKqi9K+RVFReuwonUDknCSGmKh6anBH7WLjtaBRbanv520oJN2rHDLFi1xhlsH7j98CjD4Ez5tuWedKHDDnF+QkVvo4rYjU3YJdx2KU5VqSz4WmJBM7eWs4wB+1M9VMJFrm1KAyPmPh8PlpzRlmAIjKc/VYJJv0E+lxHgM6dYMt15xMarS18ksB4GMN4CSIwrAIzqVKb0oaJuYq/jpmIPymjbtl6xnBwwJCviTpOTn5cIKsAKsACvACrACrAArwArEsgJ6OEjfuLsIUxZkIiff8b5d54I/MDAezeqHxrVCPVUCfQZ0Ssa9A9MQb2arH51vAw4vAgro4X4VgWn7NeSBExbc+uIpZJ6mLzoFVgj8GdzFhLveKAV/qhP4Mzwe76+yiJRfw7ubcLMG/LnjajN6tzZh0vwiPH5jPBb9VILlm0rjGN/HjPbnBQf+mOKAMX1SMLJXCkM/gS0vt2IFnArwPZU3g1SAwR/eC54UYPCH94ZQQDr+0GMCdeqmlbryEMBDRe3yo5XNHbijThFWVlvqi+oaNyu9BpHqSy+rqYZhPKWcoli1Ka5kCixv4JCcp7ZeKFNN+aJltMTpy1xCXUcLdfnav9pVytc2sV6PwZ9YX2GeH/q98CMKS8j9xjUtl3voxzWVl7YNATqloJB0+nG4BXkAeKRzUGkKLzvsNqWNGvqR0JDs39vSNambjoeu74JW59SG0WgArJnAyWcAS4YK8Cl1NVIAH/FOwAH/OAAgCQKpHJBcoSEDUOteoHIXbyHxdVaAFWAFWAFWgBVgBVgBViDqFdDLoc+X6wrw3KdZyC3w7UsBkRQ+XODPRY3i8fSIqqiTHhfJ6fHYrIBuFdDL/Uq3AjkCW7u9CDMWZYEcgAIpBP7c08+MW14pRG6B0sN5dY14bFg87nqzCPWqGfDQIEr7VYh9JxypvpIMmDYkXsA4T35cjGdHxOPfo3Y8+3mxSOWYGA9xvV614KDJK1ol4YGhaaBUX1xYAVYgOAX4nhqcfrHUmsGfWFrN0M6FwZ/Q6hm1vUnwR0I/RYkApdmi1F8SyClrctLdR11fAjw9hgB5a71Lo4WH5PModPxRgz80cXdAjhaaoXoS/NECQe7au0uxFWnwx1OcWmei8o7T++YLfQ3tHvB1BLkHfK0fq/XknqG9wuBPrK4yz8upwJXPfA8bgTaaFFpq1x0FutGk/3LjwGOTDkAOSEbdhr5/WrVSAmqkJSE1KR7xJiMMMoWYy0+1u490+aFwS6Eid8tHN76EeBMa1kxD2yZ10PbcOgrwQ/Mq3ArkfAyUHFWl6pKAD/Wmgn2cgA99e1jj9COdf9Tpvqh+zUlAai/eVawAK8AKsAKsACvACrACrEDMK6CXQ58Sqx0vfpaDj1bnhUzzRjUNaNkwDqu2WXH7lWakJRvw9UYLVm91PQw/t44Bwy4xo3KSARt2W/HFOgsKS0rDqJZiwK09zaiZZhBpazo2jUPTesEdXmsnmVbJiE8eqon0FD7MDtkG4I5iTgG93K/0LqzNBrz/Yy5e+zIHlgDYHwJ/Hr0hHpv+teHxJcUwGyGgn+PZdjz1STEqJxqEow9lX3/so2IcyrBj2CUmXN/NLGCgf4/YhWPQsO4mvPRFCVZttaJ3qziM7xOPjFx7wKm+GtY24e27qyMlme+Tet+DHF90KBCJe2okxnS3GnqJQy87hcEfvayE/uJg8EdZE5kuidxZKmRRO/5o03V5c+shwST4o27rzgWoLHHVrj/22sCOP4HThTGR6suXPaWGYdxBPbIP2qPa9F50LRIwTbTE6Yv+oa7Djj/BKap+H8fgT3BacusoUKDXzBUuLj1apx+agnDyccI82rRbVMGmJMdy1nNt06B6Cq7teC5aNKiO6qmJSEmMRzx9EoTQ2dFTTwrooyqWE0Dut0DhFsCa7SZll6CZXFN+uaT/coA/WtBHCwRVHwNU6R8Fq80hsgKsACvACrACrAArwAqwAsEpQB/G0B/N9AERfRgUyZKVZ8N9b2Zi467S9DLBxEOH15OuMSM3H1i/2yqcKAjaWfmnRaSrMccBQ7qaMaBDHNbusAm3IUrhVVBMh9slyMm346IGRkwdTM4VNuw7bkfj2kY0qWvE6YLAD6+1cyLYZ8aNVdHlgoRgpsttWYGYV4APan1f4sJiO574MAvfrC9QPiPyo9C9c+JVZmz41wYCI01G4MBJO95aWSJ+UmlY04DbeplRPcUgPrspKLLjy/UWfL9FIY0odeFNPczo2NQoPqbJzLXj1Gk7Uv8f2pnxgf/3+LrV4vDC6HQ0qWf2YyZclRVgBcpSIBL31EiM6U4DvcShlx3K4I9eVkJ/cTD4o6wJ3zMA/DED+ONRRRBtui9vW/dEHWDvOqVdtVpK7VPHlNeo+OP6Q/XJbYhKq+lAqxneRtflda1rT1lB+uoI5KmPSLrEuHMu8hRnJOAkXW4ODsqrAgz+eJWIK8SSAr1mrVBSa9GkXAAfBw/j4gTkSNvlqCfbCKcfN6m8KieaMbhzE4y8rDlMcfIbVuSuQx/sCFQogFLWR1AE8lgB6ykgfw2Qvw6w5atcfui6HFc+VsE/wvlH4/LjAgJpUoMJzWxAjVFAlUEBzIWbsAKsACvACrACrAArwAqwAqxAMAqcyrHhztdP4Z8DKsudADukw+vpQ+Mx+a0ibN1vE38jdW5mxMSr4jF6TiHqpxsx44Z4vLmyBD/+aRXOGA1qGjB1UDw2/mvD2z+U4IkbExD3/99HmPFhsYB9KMXNI0PjkWA2BOxaoZ3OxL4pGN6zMsw0EBdWgBXwqAAfuvi3OU4X2DD17Uys2eYfaEP3zjG9zBj1WiFqpRlgMAInc+woLHYdP8EMkCOa2WRAdp4d2fkyNbxSj+CfGqkGkeYrMxew2uyINxkEBORPof6n3ZCGK9smw/lRlD8dcF1WgBVwq0Ak7qmRGNPd5PUSh162JoM/elkJ/cXB4I+yJnzPcOxNcv7Z/ChAP6kQyEOlbpryU+v+I119vG3tOj2A81oAhqOuab/IKYjSilGRsA89JuBH/IxO6EfKIb+ERc/VLj30pazu3buLagTOlFXk9VWrVok+pCsVtafHenGpojgpRvVcZWwE/OglTm9bla/rQwEGf/SxDhxFOSlw5azvYCFf5zKhH22aL1dQSCQKE3m9ZGouO5rWrYpxvS9Cuya1YKSvytrzgeLdQMl+BcyxUeJ3/z68UerL/xzQjYsbTwlgzQKsmRqAxwH7uE3VJUEftbuPNsWXHJN0ooWRqcEcP2uOBapcV04rxsOwAqwAK8AKsAKsACvACrACrIBagfU7i/HwOxk4mRPolwuU3ujwesRlZoyeXejsntJ1zbw5AbO/LkZKkgETrjZjyKxC518y9KfOlAHx6NA0DncuKMTTNyVg2ToLPv3N4uzjvuvMaH5WXNDgDxmcdm+RiFm3VkUcQz/8S8AKeFWAD128SnRGhT1HLZiyIAP7jpfew7z1IsGfW14uvXd6axOu6wQPDetRCXcNSBOubVxYAVYgdApE4p4aiTHdKaaXOEK3msH1xOBPcPrFcmsGf5TVjaV7hsHxhkrJCBJg0QJA3ropy5lH7STkSz9UJ8qBH2/T5OusACtQtgIM/vAOqVAK9Hvue+QXWxypvByAjwrgUcx8BNrjNpWXctlxzVGnSZ0qeHRoRzSqlapoWbIbOL0MsGYAds1XvvxR28WNRwPsyJRdLg491Lm6njKXUnBHneZLwjxaByDHGxonNKSu5+i71p1A2jX+zITrsgKsACvACrACrAArwAqwAqxAiBSwWoHPf8vDrI+zYQvi80g6vB7YyYR7Fpa6XZA7xRM3xmPJGotwnri+qwkjXnE93J7Qx4y+7U2YOK8Ij90Yj7dXlmDFZiV9DZXbr6T0NcGDP53OT8CskemolMin2SHaOtxNjCsQS4cu5bVU9JHJD1sKMe3dTBSV+HZDpRSH/dqb8OSSID7vCcEECfrp0zYZjwxLg4nhyBAoyl2wAq4KROKeGokx3a27XuLQy55k8EcvK6G/OBj8UdYklu4ZIQF/1FtVuv8c/Qk4qji6iFJbcazxCdKhPjy1F331AMgViAsrwAqwApp7ssEeFMbIerIC+lfgxtmrcDSL0mGVQj8ybZcC8arcfBxpsujXQvyngn6U9jZUSjDj6eGd0e7cWoC9BCj4Bcj9FkDpB9/+q6KCcUQM7hx5PLj0SNDHxRlIDf9o27lL9aUGhLTgkAGoMxVI4TcS/q8rt2AFWAFWgBVgBVgBVoAVYAVCowCZmM79Xw4WrsgNuEMCf0b2VNLVyFK7qgHPjkjA058UixQ19/SPx8CZBU7AiNLI3H9dPC4824gpbxfh6ZsT8O0mCxavVjv+xKP5WcagHH9qp8fhhdHpaFrfHPD8uCErUNEUiKVDl/JcO7qf/u/3fDy6OEv57pSXYoqDSGeYV+hDZW+dBXH9/LPNeGZUOuqmxwXRCzdlBVgBTwpE4p4aiTHdzV8vcehld+oF/Dl+IgPPv7rIrSxGoxGNG9XHZd3b4ZyG9SIm3bL/rcKadVvQ/+oe6NyhRZlx7N5zQMyndctmGD3i2ojFHMzADP4o6sXSPSPk4E8wG4zbsgKsACsQoAIyPR6DPwEKyM2iR4HJi9Zh874MZ6ouxd1H6+JTmupLuvsIPEa67AgQSMnH/sCAtrimXSMYqJe874H8VYDdv/zwpeqp3XfosRrK8QD/OGAlF1cfZ5zu0nm5A31kajAH5OOEhlQpvuRrxgSg3hNAcuvoWXSOlBVgBVgBVoAVYAVYAVaAFYhBBejQ+ZH3MrHqr0KfDqu1EhD4M+P6eDyxpBhr/rGKNDHkYnFla3LzKUTddCMeHRaP5ZssWLrWgvwigJwuJg+IxzebLPhkjQVTB8XjrOoGPLK4GEcy7Whc24Cpg+MRZzQEDP6Qw8+0YVVwRaukGFw1nhIrED4FYunQJXwque/ZagOe/SQbn/2aB3qs91KlshHP35aOixvH6z1Ujo8ViFoF+J4atUsX8sD1Av4QVDPghsle57fswxfQ76pLvNYLR4Wefcfhh1Xr8e3S19Drso5lDvHmu8tw28TH8cgDo/Ho1LHhCCfsfTL4o0hMB8x0z+zRowemT58edt3DOQCDP+FUl/tmBViB8laAwZ/yVpzHK3cFXvlmK5Zu2KeMKzgbxd1GuvqIl11SeQE2zXPZpmXD6pg9+lLxoTaKtgLZbwcxHwn9uIFt1O495P4jYJ+yUnX56hhEk1XDQR5SganTicVVB+o/BSQ2CWKu3JQVYAVYAVaAFWAFWAFWgBWIDgXkt2ToQ0w9lj1HLbhj7ikcyfDfcZTAnykD4pFx2o7DmTaQi0WDGkYsWFGCn/62gtx9erUyYUwvE3YcsiGvEGhUy4Cdh+148YtiFBYDddMNeHBQPMxxwP4TdtSqYkBKEn1JIjDwxxxnwOSBqRjYtRLozywurAAr4LsCfEjtu1buah7LsuKhtzPx996S4DpStbZaraD/4uLixH+hKJWSDHj4+iq4tGViKLrjPlgBVsCDAnxP5a0hFdAL+DPtibl44pk30btnJ0y6fahzgQoKirBt+x4898p7OJ2bLxx/dm9ZCgkwlOdKTp76IrJzcvHM43civWpqmUOPueNJLHj7c3zx0Qvo2ycyoFKw2jD4E6yC+mvP4I/+1oQjYgVYgcAVYPAncO24ZZQo8PXmg3j+qz/FN2J9gX5K03xRg9I2pjgj7uvfBn3bNQKs2UD2QsByOAAVynL5UafZUkE6jhRkSkCeHHxUIJFLPQpRtnHn9KNxGZLuQRI+SjhXAX/MNQOYKzdhBVgBVoAVYAVYAVaAFWAFokuBaDj02XGwBLe9dBL5Rf6lnSHwZ0wvM8bPK0TPi0wwmSCcf45mufZTPcWATs3ikJoMbN1vw9/7bbCoOKMEM0B9EQS0YbcNRSV2VK1kwKY9/tlmCMehjsm4b1AaEuOZ+omu3xSOVg8KRMP9Sg86lRVDVq4NhSX+3UvL6u+ll17Ciy++iLvvvht33XVXSKZPUGS11DgBZ0a67DqYhe37srD7kJIm7b/DWZEOiccPUIFGdaugcb0qwt08zgBc1alhgD3FTjO+p8bOWgY7E72AP9JN57Xn7sOEMUPOmNaXy1ej39B7xOu27PURAX/80fqC9kMEsHRw+9eoVzc6zxoY/PFnxaOjLoM/0bFOHCUrwAr4pgCDP77pxLWiWIFth7Jwz3trUVRMn1QrTj+CaXE+drzmcP4R4A/N125z2Ocr12ulJeP5W7vh3NpVgMJNwOklgN3inzIuUA19KK5y8VG7/Ih6EtLxBvqU5dojQSLx9p8oJsX2yAUM0vYv6znAo8pdgHozAEr5xYUVYAVYAVaAFWAFWAFWgBWIcQWi5dBn6Zp8vLg0G7kFvh9YS/DnlpcLdbGKFzY0Y+at6aiTHhpXDF1MioNgBcpRgWi5X5WjJBEfKlbXZNu+TCz/bR9sdqBOjTTUr5UmtK5XU/nJJfoUOHQ8GwePZYvAyQHw18370Kt9Q/TtUnEBoFj9/Y2+3Rn5iPUA/lgsVpjTOwgxflv5Fjq2u+gMYX5cvQGXXXM7UionI+fwapw8lYUJk2eh2XkNMeLGvnj7/S+x6MOvseS9WWjdspk441i85Bt89Ol3WLfhbxQUFKJrp4vx8H23oXOHFqL/pV/9hA8++RYXNDtHpORSl5ISC26/6ynk5hWIVF1Hjp7E+x8vR88e7XHDoN7Oqjt27cPC95bht9//Eq9RCrBhQ65E4xb9UbNGOo79u8JZl2KieAhi2vDHNqSlVsaVV3TGuFGDUKd2dWe9eQs/ww+r1+OBu0dgz95DeGvRF6Lu+28+Ua4bhsGfcpWbB2MFWAFWgBXwUwEGf/wUjKtHnwJHsvJx76J1OJSR5wL9EAQjOBhV2q9S6EfCQKWg0EUNqmH2mEsRT38N5y4F8n/1T4wzUmwRYCO/ESudfJR4vLv6eHL3UYM+avcgbSow7TUNZOSMAUCNUUD1Ef7NlWuzAqwAK8AKsAKsACvACrACUapAtBz6FJfY8cLnOVjyc57PSusJ/KldNQ5v3VMdNasw9OPzAnJFVkCjQLTcryrSwsXamuzYn4WvftsLq9WO9hc1+D/2zgK8yev7498atEWKFBhatDgDhg4rDsXdnR823IY7w9mwjQ1nwHAf7u7uNtxaoKXU7f8/N31D2ia0adLmfd+c+9CnyZsr537OfS9p7jfnsNBH5Yv50u3nOHP9GeqUy4l6VhgBSG33r8qXa6JOTw7Cn9t3n6BIWU2UH/93p+DsFDvdY+9B07B42Ra0bVFHCGD2HjwDz2b94Z43hxDlUBowKiQKojSUrTuPwv7DZ8U1qvPg0XMtx/3bFwqBzpoNe9Dhf+NE+rDHN3ZE4/z7kk1CWFSh3Pc4sW8JBgyfjYV/bYRuRKL1mw+gTddRsfxD4iSyp0WTGti4arp4nYRKHXuME3ZTIVHQe6+P4nGhArlxfO9fcE2fRjwv49ERF6/cEWOfPnddXBs1tCumjuuTqGshZucs/ElS3DwYE2ACTIAJGEmAhT9GAuPqyiPgFxiKSVuu4OLj99pIP0L0ExXhRyMAEvF/ogLiaB5rAvBoBDH0etUi2TC9Q0UNgI+/AWGv4glDn+jGkLhHisYjRfzRbRtDrKMV58SI0KON6BMjso82opAkONLMMXoasKhvC+umE8u1BHAqFM+5cjUmwASYABNgAkyACTABJqBsAko69KFoP4P+/IArj0PiBT2Diw3cs9ji9F2dvF3xamneSmlS2GJC+zSoVCT2AYZ5R+LemIC6CShpv1K3J77OTk0+2X3mKfaff4pmNYqx4MdaFjAAigS05dAN1C6bE/V/tK7oP2q6f61oySbKVOUg/Pl7/R4hiqFIPZdPrtHOk6LuXLl+D9t2HcWMX1eJ6xePr0apEoUwecZSjJu6WFyrVqU0hvbvgJw5MosIQK06j8SmbYfQoG5lrPpzAtKmSY3g4BC06Tpa9EX1D+/6Q4hrSGRDJdznAmwpHyAAH18/5ChYT4h3yB6y64dK7YUtUkSicxdvonz1LqL+n/NGoUPreiL92LAxvwmBEJXZUwdiSL/2oIhGJFI6ePS8EC79NmMIMrimxfOXb1GhZle8fPVeXBvQuw0CA4PhnKmClgH1UaViSeRyy4r06ZI28hwLfxLlluNOmQATYAJMwAQC9B722LFjGD9+PFj4YwJIbqoMAhERkVi4/za2XvgvKuKPlMpLEvxECXyipf/SiH2+pgaLRINSuTGmJYXXDAe8JgGRGsX8t0tMgY+UVkuKsKMr5qGedNJxadNy6bkmhDkxUnRJ0YO0acL0iIb0pvuKSumlKwwiU6i/ZDmAvGsB8Ldw4/I0v84EmAATYAJMgAkwASagDgJKO/R59ykcQ5d+xJ3noYpxQN+GqdCuakoks7dRjM1sKBOQIwGl7VdyZGhum9TiExb9mHtlKKs/axX/WOL+tcSY+lajXOyQy50iB+FPv6EztWIZipYjFSmKj/R8+e/j0KV9Q/G0fouB+Hf/KSHKuXBsNezsNKIdKYoPRdR5fmc3kidPpu3v8rW7KFW5gzZd2Cefz0iXo5p4nVJyURsqoyYuwrQ5K9C7e3P8PncEAgKDkCKT5kvSFJHI3s4OBUs1F2m4/l4yCe1beWrH0O2TovhUrlASs+atxvCx80VkoTsXN0Wz6ddF6zB45Fz06NJUCIguXL6NslU7if52rJ+Lhp6VLbZUWPijQU8HzFQ8PDws5gsemAkwASbABDQEdN/HsfCHV4VVEDh6+zUmbb6MiIgITZCbqCg/9DCChDLaiD9SFJwoUZAmLJCIANSodG6MblEWiAwDvCcCkUHfYKcjuomVuktHyKMV28SI9COJfgyKf3Si9oj5RImAdPuLdk1XcBQz0o++sam+DZB5BJBW84cDFybABJgAE2ACTIAJMAEmYA0E6ENM+qOZPsSkb8sooZy/H4xRKz7Bx19KJSxPq21sgJolnPBL57Sgx1yYABMwjQAf1JrGLzFaq8Ene849xd6zHOknMdaHkvqUxD/9WxRHvmyaVDtqL5a4fy0xpj4/ysUOuawxOQh/pGg6xERX+EPP8+XJgWJF8omIPoUL5hbY6EvMLlmriIg8J/cvRcXyxbU4K9f5H06euaqNtqPLWRL+ZMuaES/u7hEvZcpTS6TcunJyLUp8nx/PXrxBzsINhB1Pbu4U6bek6D5SRCIpzVjMCEXSWKmzVBa2+b46jpQpnOBWuL6I6jPop7bwrBWVZSGq8o5/jwnRU9cODbFs0ThIKcZqVi2LAzsWWXSZsPBHg5/3DIsuQx6cCTABJhCNAAt/eEFYHQEf/xB0WHgYvgEhBkU/GjHQ10g/2udRYpqGZfJgTLyEP5LoRzdSzzeEOVpxz7fEQtJrFJI/Zr1vpQeLigykbwwpMlC01yQ7ATh8B+ReDtiltbr1whNmAkyACTABJsAEmAATYAJKIhARCey9GIAnb8OMNvvUqdM4deoUKlasiIoVv4bQN7qjeDRwTm6DVpVTIqUTq37igYurMIE4CfChS5yIkryCGnyy7eRT+AdHomzRHEnOjweUFwES/1y58xyDW30VEMjLQvNaY4n71xJj6qMmFzvM69GE92Zp4Y9uNJ27lzaLVF1xlUdPXiBf8SYigs7jGzu01V+8fIccheqJ559eHEUal1TRuqIIQRQpqEK573HqwDLxWvUGvXHk+EXs3DBXpAajlGOUeowi/VDEHyqL/tqIvkNnol/PVpg/axi69J6IlWt3Ye60wULMo1ukiD+FCuTG7QsbtaKhuOb0y/ifMHJIF3TuNQGr1u3G+hW/oFWzWnE1S9TXWfijwct7RqIuM+6cCTABJmAUARb+GIWLK6uFwOrjD7DsyF0R9YcKqeDFj+aJ9rlGWBP1epTIhuo1IuFPy3LfjvgjpdsSKbX0peLSFelIj2PUi1fUHo3NsdN96aYO0+2X7BET1UknpnNNmzpM8rYNkLYp8N0gwIbTfKnlHuB5MAEmwASYABNgAkyACTCBmAT4Q1teE0xAuQT4/pWf75Tukz1nn2Lvuafo37aS/OCyRRYhsP3ITTSqmBPu2dUf9ccS968lxtS3kORih0UWuZ5BLS38OXP+BirU7CosC/t0QZuy61t8Nmw5gNZdRqFT2/pYuXiCtipF+qGIP3Vr/og9C6NOZAAAIABJREFUW+bH6qJhq8HYtfcEpo7rg1FDNWP2HzYLC/7cIIQ+pX8ohNJVOooIQ5dPrIG9veasoMP/xokUYlJar8JlWuLOvSc4sW8JKv1YIto46zcfQJuuo7Spu/7ZvB9tu44GCYGmT+xrcFolihUARSLKU6yRSCH28No25M2d3aLLhIU/Gvxq2jNsokLR0hkgFybABJiAEgmw8EeJXmObTSbgHxSKn5aexON3vlGCH43YRxL50APtcx3Bj0YvE4FGZfIaFv6ISjHSacVK8WVA6BMrGo8+wZAk0on5Wow+taIhSXhkRBowXcJ2qYFsU4EUpUzmzh0wASbABJgAE2ACTIAJMAEmIF8CavrQVr6U2TImkDgE+P5NHK6m9Kp0n+w49RR+QfKL9hMcHIQt/6zEqWMH8OjhPfj5+iBXHnf8ULYiOvfoj/SuGU1xG7f9BgGK+nP1znMMsoKoP5a4fy0xpj53y8UOudyMlhb+UJqrfkNnwpjUVkNH/4Y5C9Zg0Zyf0ed/LbQod+45gUatB6Ne7YrYvem3aIgfPn4O9xJNxbUHV7eKFGJUpNRaPw/qhPOXbuHYycuxBD3ZC3qKVF0UwYcEPFJ6sJjCH/oSNgmPTp+7jqULx6Jbx0b4Y+lm9Bk8HaVLFsKFY6uj2fTq9XsR3YfSifXo0hQfPvrCNWd1kWaM0oRJIg1LrRUW/mjIq2nPYOGPpe4mHpcJMAFzEWDhj7lIcj+KI7D/2gvM3HEFQaFhUVF+hNxH+/ir+Ec3GlCEEASR8Gdsq/KxI/5oI+9IIhsDkX70CXyka1o1sZQeLGa0npiRgnTTiOkT/+iKkMhNNMeYkYV0xEExPelSE8gyDrCxV5yP2WAmwASYABNgAkyACTABJsAE4k9ATR/axn/WXJMJqIMA37/y86PSfdLv12Oyi/Zz/85NdG5ZGx+83xt0+K4jV5G/UFHt6zMnjUBQUCCGjZ0GJydn+S0UhVk0f91JLBjkoTCrjTfXEvevJcbUR0YudhjvtcRpYWnhjxRNZ9yI/2HiqJ7xmmT56l1ECq1zR1aibKki2jbHT12Bh2cPIZx5ens30qVNLV4LDAwWUXh2/HtcpOaiFF1SOXT0Amo26qN93rZFHaxdNkX73Mv7EzLmrimeSxGJWnUeiY1bD2LE4M6YNuFrFJ8pM5dh7JQ/RN0rJ9eixPf5IUX8yZghHZ7f2Y3kyZOJ1/2+BKBu035CJPTr9MEY2KctJFsMRSyKFxwzVmLhjwammvYMFv6Y8QbhrpgAE7AYgWPHjomxbSI5fpnFnMADJz2BwJAwLNp3C9svPBEpvwyKfrTpvjSiHyqU6mtsqx91hD+BmgloBTUxxDrRUnbpptjSFfFIAh7qKKaYJy7xT0wxTzxSi0m2asfS4wPHvECO3wD79EnvIB6RCTABJsAEmAATYAJMgAkwgSQloKYPbZMUHA/GBGRAgO9fGTghhglK9snDlz7YfvIpGlf7KqCxNOHXr56jWe1yQvTTrnNvdOrRH1mzu8Hn00dcOHMcg3q1EybW9GyMRcs3i8fv3rxCpRJuSJEyFa48/Gjx6BCWZmiO8SndV+NKOZEvm7rTfSn5/jWHn7mPrwQsLfyRouns3DAXDepWjtM1wcEhcMzwo6gX8O40nJySa9uEhYUja/66eO/1UaTrateyLsLCwrBlxxFcuX4PJb8vgFMHlkVr8+zFG+Qs3EDbx4u7e0TKLakcOHIOtRv3jRaRaPnfO9Htp0miCkXqyZs7G46euIS9B89o24V8OAcHB3t88Q9AqsyaeVFasGaNqsHHxw+//38kILKzZdOaWLt0ikgrNm3OCoyauEgIoEgIZenCwh+NB+iAmfZMDw8PjB8/3tJuMWl8Fv6YhI8bMwEmIDMCLPyRmUPYnMQn8CUoFGtO3Mf6Uw8QHBoGja7HUNovEgdRQKBINC5LEX+ihD9eE4BIEv7oi9CjiSAUTcgTTQQUM/KOVF9HyBPfNGGx6ulLBaYjKNKtrw918pxAljGAU+HEdwSPwASYABNgAkyACTABJsAEZEhA+pYMfYhpDYUPuazByzxHtRLg+1d+nlWyT/aee4qP/pEoU0ST6kUOZdr4oVjx52/wqOGJv9bsjGXSnwtmYM7U0ciZxx0HTt8Rrx85sBu9OjZGtVr1sXj1djlMQ/E2bD18A00r52Lhj+I9yROILwFLCn8++XxGuhzVhKkv7+1B1ixxpzK8ceshvv+xjRDxXD65JtY0r16/jzpN+wlRjW4ZNbQrxg7vDkdHTcQdqdAXpu3SlBFPp0/sB0r5pVtm/LoKI8YvwNifu2PS6F7iJRIYde87WaTpkgpFGaJIQQ1bDUaFct8LgZFUzpy/gTpN+oooP1IhcdGYYd3RtUNDIRCi0rLTCGzadgh7tswHRf2xdGHhj6U9YP7xWfhjfqbcIxNgApYjwMIfy7HnkS1IICIiEgeuP8eifTfg8yUIoWGayD5fIwBpRDgaTZBGFNS4XD4d4c84jfAnpsBHG1FHj5gnWqovEuiIzmOk4IpP1J4oUZFoTvW/FSkopghJGlcXvg1gkwxInh3IOgVI7mZBz/DQTIAJMAEmwASYABNgAkzAsgSUfGibEHLWNt+EMOI2TECuBPj+lZ9nlOyTPWc1wp+yReUj/CmRNy38v/hh28GLKFy0RCyHHzu0B7+MH4pChb/HnD/WYHi/znhw7xYoPdh3mbOhZOnymDhzEVzSpBOf7e3a+g/27NiI61cuiFRgP5SpgD6DRot6Uvn00RsTR/RD7nwF0LRVR2zdsBo7Nq/F/KUbhA2BAf44cWQ/zp85jlPHDyIoIAA58+RDs9ad0ai5JgKRVGhManvs4L94/OgeypSvgnqNW+GD1ztcOn8KbTr1RM7c+bT13799jVVLFuDG1Qt49t9jlC5fCbXrNUWtek0sutjP33yOdClt4Fkup0XtSOzBlXz/JjYba+vfksKfxGIdFBSCO/ef4Omz18jllhX53d3g7ORo9uEePXmBO/f+ExF/8ufLCTs7W4NjULqxW3cf4+Wrd8iUMT1KlyykFfyY3TAzdcjCHzOBlFE3LPyRkTPYFCbABEwmwMIfkxFyB0om8PFLEM4/eIt7rz7inU8AgkLCEB4hReuhmZHoR/O7fIGsaFelkCbV1/uxQGTAV9GOvog++lJ9ia5iiHvs0wH2WTQioGhtNONG+4myRSs4EvBjtDPYR0zRjy1g6wwk+w5wKgakLKcRAHFhAkyACTABJsAEmAATYAJWTMDaDn2sbb5WvLR56iokwPev/JyqZJ9QxJ8PX+Ql/HH/ThPxoUvPgRg4YhKcnJwNOv3FsyeoXtY92uuU7uvSfW8hHhrUqy1OHj0gXqcIQU8fP9DWXb5+Lyp61BTPTxzZh+5t64s6Xu/eiLZUrj76hJCQYHRsXlMIi6iQuOjtm5fafub+sQb1m7QWz319P2FgjzY4ffxQLJvTu2YU6cuOXHiIbDlyidd3b1uPscN6i/HIbmlcem3ijEVCJGSpQsKf9CltUJeFP5ZyAY+bxATUKPxJYoSqHY6FP6p1LU+MCTABJqAKAiz8UYUbeRKmEiCxT0hYOCgSkNDW6CkOdrZI7mAXJfwZBURQqi9JdKMvfZd0jTqTHkeJb7SRgiKAlFWBdB2MnIIhK7/VTcw2NgDsAFsS+xhW3htpGFdnAkyACTABJsAEmAATYAKKJqDkQ9uEgLe2+SaEEbdhAnIlwPev/DyjZJ/IUfjTumFlXLlwRuvomp6N8WPl6vihdAXkK1AYdnZ20RZBeHg4CmZNLq5duPsOadKmF5F+SICzd9dmkf5rxoIVcHFJK0Q8g3q1w8E921GuYlWs3nxQtFs0dwrmzZwgHtP17n2GIGt2N+TJVxBS6jHPhi3Qd+hY5HUvhODgIPTp3FSIiih60MCfJ4oxf+rSDIf27USlqrXw87iZyONeENcunUP3dvW14h4SE1E5d/oYOjarIQQ/JB6i1GYR4eFY+scckcqMyr3XIbC1tczndyz8kd9ewxYlLgEW/iQuXyX3zsIfJXuPbWcCTIAJqJ8AC3/U72OeobkJRIYC70ZpIv7EK9KPTrqtWPUjgFQ1gHRdDFiZAIGPDX0byjIfBJgbNffHBJgAE2ACTIAJMAEmwASSmoCSD20Twsra5psQRtyGCciVAN+/8vOMkn0iR+HPq5fPMG5Yb22kHl2Pk0hmwPAJaNu5F5Il04h9Hj24A8/KxZDdLTcOn9dE9KFUW8P6dgJF2Tl+5T9tXXrt1o0raFqrjBDcSCKcHu0bglKIUVqvzfvORRMXUT9+n3214iHJHkkQNGL8THTtPRjbN2nSjlEf63YejxapaMqYQVi9dAFq1GmI31duxRe/z6hUwk2IgWbOX4HGLb9+OZAERPkzO4hhjl1+gixZLZOGjYU/8ttr2KLEJcDCn8Tlq+TeWfijZO+x7UyACTABdRKgv0GPHTuG8ePHg4U/6vQxzyoxCQjhz4ioiD8R0KTd0k23RdfIABL8REX60Sf4kdrZZwSSSX+4SyIhqX3MVF+640TV0R3bxg5I0xBIUSoxCXDfTIAJMAEmwASYABNgAkxAtQSUfGibEKdY23xjMnr40kdcehT1OyEMuY3lCeTNlgb5sqWxvCFJbIG1379JjDtewynZJ3IU/kjQvb3e4dypo7h0/hSO7N8dLb1W/2Hj0XfIWFFVEtw0bdUJ0+ctE9faNvIQ7SRRjq4jJeEPpew6cfWpiNRTMl86IcL5Z8dx/FC2Qiy/h4WG4vHDe3jx/D+8ff0CN65eFONSWbPtCMqUr6wdUzf1l9TRst/nYMaknzFk1BT07D9CazOJjxYs3Rgrqk/nlrVFUxIykaDJEoWFP4lHXS57hlzsSDzSxvXMwh/jeFlTbRb+aLxNB8xUPDw8rMn9PFcmwASYgCwJ6L6PY+GPLF3ERsmaAAl/3v6sifijTdklRebREQJJwp5o4h/dlF9RbaTXowmIdFOChUePLKQrKNKOQX1FACT8+W6IRvzDhQkwASbABJgAE2ACTIAJMAGjCdCHmPRHM32ISd+WUXuxxoOeXWee4sD5p8K12b9LIw56s2WyPtGIWtY2JbF++d4HL976iinVKpMTDSrkVMv0vjkPa7x/5e5YJftEzsKfmH6/df0yRg7qjvt3bkaL7jNp1ACsWb4IE6YvFJGA3rx+gSolc4nml+57I7VL9L2eIvtQhJ+SZX7E+p0n8Oy/R6hZvkC0PqWxg4ICsWThLCyYPcngMrz84AMCA/xRsbjmC37XHvvAOUXKaPXHDuuNDX8vwcqN+0Xasm5tPPVGNIo5yO0XAXBwSGaRW4CFP4mHXS57hlzsSDzSxvXMwh/jeFlTbRb+aLzNe4Y1rXqeKxNgAnInwMIfuXuI7ZM3ASH8GQZE6Ev1RabrRPrRinkkQVDMCEGSEEiK7EPNY4qD9PQnCY5iRhKiNF+Zh7LwR94riK1jAkyACTABJsAEmAATYAKyIWBNH9ruOv0UBy48RbZMLihb1A1ZM7rIxg9siPkIXLz9HGevP0PNMjnRUOUCIGu6f823QhK3JyX7RE7Cn9lTRuHA3u0YPHIy6tRvptdpe3ZsxMCebaOJdJrULI3bN69iy75zKFq8lIj0QxF/Klerg6Xrdsfqp1fHxjhyYLcYp9eAkZD6bNKyI2bMXx6t/ryZE7Bo7hRQdKDmbbugWInSyJEzN0KCQ9CweknkzOOOA6fv4PqVC2jh+SMqVa2FZf/sidZHgP8XFM+jER9dvPceLmnSoXKJnCKC0ZDRU5Evf2G9c3V0dBIiIUsVFv4kHnm57BlysSPxSBvXMwt/jONlTbVZ+KPxNu8Z1rTqea5MgAnInQALf+TuIbZP3gRI+PNmyFfhD1lrMGqPlLorhphHBPvREQMJAU/UNW1/eqIHadtI/UqioKgIQTYOLPyR9+ph65gAE2ACTIAJMAEmwASYgKwIWMuHtnM3XENYeCTKsOBHVusvMY25dPs53nj5YnCr4ok5jEX7tpb716KQjRxcyT6Rk/CnT+emOLRvJ4aPm47ufYbq9cKcX8bgz/nT0bxNF/zy6xIEBgbg+1ypRd2bz74geXJHHN6/C707NYFHDU/8tWZntH6ePnmIWj8WFNcOnLmLnLnzYfrE4Vj+x1yMn74A7Tr31tZ//PAu6lYqKp7vO3ULufMW0L5GIqW/Fs5Ey/bdMWX2YkhRhGp6Nsai5ZujjUmRfijiD6XsotRdVErkTStSiy1fvxcVPWpGq//v9g148ewJatVrEm1MI5elydVZ+GMyQoMdyGXPkIsdiUfauJ5Z+GMcL2uqzcIfjbfVtGfY2FD8UEruIWX1sKYVzXNlAkxADQRY+KMGL/IcLEdACH8G64n4E5VuK2YUHiHWIXNjRPeJliYsKuJPrEg+uuKf/39HRcIeGp9+tONEiX5oCBb+WG5d8MhMgAkwASbABJgAE2ACTECBBNT0oa0h/CT6+c7VBaWLaFKvcLEeAhduPcc7b/WKf6zh/lXaalWyT+Qk/BnSpwN2bf0Hed0L4e+th5DeNWO0pXBwz3b81LW5uLb1wAUUKVZSG2knf6Gi2HXkqnjtwtkTaN+kGlKkTIVjlx6LCDtUKG3X4F7thLioS8+BGDlxtrjesl4FXLt8Hpv2nMH3Jctox1z6+2zMnDQiloDo6MF/0bNDI1Fv6pw/0aJdN5w5cRidW9YWYx69+Ahp0qYXr584sg/d29YXj5u26oTp85aJx1LEn4kzFqFNp57aMQ/8uw19u7UQcyeRUMyUYUl5b7DwJ/Foy2XPkIsdiUfauJ5Z+GMcL2uqzcIfjbfVtGew8Mea7mCeKxNQJwEW/qjTrzyrpCJAopvXA4GIwHiIeXRTfJGBOmm7tIIg3WsG0no5ZABc6gLJsgPhfsCXc4DfyajxdSbOwp+kWgU8DhNgAkyACTABJsAEmAATUAUBNX1oq88hJPrJmJ5Se7HoRxULNgGTULP4R+33bwLcbfEmSvaJnIQ/UroscigJX6pUr4tsOXLig9d7XLt8TqTzojJ+2ny069JHPL5y8SxaN6gkHpOApu/gMUiXPgMqFs+BD97vQYKghs3aIjwsDPt3bxV9FC5aAv/sOgFKpRUSEowiOVKI9jee+olrUlm3cjEmjOgrnnbs3g9p06UXacROHz+krUNinkEjJsE1QybtmBTZp1wFDzy8f1sIiqQyYfpCtO3cSzxdPG8a5k4bKx737PczMmXOgotnT2LvLk20oPW7TqJk6fIWXdss/Ek8/HLZM+RiR+KRNq5nFv4Yx8uaarPwR+NtNe0ZLPyxpjuY58oE1Evg2LFjYnI2kRy/TL1e5pklDgES/rwaAEQGUPw/jZgnWgou3bReZIJu1J6o6DxSajDdqD3avmIIgWySA7n+Bhxc6ZbVzCkyDPBaCnivjho/aqos/Ekcn3OvTIAJMAEmwASYABNgAkxApQTU9KFtTBftPP0UAcGR+KEwi35UunzjPa1tR26gQI60aFghZ7zbKKGimu9fJfDXZ6OSfSIn4Q+xJXEOiW1ItBOzUOqurr0HC1GNVN69eYXGNUtr6195+BEpU6XGnZvX0K2NZ6x+eg0YiZ8GjxYpwajcv3MTDaqVEGKgbQcvRhvS77MvOjaroRUc0Ys587hj3NR5ePTgDn4ZN0TUP3j2Htxy5cV/j+9j5KD/4cqFM+I6CYBatu8GihBE1ygiEQmRqJDgaOKIfti0bnm0MRs0bYPeA0eKqEeWLiz8sbQHePykJvDs3BhkyFYKzi7Zk3poHk/mBFj4o3EQHTDTex4PDw+MHz9e5l77tnks/FG0+9h4JsAEYhBg4Q8vCSZgLAEh/OkPRPjrpNuKI2qPbqSfWAIffSnAdFJ/ZZsOpCwX28rQ98CLYUCQJie4KCz8MdabXJ8JMAEmwASYABNgAkyACUQjIH1Lhj7EtIai5EPquPzT79dj6N9WE/2Bi3UTePXeF1sO3cCCQeq6r9V8/yp1xSrZJ3IT/tAaCAwMwLMnj/Dsv0cICwvFd5mzwS13XhFVR1+h+h+93yNlahe4uKTVVgkODsKjB3fx6vlTZMuRC7nyusPJydmoZRYaGoK7t67js68PChQuFs2GVy+eIiwsTIh+dAvZQxGGSID0/u1rEQmIIhidufkK0kGjVP/N6xdCfGRv74Dc+fIjS1b5iFZZ+GPUUuHKKiDw7NxYZMj2Awt/VOBLc04hwPcFvF5eglu5KebslvuyMAEW/ljYATw8E2ACZiXAwh+z4uTOrIJAZDjwegAQ5hsj1ZdOZJ9vCn1IJBQzUlCMSEDS67YpgFwrAAc9H2iQHW9mAT47vmK3SQZk+Rlw8bQKV/AkmQATYAJMgAkwASbABJiAuQko+dA2ISzUOl+K9uMXFIkyReRzcJoQ/3Ab8xHYevgGCrmlRQMVRf1R6/1rPq8nfU9K9okchT9J70HTRqToPy08KyBzluzYc+KGtrOw0FAM69cZ/27fgJETZqFLr0GmDZTErVn4k8TAeTiLE/B++A8Q4gXXHBUsbgsbIB8C3s9Pi6wMru5t5WMUW2IyARb+mIyQO2ACTEBGBFj4IyNnsCkKIvB2EhB8PyriT1TEnmhiH0nIE5UGTJvSSxL9kEhIt51OhB9t6jAAdikNC38ohdib2cCnbV/B2aUGsk8HnEsoCCabygSYABNgAkyACTABJsAE5ENAyYe2CaGo1vlytJ+ErAZ1t1Fj1B+13r9KXolK9gkLf0xfeW/fvETlEpqUgl16DkT5StXw6uUz/LttAy6dP4XK1epg4fJNcHR0Mn2wJOyBhT9JCJuHkgWBgI934HV/NdyKtJCFPWyEPAh4v7wI2KeDa76W8jCIrWACTIAJMAEmEIMAC394STCBhBDw2QT4bgMo6o5eUY8U0UdX6BMzyo+UHoy6kERAOo/FNQA55gIpy8a2MswbePEzEHjn62vJsgA5lwL2X8MZJ2R63IYJMAEmwASYABNgAkyACVgrASUf2ibEZ2qdLwt/ErIa1N9mx5GbaFQpJ/JlS6OKyar1/lWyc5TsExb+mGflrVj8K+bPngT/L37ROuzeZyiGjJoCO3t78wyUhL2w8CcJYfNQsiHw7NwYZMhWitN9ycYjljWEov14PT+NgnU3WNYQHp0JMAEmwASYwDcIsPCHlwcTSAiBoDuA169R6b6iovpI6bm0v2NG9NGJ8kNNKGKPNkoQPY8pBIoS/tinA/L8Ddili26p93LAa3mU+CjqpfQdgEy9AdgkZFbchgkwASbABJgAE2ACTIAJWD0BJR/aJsR5apzvw5c+2HbiPzSpXiwhSLiNiglsO3wDTSrnYuGPin1s6akpeU9l4Y/5Vk9ERATu3b4BSv2V170Q8uYviGTJkptvgCTuiYU/SQych5MFgYAPN+D1YB1H/ZGFNyxvhCbaTxq45mtteWPYAibABJgAE2ACOgTob9Bjx45h/PjxYOEPLw0mkBACkWHAxxXA5/2AJPQhIY9B8Y/Oa9EiBOlL96UT/UeyzSEL4NoBSO4GhH8BfA8Bfgejxouq5JgXyLkYsE2RkBlxGybABJgAE2ACTIAJMAEmwAT+X0Kv5EPbhDhQjfPdc+4pPvlHokyRHAlBwm1UTGArCX8q5YJ7do74o2I3W3RqSt5TWfhj0aUj68FZ+JN47pHLniEXOxKPdMJ6fnZuLFKkzgTX7OUT1gG3UgUBivbj7+cFt3KTVTEfc0yCDpipeHh4mKM77oMJMAEmwARMIKD7Po6FPyaA5KZWTiDCD/BeAnw5GUPwI0XyiYoEFC2Sj+61qNRfQiyk20aEA9JTbABbJyAyVPOjW5JlA7KOB5yKWLlTePpMgAkwASbABJgAE2ACTMA0AvQhJv3RTB9i0rdl1F7UeNDDh9dqX7UJn5/aDq/VeP8m3LvyaKlkn/DeKY81JEcr1LZ3GmJsifvXEmPqm79c7JDj+qeUXylSf8fiHzk6Jwls8n5+Bv5+b+FWbmoSjKacIXjPUI6v2FImwATUT4CFP+r3Mc8wqQhEBABefwBfTgEI0xEAkZCHovyQITFEPfqEPpF6ovzEaw4kBkoB5JgNOH8frxZciQkwASbABJgAE2ACTIAJMAEmIBFQ44e2fHjN69sQAbUdXqvx/lX66lWyT3jvVPrqSzz71bZ3GiJlifvXEmPqm79c7Ei8VWxazyz+MY2fUluz6Mew53jPUOqqZruZABNQIwEW/qjRqzwnyxEg8Y/fIcB3HxDyDBAiHim1lyT+iYrqYzAVmKEoP9+Yll1KIHUNwLUT4PCd5ebPIzMBJsAEmAATYAJMgAkwASagWAJq/NCWD68VuxwT3XC1HV6b8/611pQNNO/jx4+bLcKbOX2S6DdEjAF470xq4soZT217pyHylrh/TR3TXHuYqXYoZzUn3FLvB3/D6/FuZMhRAa45KiS8I24pewIBvi/g9eIcYOPA6b0MeEsOe4a59j8bGxsxy0hxdseFCTABJqA8Aiz8UZ7P2GLZE4gEwryBz0eBTxuAcD8d8U9kjEhAUoqvBEb5sUkGpK4KpG8PJM8O2CSXPR02kAkwASbABJgAE2ACTIAJMAF5EpDDh7bmJsOH1+Ymqp7+1HZ4bY7719rSG+pbzVWrVgVxmDBhgskCIHP4xFJ3nBz2zg/e77H8j18FgkEjJsHewcEoHIEB/lg4ZwqSOzqi/zDD6TrjW8/Q4CeO7MP508dRtVY9lCpbEab2Z9QkLVBZbXunIYSWuH/NMaY59jBz2GGBpZnkQ3o/3ABEBMHryR4hAHJ2ySFscHbJnuS28IDmI0BCHyoBvs/h//k1YGOPDHlbwNmVMyzIab+MaQu9d6P9j96/UUlomm4W/pjvXuKemAATsAwBFv5YhjuPai0EIoM1AiC/o0DoGyDso0YIJEX70UYDiqeC2NYJsEsD2LsCKcoAaWoDyfiPCWtZTjxPJsAEmAATYAJMgAkwASaQmATUeNAjh8P6IajsAAAgAElEQVTrxPQZ951wAmo7vDbl/pUEP1KkH3OIXhLuGcu2lA6OJCtMYWGKTyxLAZDD3nl4/y707tQE6V0z4uyt10YjuXz+NNo0qoKixUthy75zov2Fsyewb9cWlKvggVr1mohr+uoZM9hPXZvj4J7t+GvNTnjU8DS5P2PGtkRdte2dhhha4v41x5jm2MPMYYcl1qalxvR+tAmICIP/xzsUJwQBnx5ayhQe1wwEnNPmBWCLFOkKwtm1GJzTFTFDr+ruQi57hiR8JNr0/q1KlSrw8PAwCj4Lf4zCZZWVI8PDEBkcjAhfH0T4+SLczw8Rfp8R8dkH4QH+iPzyGREBAYgICkRkUCAiAgOAsDBEhoTo52VjA1snZ9jY2QGOjuKxbYpUsE2RErYpU8E2VWrYpUotftumcoFdmrSwcXSCjZGCeKt0lhVPWvq73iaS45dZ8TLgqScugQgg5A0Q+goIeQkEPwGCnwEhrzXRgSL1bPo2doBdOk3qrmTZgOS5gORuQLKsgENWwNYxcU3m3pkAE2ACTIAJMAEmwASYABOwKgJy+dDWnNDlcHhtzvlwX+YjoLbD64TcvzEFP9JBSUK/JW0+71i2J92DI8mShAiAEuITy8786+hy2DvnzZyARXOnoG6D5pi3ZL3RaEjQs3XDKvxQtgKatuok2k8Y0RfrVi7GpJm/o3XHHuKavnrGDFa+SBZQdKJT154j43dZTO7PmLEtUVdte6chhkq+f821h1liffGYTIAJKI+AXCJGxhQ+JuR9LQt/lLf+EsviyNBQRJCIx9cHYe/eIPjRfYQ8uo+wNy8Q5u0FRFAWFwsUEgqlSg2H77LCIY87kufND4esOWCbNi3sUqWBjSOfG1vAK7IdkoU/snUNG6ZuApQa7DMQQZGAQgEh+EkN2LkA0OQU5cIEmAATYAJMgAkwASbABJhA0hOQviVj7DcFk95S84yo5EMuQwTkcHhtHu9wL+YmoLbDa2PuX32CH4lvQgQu5vaNpfvTd3CUED7G+MTSc445vhz2zi6t6uD08UMYOWEWuvQaZBZEDaqVwP07N7H1wAUUKVbS5D5fv3oOjx9yJzgqkckGWKADte2dhhAq+f411x5mgeXFQzIBJsAETCKgT/hIHcb3/S0Lf0zCr+zG4eEiSk/I4wf4cngvgq6cR4T/F0XNycYhGRzy5EPKGp5wKlFWRAziyECKcqHZjWXhj9mRcodMgAkwASbABJgAE2ACTIAJMAEmoFQCSj70SQhzNc5XDofXCfEFt0l8Amo7vI7P/fstwY8xhyKJ7x3Lj2Do4EiyLD4HSPHxieVnqt8CS++d4eHhKJg1uTBu7fajKF2uEt6+eYnp44ehQOFiqN+kNVb8OQ/XLp/D65fPUalqLfw0eAzcclGKFk2ZMmYQAgP8MXLibJw7dRS7t63Hnp2bxGvVatVH9doN0KJdt2j1UqZKLV6ndieO7Mf5M8dx6vhBBAUEIGeefGjWujMaNW+nHYNSfFGqL8+GLfDbX//EGpf6+/3XqXhw95ZBV1eqVlv0K5XrVy5g8z8rcOvaJfgH+KNilZpo2rpTNKHSpfOnsGbZIpGuLEs2N1H/xOF9OHrxEezs7RN1Walt7zQES8n3L83JHHtYoi4k7pwJMAEmkAgEviV8jM97XRb+JIJTZN4lpen6vGUt/E8fRcTnz4gMNZCSS+bziGkepQ6zcUoBx0JFkbpFByTL466wGbC55iDAwh9zUOQ+mAATYAJMgAkwASbABJgAE2ACTEAVBJR+6GOsE9Q4X0sfXsflg2OH9uDi2ZNxVdO+3rhlB+TLXyje9Q1VpEPoHZvXIl+Bwmjcor3J/SmxA7UdXn/r/o1L8CP5Lz5iFiX6OiE2x3VwFB9mSt5TLb13PnpwB56ViwnMVx5+BAlo9u3egv7dWyFFylTw/+IXy63FfyiLjf+eFte93r1Bhe+zi7qXH3zAuOF9sHHN0mhtxk+bj1qeTaLVs7W1xaeP3ujYvKaIDETlu8zZhOhIKnP/WCOER1Tm/DIGf86fLsRFXXoOjDUu9Vcib1q99kr9jZ++AO069waJneZMHY2lv88WL8Wc5+a9Z1GsRGnNuFNH488FM0Bzvnb5vLhWtHgpbNl3LiHL3ag2ats7DU1eyfcvzckce5hRC4MrMwEmwARkQiAu4SOZye95ZeIsS5kRGYnAS2fhu3kNQp8+UY3YxyBOW1vYZ8yMFFVqInXTNhwFyFLrzgLjsvDHAtB5SCbABJgAE2ACTIAJMAEmwASYABOQJwGlH/oYS1WN87X04XVcPujVsTGOHNgdVzXt67uPXoN7wSLxrm+o4uJ50zB32lj0GjASg0dONrk/JXagtsNrffdvfAU/5D9KaWgtaQ2/tV6rVKmifZmYSikf41rj+g6QlLynWnrvJGHisL6dkNe9EPacuCHwz5o8EksWzRKP23TqiQHDJyBtOldsXrcco4f0jJZui0SVPdo3ROVqdbB0nWaPXfnXPPwybohIG0bpw6joqzdt/FCs+PM3EcWn79Cxwobg4CD06dwUJ48eQJ9BozHw54mifYem1UVUoHU7jqFU2Yp6+/P2eoeI8HDtEvr08QM6t6yND97vUaFKDfy+YgucnFNg0dwpmDdzAgoXLYEZ81eIvT7A/wuG/tQRh/btRI06DfH7yq3RxqUn7bv+BM9GLZA1uxsyZ8ke11I1+XXaO29eOg7n4Gcm9yXnDujepx8l7420L8W38CF4fElxPSbABPQRoP3y+PHjsoAj7d/xMYb3vvhQUledsHdv8OmveQi8dhGIjFTX5OIxG/uM3yFtt75wKlUesLGJRwuuomQCLPxRsvfYdibABJgAE2ACTIAJMAEmwASYABMwKwElH9omBIQa52vpw+u4/HDmxGH4+n7SVvvg9Q6TRg0QzyfP+gOp06SN1kWtuo3NksZl09plIkoEpbmhiBHWWNQs/CHxijGiFWv0f2LNWfcAScl7qqX3TtoH1yxfhFYd/if2QiqtG1bGlQtnRHQcipIjlf8e30ftCoWR3S03Dp9/IC4vmD1J/PQfNh59h4wV1wb1aod/t2/Ab3+ug2ejlgbrkeDI77MvZixYAReXr3uwJAgaMX4muvYejPCwMBTM5ij6ufrok4jQo29c3bXm9f4tOjWvBYpoROnGKD2Yo6OT2I9b1qsgqu4/fRu58uTXNrt1/TKa1i4rIg+duPo02ri6IqbEWtMx+6W9k+Z5Yf/KpBqSx0lCAnwInoSweSgmoCIC0nsepU6J9z6les44uyM+++Ltz31A4h+rLra2SN9/BFJUrmHVGNQ6eelzgPHjx4OFP2r1Ms+LCciUwNOnT7Fq1apY1tGHlPq+aWhIOc71NQiZj4YDrwdeD7qbCq8H+a4H/ka5TP9zZrOYABOIRkDJh7YJcaUa52vpw2tj/XDiyD50b1tfHCBTehsb/haesQjjXV+twp94A+CKiUrg6NGj4pvvdJCkxMMkS++dTWqWxu2bVzF17l9o0bYrwkJDUSi7k/AZiV9IBCOVy+dPo02jKkLEKKX66tbGU0TnoWg/FPWHSuUSOUXKroNn78EtV15xTV89uk7jPX54Dy+e/4e3r1/gxtWL2L5pjWizZtsRlClfGZQysX7V4tGiEhnqj9rR2B2b18LTxw9Qt0FzzP59NRwckok+Rw36Hzb/swJlf6yC3gNHRVubL549wdhhvbURjSgFWYNqJcT/E8cuP4kmTkrURR3VOQt/koKyPMZQ4t4lD3JsBROwLgLSmYQxUcbkSojev/HnlXL1jul2+axdis9b1pnekQp6sHPNiKyL1wG2tiqYDU9Bl4Du53os/OG1wQSYQJISINFP586dY41p6A2WofysXF+DkPloOPB64PWgu6nwepD3etANm25IpJWk/zHxYEyACTCBGASkNDm0X9G3ZdReWPhjeQ8vnDMZ82dNFJEgFq/eHssgioLx0fs9xk2bj727NmPz2uVo3q6riIARGOCPE0f2i7Qzp44fRFBAAHLmyYdmrTujUfN22r7evXklxsiUOauIhkFl1ZL5uHrxLAb8PAFXLp4V6cduXr2E9K4ZtP3rGhMZGYk9OzZq6l2/jFSpUovD9badeiJDpszaqpfOn8KaZYtQq14TZMnmJg62Txzeh6MXH5klcpEpHlOr8Ec6dFHD4Ysp/rVUW+n/C/qt5D3VksKfwMAAfJ8rtXDhzsNXUKBwMdy7fQMNq5eMJrKRfCyl8OrcYwBGTZqDiIgI/OCeHv5f/HD6xktkyPgdvN69QYXvs0cTVeqrFxQUiCULZ4mINobK5QcfkCq1C7ZuWIURA7qJtGMTZyzSO67Ux8vn/6Fto6pC/NO4RXtM+3Wpdg+kMYvlTBXnkqW0YCs27NOO27ZzL0yYvjDOduauwMIfcxOVV3/SgTe9B2bhj7x8w9YwAbkSUHq0H+Kq+/5NrpzZLtMJvJ4zGWGnj5rekQp6CLW1Q56N+1n4owJfxpwCC39U6FSeEhNQCgH69hv9IRmzGDpUoQ1LX+H6GirMR8OB1wOvB919gteDPNeDsUJFpfy/xnYyASbABJROQMmH1IbYW/LwOiHrgaL9UNSfwSMno9eAkdG6oNQzdJhNpXDREiIaBpXl6/eicLES6Ni8JigSBBWKhkEHzFKZ+8ca1G/SWjzdt3sL+ndvhdr1m2LB0o3iWq0KhUQUCt1+dQdfuXE/fqxcXVz69NEbw/p2FnZSSe+aER+834vHed0LYe32I0ibzlU8nzN1NP5cMENE4qBUNlSKFi+FLfvOJQSPWduoWfgjvQc29iCGxUKaSLpS0fd5haFFqO/ASMl7qiX3Tt20V3deBMLewQGb1i3H6ME90L7rTxj3y7xobpBSeM1etBoNm7WFlPpLSo1FlY8d2oMe7RvCo4Yn/lqzU7TXV2/ezAlYNHeK2EObt+2CYiVKI0fO3AgJDhHCo5x53HHg9B3RfsKIvli3cjF++XUJmrfporc/aRwS/dA+2bJ9dyESsrOz087h9avn8Pght3iuT/ApVSSbChUtrh13+rxlaNqqk1n3xfh0RnvnzUvH4Rz8LD7VFVuH7n/60f2ySmJPxtxjSv3Fx261iBbjM1euwwSYgHkJSO93knK/jGsG8X1Py4KfuEiq6/VjE4Yj27ULSMZRbnD7yxfU2XcONsxCXYs86pxYijrLEX9U516eEBNgAkyACTABJsAE5EtAN0UhPaYITVyYABNgAkzAcgSUfEhtiJolD6+N9aRu9AkS81T0qBmtiwtnT6B9k2riGh0ADx83HfnyFxZRfeb+MgYr/vwNng1boO/QsUKAExwchD6dm4p0N30GjcbAnzVfpJg1eSSWLJol2nfvMxS+vp9QOn8Gbb8TZiwUEYc++/qgueePQhAkHTCHh4Whe7v6OH38EBo0bYPRk+ciXfoMoIPr1vUrC7ERXev0v/6ivw5Nq4sIRFTowN6zUQtkze6GzFmyG4vH7PWtQfgjQYuvAIjTG0RfZvFJtfetAyMl76mW3DvXrvgdE0f2R8kyP2L9zhPCKZTqasPfSzBz/go0btkhmqOkFF77T99Grjz5sXvbegzu3R71GrfCr4vXiroUwYd+aB+k/ZBKzHqPH95F3UpFxWv7Tt1C7rwFtOPMnjIKfy2cKYQ7U2YvFtcp3RaJLXcduYr8hYrqHffh/Tvo2KyGEP107N5PRCSyjXHAIqUMoz6vPfaBc4qU2nFpz6WIbCEhwejUYwCcnJxjjWv2zTGODtW2dxqariXuX3OPmdA9zNx2JPUa5fGYABNIWgJy2zPi877X0Ps3ad+k6KZc1Edg/9gheLVvF0pnzACX5MnVN8F4zCgiMhJXvLzwOiQUP527y8KfeDBTWhWO+KM0j7G9iUaA/jM39AeR9B99fP5gkgwMDAwU/Tk6OprN5g8fPsDf3x85cuTAt+w124DcERNgAkyACTABGRCgN6zWkGJHBqjZBCbABKycgNw+tDWHOyx5eG2s/U+fPEStHwuKZhfuvkOatJroPlJZ/sdcTJ84XDw9efWZSNUllWF9O4EiAs1YsAIuLmm116eNHyoEQSPGz0TX3oPF9dYNK+PKhTNYveUQylXwwLlTR0W0ICoHz96DW6682vbD+3XG9k1rxOE5HaIv/X02Zk4agexuubH35E0kS/b1A1Mah8Zr1eF/mDzrD9CBdcFsmr+Hu/QahJETZhmLJFHrq+3wOj73b1wHIXQIwkJszbKLDyt6fyqlxdG3WOPjk0Rd5CZ0bsm9U9p3evQdjqFjfhGz8KxcDI8e3MHuY9fhXqCwdmZe79+iQrFsIoUXpeAiUY207+mKEKVoan+s2obqtRuI9jHrSfubblQgqnf04L/o2aGRaDN1zp9o0a4bAvy/oHieNOKaFJUoZn93bl5DuyZVRcoxmsuQ0VP1fu6oG/FHd37h4eGYOXkEViz+VZv+UXfcuy+DLJIyUW17p6HbxBL3rznHNGUPM6cdJmxD3JQJMAGFEJDbnvGtM7y4Ivyw8Echiy6BZh6aNBI3Nq+Dva0t3FKlRB4XF6ROliyBvSmrWWhEBJ5+/oyHPr4ICAuDo0sa9D5+lYU/ynJjvKxl4U+8MHEltRM4dOgQatasiRkzZmD4cM0HqVKRXqPn69atQ5s2beKFI0+ePMiaNStOnNB8O8mUEhYWhoYNG2Lv3r2oUKECTp48KT7MaNu2Ldau1Xx7iQsTYAJMgAkwATUS0P3AksJUsgBIjV7mOTEBJiAXAnL70NYcXCx5eG2s/f9u3wBKWUOimsPnH8RqPuB/rbF312YMGTUFPfuPiPV6WGgoHj+8hxfP/8Pb1y9w4+pFIdqhsmbbEZQpXxlUp1B2J3Ht0n1vpHZJI6L/UBSgNp16ihQ0uoUEQSQMoghElOqL0tFQVJ8uPQeiSvW60eoe2rcTa5YvEilvKPUNRcKgiBh0IH/s8pNogiRj2SRGfbUdXhtz/37rQJij/mhWm6FDo7gOjHTXqjE+SYw1bkqfltw7q5d1x4tnTzB/6QbUqd8MX/w+o2S+dGI6McUulHKQRD2VqtbCsn/2iDrN6pTDzWuXRLQgihpEpVsbTxH9jNIOtu7YQ6TIilmP0nZR+i4qFJ0nbbr0uHT+lIhwJhVqN2jEJLx6+RytG1RCqbIVsW6HJj2cbn953AvAo1QeIfqhQikOddN70TXXDJnw+8qtmvGi9lqK5tauSy8h6Nm7c7OYB6UXW7f9qKhPok0Sb+qOa4qfE9JWbXunIQaWuH/NOaYpe5g57UjIGuM2TIAJKIuAnPYMQ+9x4/v+jYU/ylp7xlr7+tolbPpfW4QHB2ve71MkXWdn5EidCukdHeFkby+uqaWEhIfDJyQEr758wTO/LwiLiNBOrXibzqg2YgL90aOW6fI8dAhIKas51RcvC6slcODAAdSuXRvTpk3DiBFfP0AloY2np6fgsnHjRrRo0SLejMwp/Nm9ezcaNGggvklGwqQ6deoI4U/r1q3xzz//xNsmrsgEmAATYAJMQIkEdP9wl3KGswBIiZ5km5kAE5A7ATl9aGsuVpY8vDZ2DlK0iCYtO2LG/OWxmpcvkkWki4kZ7ScoKBBLFs4SaWwMFYqEkSq1C+7dvoGG1UuKg+QDp++I6j91bY6De7aLA+gadRpqu6BoEwWzaiL6nL31Gi+e/YeW9SrEOS1JmLR1wyqMGNANbTv3woTpC+Nsl9QV1HZ4nZD7V9/hCEf90R/tJ74HRrrrOCE+Ser7wNB4lto7dVMPkgCShJBXLp4VIptyFati9eaD0UxePG8a5k4bi35Dx4kf3UhjummzKFIZRfShQsLJgcMnaCOSSfUoahql5bp986p2DNorx02dJ6IN/TJuiLhOkdFOHT+IiSP6iUg+FJUo5rg3rl0SfX2rUErFxau3iyrv375G785NhdBHt/QaMBJdeg5A2nSu4vLalX9EG9cS60Vte6chhkq+fw3t7XFFKbPEeuIxmQATUD4BOmCmfUd6r2TJGcUUPRr7/o2FP5b0XtKMfXPzOpz4dRqC/T7HGpCi/+RIlVKIgRzt7eFgaws7hQhjKIUXCXuCI8LxKSgYz/z84BUYBLquW2xs7eBeyxN1ps6FnYN1RDtKmpUlz1FY+CNPv7BVSUBAn/Bnx44daNy4sRh9z549qFs3+rcZ4zLLnMKf9evXi0hDJEQi0Q+l+WLhT1we4NeZABNgAkxATQRifnjJ30ZXk3d5LkxAvgSkb8l8K5WLfK033jIlH3IZmq2lDq+Npw8hqrl2+TzGT1+Adp17R+vi3ZtXqFTCDeldMwoRjm6ZN3MCFs2dAooU0bxtFxQrURo5cuZGSHBILJHPpnXLMXpwD7Ro2xVT5/4lupEERaeuPUfG77Jou6aDbkqvQ/2euPoUu7etx+De7ZHXvZA2/Y6+eRYqWly0ocgZFEFj+rxlIrqG3IraDq9NuX/5fVb01al7aGTsgZFuT6b4xNL3i5L2zviyIuEkCSW/+y6rwRRZoaEhuHvrOj77+qBA4WIiyo5UXr14CorIrZsOMb5jx6ceiS2fPnmA/x49QCqXNGJ83dSN8ekjKeqobe80xEzJ96+59rCkWE88BhNgAkzAXARifmkwIWJHFv6Yyxvy7CfU5xMcXNIg0NcHe0b2x/MzJ8VZq6FC6yFtsmTInMIZGZ2d4ZI8uVYIZKk4OZK1JOgJDAuDV2AgXn/xh3dQEEIiIgxHLLKxgVOatGj+51pkKFAIYX6fYZ8qtTwdxVaZjQALf8yGkjtSGoGYwp/Nmzdro/scP34clStX1k7p+vXr+Pnnn9GvXz/Uq1dPe33hwoWgyDxbt26Fs7MzJOFPx44d8ddff+HevXv44YcfMHLkSNSqVUvbjv5jWb58uUgjduvWLVGnSZMm6N69uwgtvWTJEixevBhXrlxBuXLlUK1aNUyZMiWW8CcwMBCTJ08GCZbu3LmDYsWKoXPnzsJOe3t7LFiwAP/++y/mzZuH/Pnzi/HpzdDZs2cxZswYVKxYUVyjuS9duhS//fYbChQooDRXsr1MgAkwASagcgL0fxcVjvijckfz9JiATAgo+dAnIQjVOF+lHF4HBwehqFtK4bZNe87g+5JlornwyIHd6NWxMeo2aI55S9ZrX3v88C7qVioqnu87dQu58379G272lFH4a+FMtGzfHVNmLxZ1xg7rjQ1/L8HkWX+gVYf/4fWr5yJ9lz5B0Y7NazGsbyc0at4OsxauEiIeEvNQypot+85Fs4+ESds2rhZRKahfKpTmi9J97TpyFfkLaWyUU1Hb4bU57l+pD2uO+qPLICEHRrpr3Bw+sdQ9o5S901J8rHlcte2dhnyp1PvXnHuYNa9znjsTYALKI0BnaaYItmnGLPxRnt+Nsfj5/l1IZ2+PlNXrIjIiAl+83uHe7u24/PcSBHz8EGdXtjY2oB+KAmRvaysiAjna2yEF9engIKIEOdvbI5mdLext7TR1AfFbKvSInofrCI5IxEOCHvodgUgEh4UjICwMQWFh8KefkFAEhIcjNCICoRHhCI+IFO1jRvPRNwG7ZMmQr6YnynTpjbS58sDOwQFh79/g0Z/zkX/MVNjY2MY5b66gXAIs/FGu79hyEwnoCn/c3NzQtm1b0eOFCxdQunTpaL0fOXIE1atXF2Kcnj17al/r3bu3uObj4wMXFxch/Hny5Il4nfog0c7KlSvh5+eHnTt3itRdVKgPEgZlzJgRrVq1EgKf06dPC9HOihUrsGHDBvE6jUttqlatioEDB0YT/tA3jipVqoRz586J9F+FChUCfTuZ2rRs2VL0IUUNWrRoEfr06YOIiAikSZNG2DNs2DDMnDlT2ENRjkg8FBQUhOTJNWHduTABJsAEmAATYAJMgAkwAWskoNRDn4T6So3zVcrh9a3rl9G0dlnhuhtP/eDo6BTNjVJUn5/HzUC3Ppp0M1QodQ2lsPGo4Ym/1uzUXj968F/07NBIPJ8650+0aNdNPKYIPhTJZ9vBiyhctAQO7d2BPl2awbNhC/z2V/Q00pNHD8TfyxZi3C/z0L7rT9qIPyQSOn7lPyRLpvl70f+LH7q1rYcrF85g1KQ56NxjAAL8v6B4njTi9bsvgwxG10joWjVHO7UdXpvz/qW+qlSpIg5PrK3QZy6mCn4kZub0SVL7QSl7Z1Jz4fEAte2dhnyq1PvXnHsYr3cmwASYgFIIWFukXqX4RW523t29FXbLFiJdBQ+k7dQTdlGRHcOCg/DxySO8uXEFj48dxOvrVxDy5YvJ5pPARxL66HZGAjPdSEOSgCfi/7/o+q0IRPExyNbeHq553ZG7Sg1kL10eru4FRaQfUcLD4bv1H/jt3ozHyZxQ+c+1sLFl4U98uCq1Dgt/lOo5tttkApLwx93dHQ8ePND2R9F9KHKObjFW+LNt2zZtyrAbN27g+++/F8Kc27dv4+TJkyKaEEUOonoODg5CkEPinU2bNoHqFy1aVCvaOXjwIGrUqBEr1RcJirp06YIRI0Zg2rRpwlzdfigdSpEiRZAhQwY0a9ZMRPWRbKG6kj3BwcFwdHTUioVMBssdMAEmwASYABNgAkyACTABBRNQ6qFPQpGrcb5KObxev/ovjBveR280HfJnl1Z1cPr4Ify99TDK/lhF62IpCg9d6Ni9H9KmS49L50+JulKhNFuDRkxCipSpUDJfOnH51nN/IdyZO20sFs+bhpETZqFLr0HRlk6TmqVx++ZVbPz3NIr/UDaamKdU2YqoXb+pSIdDNlAKHRIPzfn9byHyIRFQ64aVQfXW7TiW0CWZqO3Udnitxvs3URdAEnSuZJ8oZe9MAjfyEDEIqG3vNORgJd+/vGiZABNgAkyACTCB2ATu79sF/3m/wNXJCTZOznAuXxkpqtRE8oJFYWNvr20QGuCPD48fwuvBXXg/vI+PTx/D5/lTfHn3BhFhYSaLc8zhGxs7OzinTYfUWbMjXc7cSJ83PzK4F0AG90JwSpdeG70KkQ5cQtwAACAASURBVJEIe/MS/qePw//IXoS9eyOGv5HGFfWWreeIP+Zwhoz7YOGPjJ3DpiUuAUn4Q6Pkzp1bpPmaMWMGSAh06dIlpEqVSmuAMcIfSrF1//79aMZLkYACAgJEqi0ah9Jw1a5dW1tv37596N+/Pyh92E8//RSn8Kddu3YiVRjZSqnCpEJpx0joM2vWLAwdOlSIjK5du4ZPnz6J6ER9+/bFoEGD8Ouvv+Lt27dC9ER11qxZA+qTCxNgAkyACTABJRGgb/hY4zfTleQjtpUJKI2AtR36qHG+Sjm8llJwkXhnzJRfY90qJfKmFZF1Lt33RmoXTSQdKn6ffdGxWQ0h0JFKzjzuGDd1nojs88s4TXSgg2fv4YO3F1o3qCREPCTmodKtjSdOHj0gxDkk0pFKWGgoCmXXRB26/t9nODk5i8dXLp4VbcgWqXyXORv6DBqF5m26wN7BQVxeu/IPTBzRDz36DsfQMb/I8tZX2+G1Gu9fWS4cI4xSsk+Usnca4Q6uaiYCats7DWFR8v1rJldzN0yACTABJsAEVEXg09MnuNK9FfKl/nreSxO0z5AJzpWqwfH7UnDI5gY7+ns7RiQcSg0WGhgAnxfPQP18ev4fvrx9gy/e7xH8+TNCA/0RGhCAsKAgUAShsJAQRISFipRiVAxF8hExgeifjS1sKEVYsuSwT54cdskd4eDkDAdnZyRPmQrO6dIjRYZMSOuWE2ndciNtztxwTJ0GFOEnWqG0YcFBCH39EsEP7iLg5CHxm6L9SMU/LBTvynvAY8QkGlhVPubJQOgO6IyEotiy8IdXhNUSkIQ/FN2HHlParUaNGmHXrl3o0KEDVq9erWVjSPjTrVs3LF++PFqqr3z58oFEPLqFUnitWrUKz549Eym7KNLPt/7IHDduXJzCHxL7UIqw0NBQkNhIKlevXkXJkiXFOCTumTt3LoYMGSLq0s3/7t07cb18+fLYuHEj7ty5gwkTJsDLywuurq5Wux544kyACTABJqA8AhTSnN7UUpQ7Fv8oz39sMROQKwFrO/RR43yt4fA6NDQEd29dF9F3ChQuBteokOV0X7168RSUGtotV16z3WZBQYF4eO823r5+ifQZMqFY8VJawY/ZBkmCjtR2eK3G+zcJlkGiDqFkn1jD3pmozldx52rbO7/1mSx9Rko/dHCSFEUue4Zc7EgK5jwGE2ACphPgNFumM+QekoZARHgYdjeujuIOdoYHtLWFw3dZ4FS2IpxKlIF9psywcU4Bm+SOoCg7cQplSHiDSIh/kZGalGGREQjy8xXXYhYHJyfYOSRDspSphNjIBpGaKDzxEeSEhyMyNAQRgYGI8PmIoLs3EXDuJELu3kSkjtAn5phPfH2RceBoFGrQNGnA8yhJSkD3fRwLf5IUPQ8mJwKS8IfSZFG6LCokfqH0WO/fvxeCHkqlRcWQ8KdixYo4ffp0NOEP1X/8+HG0qVKqL0qzRWm1evbsCUrTRaKbEiVKxEKSLl060M/69evRpk0bGEr1Vb16dWEXRe3JlCmTth+K3EPCpdmzZwvBz927d0VaL4oANGzYMPGH6+jRo5E+fXq0b99eRAyiVF8nTpyQk3vYFibABJgAE2ACcRKQhD8k+iHxDxcmwASYgDkI0IeY9Ecz7S1JdehjDrsT2ocaD3r48Dqhq0H97dR2eK3G+1fpq1DJPuG9U+mrL/HsV9veaYiUJe5fS4ypb/5ysSPxVjH3zASYgDkJ8J5hTprcV2IT2N69Nb73fgu7GBF9DI5LAhwbG9jYO8Ahaw4ky18IjvkLwSGPO+xdM8GGIt6SICgxS0QEIsNCEfHFD6FPH4sIPkF3biLsxVOEC0GRUBnF24Jzb9+h+uqtIj0YF/URYOGP+nzKM0oAAX3CH+pGEvnQ41u3bqFw4cK4fPkySpUqhVGjRmHq1KliNBLcZM6cWTz28fGBi4sLpJRelD6LIv9QITERRROiKDzUD0XbGTx4MKZMmSIEOFJZsmQJJk2ahBUrVqBGjRpxCn8oXddvv/2Gf/75B61bt9b20717dyxbtkzMgw5EqZBdZIefn5+IjFClShU0b94cW7ZsEa/PmTNH2MSFCTABJsAEmIDSCLD4R2keY3uZABOQGwE1fmjLh9dyW2XysUdth9dqvH/ls1oSZomSfcJ7Z8J8bg2t1LZ3GvKZJe5fS4ypb/5yscMa7ieeIxNQAwHeM9TgReuZw7GZE5Hm2H6kc3Q0bdIkCKIIPQ7JhPhH/La31/xOnhw2yZKL3yQKsk2RCja2FMsHsE/lAlBEH0Qi7LMPZflCZFAQIoKDgdAQRIYEIzI4WDyPDA/TXBM/oYgMCzNK4GNogie/BKDVrmOwT24iA9MIcutEIsDCn0QCy90qi4Ah4Q/NggQ+FAnI3d0dlDrL1tYWTk5OYoIkkKEIPvPmzRPps6jEFP5QOxL1pEmTBjNnzhRRgXbu3IkGDRrA19dX9EtRhfr374+6deuK9GK///67uH7t2jUxVlwRf/777z/kzp1biIoWLlyInDlzCrEPRS+qUKECTp06pXXI0KFDhbiHSmBgoIjwQ0KjHj16iGuU7qtgwYLKciBbywSYABNgAkwAEIJWSeialCHZGT4TYAJMQC0E1PihLR9eq2V1mn8eaju8VuP9a36vJ22PSvYJ751Ju1aUNJra9k5D7C1x/1piTH3zl4sdSrovyNaADzfg9WizSOkS8Omh0sxne2MQcE6bDynSFQBsksE1X0vm8w0CatozbKLSK1GKJi7qJPDk+GE8nTQceV1c1DnBOGYVHhmJB/mLovb0+VY5f2uYNAt/rMHLPMc4CRw6dAg1a9bEjBkzMHz48Gj1Q0JCQGm8Ll68iN69ewtRjiTEkSq2bNlSpORavHixEPOkTp0a+fPnR5YsWYRQiEQ4UqE6lOJLKjdv3hRRekhwI5Vy5cph9erV2khBGzZsEHXITkrrRW88qN+2bdti7dq1ohm91q5dOyEikgrNad26dXB1ddVeo/Qn1apVQ+3atbFv3z5x/dGjR2IsEg/FTE0WJzyuwASYABNgAkxARgQk8Q8Lf2TkFDaFCTABxRBQ04e2EnQ+vFbM8ktyQ9V2eK3G+zfJF4WZB1SyT0zdO69dPo+De7YjS7bsaNelj9FkH9y9hR2b1yJfgcJo3KJ9vNr7fPqAretX4e7t67h+9SK83r1BvvyFUKxEGfToOwwZv8sSr34sXSkwwB8L50xBckdH9B823tLmxBpfbXunIcCWuH8tMaa++cvFDtktfgMGeT9YC6/HO+GcJicyZC8vajm7ZFeK+WynAQIBvi8Q4PscsLGD17MTyJCnAVzd4/f/kbVBVdOewcIf9a/eQJ9PONC8FkqkTqX+yeqZoVdgIJz6DEWhBs2scv7WMGkW/liDl3mOiUKABEGUxoui66RMmfKbY7x58wb0Q5F0pGhBug3Cw8OF+Obly5fIli2bEA0lpAQHB+P+/fv4+PGj6ENKP5aQvrgNE2ACTIAJMAGlEiDxj4eHh1LNZ7uZABNgAhYjoKYPbSWIph5eW8wZPHCiE1Db4bUa799EXwSJPICSfWLq3jltwjCsWPwrmrbqhOnzlhlNevG8aZg7bSx6DRiJwSMni/ab1i7D3ds30Kp9d+QvVDRanwf+3YafB3SF/xc/vWOlSJkKf289jCLFShpti7ENLpw9gX27tqBcBQ/UqtfE2Oa4fP402jSqgqLFS2HLvnNGt0/sBmrbOw3xssT9a4kx9c1fLnYk9lo2tX/vh+vh9WgbnF3ckCHHjyz2MRWozNt7Pz8Nr+enkSFvE7jmay1za5PWPDXtGSz8Sdq1Y6nRdnVuhmKfP4k0W9ZWLr1/j0rLNiFDfs76ombf09kIFZtIjl+mZj/z3JgAE2ACTIAJMAEmwASYABNgAkyACRgkoKYPbaVJmnp4zctFvQTUdnitxvtX6atPyT4xde9sWa8CKOrPhOkL0bZzL6NdSSIfat+iXTcU/6GsaF+9rDtePHuCf4/fEJF8pDJr8kgsWTRLPG3TqSdatO2KPO4FERkRARLhjBzYHR+834t+Nuw+BelQz2ij4tlgwoi+WLdyMSbN/B2tO/aIZ6uv1Uj4s3XDKvxQtoIQTsmtqG3vNMRXyfev3NaMGu3xfrAO/h9uIkP2siz4UaODvzGnZ7c2IUX6onB1b2dlMzc8XTpgpj2TvoA3frz8ItUZ4ygW/hhDS7l1j8+ciEynDsPZ3l65k0iA5ZTAbv/LV+h48DwcXdIkoAduojQCLPxRmsfYXibABJgAE2ACTIAJMAEmwASYABNINALSt2SsJYqYGg+5TD28TrTFxR1bnIDaDq/VeP9afJGYaICSfWLK3hkSEowiOVIIehSxhiLXmFoojVeZgplEN3dfBcPOzk48pkg/fbu1EI9XbTqA8pWqxRpq7YrfMXFkf3H91LXniZ7yq0G1Erh/5ya2HriQJBGGTGVrbHu17Z2G5q/k+9dYn3J94wh4P/wH/t7X4VZEs/dwsT4CGvFPMbi6t7W+yat8xiz8UbmDo6Z3b+8OvJszGblSp7aOCUfNMjwyEueTO6PVul2wsbW1qrlb62RZ+GOtnud5MwEmwASYABNgAkyACTABJsAEmEAsAtZ26KPG+ZpyeM23hLoJqO3wWo33r9JXoJJ9YsreeevGFTStVUa47+azL0ie3BFnThzGxjVL0aBZW6RK7YIt/6zE1cvnEB4WhpqejTFg+AQ4OTmLNu/evML8WRORKXNW9B82Hn/89ouI3HP6+CHxumfDFuj4v/7Ilt0NtSsWFum9xk+bj3Zd+uhdMhTtp0a5/KLewbP34JYrr6gXGBiAlX/+Jmwjm1OlckG5ih4YMmqqGFsqq5bMx9WLZzHg5wm4cvEsjhzYjZtXLyG9awY0b9cV7Tr3FlUP7d2B3dvWY8/OTeJ5tVr1Ub12AxG1iAqJgU4fP4gzJ4/g8oXTyJ03P2p5NhZMsmTNoR1vyphBCAzwx8iJs5EyVWqj2EmdvH/7GquWLMCNqxfw7L/HKF2+EmrXaxot9dinj96YOKIfcucrgKatOmLrhtXYsXkt5i/dgMJFSxi8/dS2dxqaqJLvX6XvnXK23/vhJng92oyCFYfL2Uy2LQkIPLu1GRncW8M5/fdJMBoPkVQEWPiTVKQtO87Hp49xpF0jlMmU0bKGJPHoX0JDEdSyE0p26J7EI/NwliLAwh9LkedxmQATYAJMgAkwASbABBKNgLVF7Eg0kNwxE7BCAtZ26KPG+ZpyeG2OJf/g3m3s370Fd29dw9VL5xAUFCjSzZSr4IHOPQeKA3EllAd3b4kD4XwFCqNxi/ZKMDlOG9V2eK3G+zdOJ8q8gpJ9YsreueHvJRg7rLeI9EMRf6hMGjUAa5YvwneZs+Htm5exPPfT4DFC/ENl3+4t6N+9FWrXb4oFSzeicomcsdpsP3gJZ08exoxJP4txNu89a1QKL9rTenduKlKHUcmZxx1PHz8Qj1OkTIUDp+8gQ6bM4nmtCoXEaySGuX3zaizbV27cjx8rV8eYob2EuEm3SIIkiYn0WnrXjCL9mDT23uM3YGdvD693b1Dh++zChssPPsDW1tYodtQfiY+IPwmdqB/6LZWJMxaJdGhUThzZh+5t64u507hSvauPPol2hora9k5D81Ty/SvzrVHR5nnfXw2E+cA1RwVFz4ONN51AgO8LeL28BLdyU0zvjHtgAkwgSQmEh4RgS7OaKOegiSBpLeWBjy9KLl2PdLnzWcuUrX6eLPyx+iXAAJgAE2ACTIAJMAEmoC4C/IGtuvzJs2ECSU3A2vYQNc7XlMNrU9ZbaGgIliychd9mjDfYTf5CRbF221GkdkljylDxajtz0gghOho2dpo2qka8GkZVWjxvGuZOG4teA0Zi8MjJxjSVbV21HV6r8f6V7eKJp2FK9okpe+fowT2wad1ydOk5UEStodKkZmmtaGbkhFlo3+0n2MBGiGW2bliFJi07Ysb85aLurMkjsWTRLAwfNx3d+wwV13p1bCwi7fyxapuIokPFs3IxPHpwB2On/oYO3frG0yuAr+8nNK1VVoh++g0dhz4DRwnRjbfXO3GdhEm0z9F+R3VL588g+ibR0oQZC0Ukn8++Pmju+aMQBE2ftwxNW3USdVb+NQ+/jBuCLr0GgeZJhSIYVSrhJh5TNJ0q1euKffjcqaPo2LymuH79iS+cnFPg2KE96NG+ISpXq4Ol63Ybze7c6WPo2KyGEO7M/WMNPGp4IiI8HEv/mIM5U0eL/u69DhGCokVzp2DeTI3YqlzFqujeZwiyZndDnnwFv8lSbXunockq+f6N983AFY0i4P1wA7webeVoP0ZRU3flZ7c2IkO+tnB25ag/6vY0z06NBI5O+Bk5r/8fe1cBFtX2fZcdGNjdgt2dYHc3dovdz4cB2N36s7vjKXYDdne3mKDYiiLC/7/PeMcBQYZh4t47e3/f+x7ce84++6x9znW4Z83aZxArhnWUvAoB4OX7Gi33n0K8RInUmFKeUzgIMPGHlwUjwAgwAowAI8AIMAKMgKoQILWfSpUqwdHREZ6enqqaG0+GEWAETI+AtR36qHG+0Tm8NnSFBQZ+F4e5F8+eFC6GuU6GQ9VayJrNDh8/vscej01w/7evuNdzwHD0/8fd0KH06icdOtNB8MV7b6OkiiENsHntUly+cEaUrCHFIjWY2g6v1bh/lb7OlJyT6Dw7JYUcIp7UbdRSlNQqlC2JSOesxRtQq15TbWq3rF8OlwFdhQoNqdGQtaxfUTw/V209JNTRQkJCUNQuuVCkOXbpiSjD5fP4gSjfReZ14WGoUlmRrRuJmERxUDy6JhF3pHu65BzdMmHUZ2ifDti+eQ1mLFiLOg1bCDcDerTG7u0bMXPhOtRu0FxcO+51EKuWzEHVmvXRvM3v0gpUaqtU3rSiza1n3wT5aM7U0eI/KnHWe9DIKGH3+dNHQTAinCbPXo6Gzdtqp0YY5koXJxReRDAiohEpGW3ZdxqxYun3rXe1PTsjWi9K3r+R7QG+bxgCb+6uBn68Y7Ufw+BTZS9W/VFlWnlSVoLA7d3b8WXuJKRKkMAqZhwYHAyvL9/Qad9xxIwV2yrmbK2TpM+wdB7i6uoKJv5Y6yrgeTMCjAAjwAgwAowAI6BiBIj4Qx94ifhDBCA2RoARYAT0RcDaDn3UON/oHF7ru07Cths7YoA45M2UJTtWbt6PjJmz/eGqV6emOLhnu2hz+IymvIypjFQySC2DVCoWrNpuqmEU51dth9dq3L+KW1RhAlZyTgx9duoq5Ow/cQPZcuQSpMHmdcqF+7yT1MQkEmTQjx/Im0lzAHP+zhuhiEbKPFVK2YPKY526/kLcu3b5PJrULB3qmj7rhcgxRCIio/JgBYuUCNVNIv4QQWfs1AVCeYgUiHSJSVIHIngSMWjZhr0o76hR7pHKkoUlCdG9136v8PD+Hbx85oNnTx9j05qlQl2oVFkHrP7vsOjfuVVtHPM8INR+SPUnKtgRCYnISETypBJppOqjax2a1xC/0r859O+SRKZa7+GNYqX0L1uktmdnROvGEvvXEmOGN3+5xKHPnjZnm1t7W7DajzkBV8hYt45PRp5aGxUSrWnCpPdtZPy+zTT4slfTIPD67i0c79wcxVJplB3Vbh++f4dvqYqoOmqC2qdq9fPT/RzHxB+rXw7qA4C+0RLWYsSIYZSJBgcH49u3b4gbNy5ix7Y8Q/Ljx4+4f/8+3rx5g4wZMyJnzpwitrAWVUyofUSYSb6MhalREsNOGAFGgBFgBBiBMAhIxB9W/eGlwQgwAlFFgF5i0h/N9Pygb8uo3dR40GPo4bWhuZbKtFD///afQf5CxcJ15XlwN7q3bSBKxxy99Fjbhg55Vy+dKw576bC7aMmyaNqqo/hP10ixgkp3jZ48X5SWOXPSG/du30DeAoXR2XkQylasgp8/f4pD4Lu3r+POzWtirKIlysB98jwktU0uVDTo0PrsqaM44X0Q9+7cRLGS5VC9dkPUa9xKlJ0hI8Wg2VPchcoGqVCQrVw8G5fOnUK/f9xw8dwpUYLn2qXzSJEyFZq27oTWHZxDxUtjkdKRaHflAhInTiIOtZ3ad0eqNOm0bc+fOY41S+ehep1GSJ8xC0gN5OjhffA8d1+oYRjT1HZ4rcb9a8x8W8KXknNi6LNTt9TUhbv+gnyydvl8oXKmW/pLyodUwmvesi2oVrshbt+4ivpViiJrDnscOHFTNNu3ayv6dmkhlIIkhZ5Tx46gfbPqQq1m28FzEaaX3t3RM5Wel6Q+dPn8aaHKo0u20e08dawLFs2dLNR26HknkTTnr/hPKPZIRs/XPBniiV+JjESkpNe+L1GuUCZBvNFVV6Pn+UT3IVoVuLDBdu/zDwYNHweKtZh9CqHYc+LqM6RKnTZK2EmkocjW+o2nX/HimQ+qlcltEPlUbc/OiPCyxP61xJjhzV8ucUS2ls15/+vbm3h9ZxWy5G9mzmF5LAUgIMp95WqPhMnzKiBa04TIzwzT4MpeTYvA908fsa5GGVRJm8a0A8nEu8/nz8g2aR4yhCG9yyQ8DsOICDDxx4hgsit5IbBmzRq0bftb1lY3utKlS2PEiBGoU6eO3kG/ePECnz59Qq5cGinhkydPoly5cli4cCG6deumtx9jNwwKCsK4cePg5qapyy1Z6tSpMXr0aHTv3l17bebMmRgwYMAfIRQsWBCEiYuLC7Jk0dQdJzt06BCqVauGSZMmYejQoaH6Sffo4rp169CqVStjT439MQKMACPACDACRkFAKvdFzsIjwBplEHbCCDACjIAKEFDjS1tDD68NTWcXp7o4emQfuvUeisEjxuvthv59mjZuuDhwJiOSzqdPH8QBMJl0CE0/S4fL9DMdjj9+cFccNEtt6fqZm69AyhakkqFr1I5UNOgwnkhBHlvWitt0aE0H45KPFm27YsyU/4l70qF7jbqNhYoEmVTKhw7db1y79Mc8V2zaL8hHZFTOZkjvDgIXaSz/N37i55z2ebF2+xEkS55S/E4YLJwzSZQTo8NysgKFi2PrvtN6Y6lvQ7UdXqtx/+qbS7m2U3JODH12Sgo5FSpVx9L1e0RqhvRuL541Yct86Zbw8jz/ABkyZsHmdctAxMZmTp0wbvoi0Z8Ud8jvv25T0LGH5p0WKaYRKScseTLsWqBxaXx69p289hwrFs7EjImjMHTURHTpOThUcypJVrZABvEclFRwyuRPD3peHb/sg9Rp02vb3797E7UrFgw1vkT8dKxaG4vW7BBt37z2FQQb8knEpQqVayB7ztzIntMebv/0xp4dmzF36WZBdnz04A5qlMsXymdUsJPUhohEZJcrX7jbIn78BOLZTETM/t2d0Kh5O0yavSxKW0htz86IJm+J/WuJMcObv1ziiNLCNHFjDfFnBbLk15T1Y2MEJASeXNuAVLnaIWGKAlYLCj8zrDb1ip54SEgwtnd1QhF/X8Q0kliEnAG58PEz6u05hthxNcR1NvUiwMQf9ebW6mcmEX+InFOsmOZblkSSuX37No4cOSJ+37NnD2rVqqUXVk2bNsXWrVvFN3BI4UYi/ixYsCAUuUYvZ0ZsJG1iIu507doViRMnxq1btzB16lRBVFq0aJG4TjZjxgwMHDhQkHny5Mkjrr19+xZnz57F3bt3Rd/du3ejQoUK4t6BAwdQo0YNTJgwAcOGDdNGvXfvXtSuXVv8vmnTJjRrxt92MGJK2RUjwAgwAoyACRCQ6ttSuS82RoARYAQYgfARUONLW0MPrw1ZI1TGpVzBjKLr9oPnhfqOviYpYlDpr/+t3Ab73PnE3550SD3RXfMljEv334nDa11VoeKlysNt4lzY58kvVH3qVS4i2kplZnRVKc7e8oVtshTi/qG9HujZsQly5S2AUeNno2iJsuI6ld2ZNdlNEG827T4hrkmH7tJBuW4pHzp0d5s0V5QR+/jhPZrWLiuISBNnLUXjFu3xMygIXVrXxQnvQ0JFaPiY6UieIhVePPdBy7oVRZkbuta+a18xVtvGVYR6EVmbTr1Qu0EzZMiUBenSZ9IXSr3bqe3wWo37V+9kyrShknNi6LNTUsjpM3gU6D8yiZBy6PQdZM6aQ5utZz6PULmknXiu0fONbOQQZ2xcvVgQD4mASNayfkWhlrN2uydKlNa8r5IUf+jnfcevCzJNWHv/zh+VSuQUpJthrpPRyXkgJrgNwfIFM7S/6/b5b+NKDOvXWRAhSXGHnk+OxbKHW05MIhQ1aNoaU+auFG7mTB0t/uv/jzuodBkZESypBJdUOkwaj8hERCoik0hPu7ZtwEDnNqjTsAVmLNCQMqOCXZGcycRcdUuPSePt3r5RqMgRwYiwon9Xlv1vOlwnzvlDoS2y7aS2Z2dE87XE/rXEmOHNXy5xRLYWzXn/zf0tQOBLpMyk+bzExghICLzxOQHETYuUds2tFhQ1PTOkyhb8pUHrWM7Xt6xD7FULkNDIyrJyQ+9nSAhOIRacth2SW2gcjwkQYOKPCUBll/JAQCL+zJ07F7169QoVlIeHBxo2bChIP0T+0cfkSPyhl7jJkiUT4T979gxJkiTRTuXGjRvInz8/SM3nypUr4rpE/Fm/fj1atmwZatpLliwRBCFSCnry5Anix48fLvFHwo46R4U4pQ/G3IYRYAQYAUaAEWAEGAFGgBFgBCyHgJpe2kooGnp4bUgWtm9ajaF9O0a5dMqTR/eFIgTZLs/LgsQjGZF/cqfXlHDeeeSSIOpIh8v08+Y9J0EKDpJJ6hTeFx8JsoykSkGEosNn7mrbLZ0/TRBs6HCaSD6SSYQgXcUK6dB91dZDKF3OUZQHa9e0mugiEYyk/tIhNx1a0+H1kvlTMXn0MIHJ3mPXEFfnG4bLF87EBNfB4nCfDvmJJJQnY3zhilQ9SN3DlKa2w2s17l9T5t8cvpWckz2nHuPtlxCUKpA5SlBJzyBSvKHnyFv/1yidL90f/yymTwAAIABJREFU5a/I6f5d/6FPl+aixBeV+iIjFR16blH5LlIUi4i8SM/GmhXyC6IhPQtXbj4gSIWSXb9yAT07NBHkHSImkn8qFzhv+lhBbixdvhJImYzUz8hevniKNo2qCHKMVNZLeh7Wrt8MMxetD4XDmOH9RQmxUeNnCZIimaT4RuTNKjXqCRW1glkTi3tb9p5CwV+lFYg8+W+/zji0b0co0hM9D+m5KJEho4qdRBJynzQPrdr/Vv8+sHsbenduJghM9O9AQptEaF6nnFBVo39DChUtGaUc07MzeaIYqF06a5T6Ka2xJfavJcYMLy9yiUNOa4aJP3LKhrxi0RB/0iGlnfV+MVpNzwwm/shrf5k6Gv+H93C5a0vYJU1q6qEs6v9D4Hc8ypkP9Wdq1DTZ1I0AE3/UnV+rnt3fiD8fPnyAra0tsmfPjtWrV4uSWA0aNICzs7MWs48fPwpyTM6cOeHv74+dO3cKBR1SwOnXrx+SJk0qSn1NmTJF3CcSDKnnVKxYEdOmTUPatGm1vkgdiMag/ydIkED0Gzt2LPLm1dR+vXnzplDiGTx4ME6cOIEdO3bAz88P5cuXF77Sp/8tJ6yb1NevXwuiDs2DlIzixIkTKufk8+XLlyCiD9nfiD90n0qjEW5EAurcufMfxJ8tW7Zo1X28vb3FXNkYAUaAEWAEGAFGgBFgBBgBRkAdCKjppa2UEXMSf0hFgtQkmrbqiPEzFuu9KOZOG4PZU9zFIblUHka3s33a2OJXSRWic6vaOOZ5QChCELlGssDA78if2Ub8KqkDkdIEkXFIfYdUeHSNvsnq8/gBnjx6gFcvnuLB/TtCCYOs31A39Bo4AkE/fiBvJg2xiEqEJUlqK0rukAoQHSzTAbOuESGIiEGkOEHlZEgtgw7eO3bvD4cqodV26dB7zbJ5WrwkxSKhanThIZIm1XzJxVTGxB9TIct+JQSU/Ey9+/Q9th17hMZVCuqdUCLPOBTNJtqfuPIUqdKkw3Gvg+jUsla4z7epY11EecMhIyega68hojxhUbvkov91ny+CKKhLfqRSWe269EGxUuVEm60bVuDf/l208ZVzqIpUqdPi1o0rQgGNjEg/0/+3RpBdyO7duYk6Dpo50T3q4/vyhfBFKjxtO/fGyHEzxf3pE0YKFTTdEmPSYI2qlRBlDkkZTSJPSs9m+r1lu26ijFbV0rkEmYhKFtas1wTPfB6DiDhSuUMi44yaMFuUAWtSszSuXT6PDTuOomjJslHCjuKiWClmsu59/kGadOlx7tQx7N2pIVVt2HkMRUuUge6/FVcffwpFHtUn2eeu+yCZTQzUYuKPPnBFqY1cnhlyiSNK4Jm4MRN/TAywgt0z8QdQ0zODiT8K3owGhP798yesq1YSldOlQwwD+iuly9NPn5DUeRDyNw4tBqGU+DnOqCPg5eUlOsUIYf2yqKPHPWSLwN+IP8uXL0enTp0EiYdKVRGJJ2PGjPDx8RFlvMQfxBs2oFWrVpg0aRI+f/4M6kOqOr179xbXyYjAI5mTkxNOnz6Nhw8fgspunTp1Styi0ll169YV/jt06AAiFJEvIhFdvnwZhQoV0pYNo/ZUbqt9+/bYvn27GK9EiRKiFFdEliZNGkESItIOKfYUL15ckIvCs8iIP4cOHRJlwHr27Il58+aFIv5kyZIFNEcyiofiYmMEGAFGgBFgBBgBRoARYAQYAfUgoKaXtlJWzEn8kZR4uvUeisEjxke4MOjAd8v65eJvz87Og1C9bB5xMLxm2xGULBP6yxW6ZbWuPPyAePEToJh9ClHO5czNV0iWPKV2nOtXL6Jx9ZLIaZ8Xe45eFddHu/QT5BoqB+bUoYe2LRGCpo8fIUg54dmSdbtQsXJN3L5xFfWrFEXWHPY4cOKmaCqV8pFUMaT+usocp66/wNMnj4SqRGQ2yGUsuvcdBqnMDsVJ8ZramPhjaoTZv5KfqfeeEfHnMRpVLqB3IqUyhFQC8Oilx6IfEXuI4DNg2Gg493cJ5UsiCq7aclAo8Fw8dwot61UIVWqQOkiqY/TzknW7UbFyDa0fKmE1YnAP8UzUNVIZcxk9TSjvhDWpTJfudSIckvJY3Ua/D0QkIs86Dy9QWUXJdAmRVx59RIIECcUtUjcjlTMyeqbRsy28sYg02dl5IDq2qCWe/UTMHDdtoVbx7PKD94KoFBXsaEwi9LgP64PN65aFmjKVWXTu/6/4t4FMIlmSohIpK0XVth25hkYVssIuo21UuyqqvZL3r6KAVkiwTPxRSKIsECYTfwA6YKZnpqOjI1xdXS2QBeMNycQf42GpBE/BP39icfXSqJrYBnF+qUAqIe6oxnj1/Xs4rt+DRGl+i1VE1Qe3VyYCVkf8+fLlizZT9LONjeabcdL/lZlGjlpCQCL+1KlTRyjnaP4IDhTknL1794rfd+3aBbrfsWNHrFixAmfOnEHJkhqJ2/r16wuVHyIDZcqUCRGV+iJCz9WrV0XJraCgIEGcoQ87tKZIgYfUeIjAQ8o7kgrQpUuXULRoUVSoUAFHjx7VEn9IvYd8EZnn27dvqFq1qlAAIl8JE2peJIQ1mk/16tUFkUgyIiSRGg+RgfLkyaO9Hhnx586dO8idO7eYw4EDB7TEH3t7e9y9+1sWnkqHUQkxNkaAEWAEGAFGgBFgBBgBRkDNCEjfkqGXmNZgajzkMifxZ/yoQVixaBaaOXXCuOkRy2gPH9hNHMxWrVkfc5Zs0h723n4RqC07I603qRwWHYrT4fijB3dQo1y+UEQcqe3G1YsxcogzmrfpgrFTF4jLkirF1n2nheIE2cmjh9GhuebgnErUlChTAZmz5kC27HYoVyiTOEA/ee05UqZKI+KkeHXnJJXyOX7ZB6nT/lanlcqKSYf+u7ZtwEDnNuKw+W9EqLwFCoP6uA3rjXUrFghlIjoIN7Ux8cfUCLN/pT9T+8zwQl+nChZPJJUB9PV9gdixYgsVIelQTgrsx49AoV72+OF9JEuWAtntcsE2WYq/xv3xw3vcvX0dH96/Q/ac9sicJYcoBRZdI2InlfhKmzaD1h8RLO/euo6UqdLCPnc+xP6l1k1EnYf37iBTlmyi5JexjJSXiNwTO3YcgUX6DFEr1xZZHLPXHcOcAer/XKT0/RtZHvl+1BBg4k/U8LKm1kz8UVe2mfijrnzqMxvvKaOR0vsAEsfVlNdWm4WQcm+M2GiyZT/wS/RCbXPk+USMgGqJP0Sa8PXz085cl/AT2YIgElCiX4QgImWwKQcBifgTXsREunFxcUGTJk3EbU9PT1SuXBlDhgzB5MmTRemulClTCkWgffv2iTYREX+GDRuGCRMmaIeh30kliMp3kVE5r3r16onyXbqWK1cuQaYhshARjois4+bmFooVTTGSb/KlS+AJO6eAgABBNqLyW8ePHxdkIcmIZU1+ySIj/jx58gRZs2ZFmzZtRAk0Iv8QBmREYGrWrJmYGxGBzp8/L9SJ2BgBRoARYAQYAUaAEWAEGAG1ImBthz5qnK85iT+S4g+Vbjl+5SlixYr1x9a4cOYEWjVwENc37zmJLNlyoGSeNOL3W8++hTp4psPuSiVyClUeiQwjkWnCK90lEYqIdEREnYCAryiULYnwfe3JZ8SLF18cSNdxKCRUJqbOW4X6TTSqrmRHj+xDF6e6goQjqXUQkYgIRaSE0aJtV7x47iPKd9EcSdVH1yRliwZNW2PK3JWCxENkHiIcEfFI13xfPse2TauEYhH5JatXuYg4rN555BJy5dVfZcTQ5w8TfwxFjvvpi4DSn6nTN15G0byZkSF1Un2nzO1UjgA9N89ce8LEH5Xnmaf3JwJM/OFVERECTPxR19pg4o+68qnPbPzu3MSDfp2QIQLhBX18yLlNQFAQ7uXIg7ozFso5TI7NRAiohvgjEXuI7BMVko8+uKb5Rf5hEpA+aFm2jUT8mT17NpydnbXBxIwZ849vUZIkORFeSBHoxYsXWLlyJTp37oz169ejZUuNzG9ExB8qiUWlsSQjkg293Ll+/ToeP34synxNnToVgwYNCgVI48aNsW3bNvj6+uL+/fuC+BPW15gxYzBq1CjhK1++fHoD+ubNG1EqjEp/kd2+fRtENIqM+ENKSLVr18bcuXPRq1cvLfGH1H2IBETrvkGDBkIJidSEVq1apXdM3JARYAQYAUaAEbA0AhJJ1sHBQUgQszECjAAjEBkCSj+0jWx+Ye+rcb7mJP6QyoJD0WwC1kbN22H89EWhiDxUXmtonw7i/tBRE9Gl52AEfP2CQtk1h+qr/zuMUmU1pCCyhbMnYtr4EYI4s3HnMaESMcF1MEgFyH3SPFC5GF2rXi4vHj+4i+0Hz4NUdK5cPItmtcsKEg2RacguXzijLb+lSzR6cO8WnDs0Ef2pLMy0+atF+9oVC4KUfKgcDJWFObTXAz07NkHt+s0wc9H6UOOPGd4fq5fOxajxs4SSkERSIpKQ98VHiBs3nmhPikKdnerg4tmTohRPh2798PXLZxTOoSkbE5YAFdV1rG97Jv7oixS3MxQBpT9Tb/u8x44TUSv3ZShW3E8ZCFy44YNE8WOgbtmsygg4GlEqff9GY+rcNRwEmPjDyyIiBJj4w2uDEVA2AsE/fmBn3QooYhN+xRVlzw549vkzYrfogJKdf59hK31OHL/+CCie+CMp+xib7BMRhJIaEJOA9F9k5mwpEX8kEktkY0t/0FHpLSLvHDlyJFSJrYiIPwsWLED37r9fuOoSf96+fStKbvXv31+QbnSNyodRCTAiHVG5LiL+hPUVGfGHiEK9e/fGhg0b0KJFiz+mSHEtWrQIW7ZsEepGkRF/mjdvjs2bN4t4SpUqpSX+kOoQKRmRvX79Gvnz54efnx+WLVsmyqSxMQKMACPACDACSkCAX94qIUscIyMgLwSs7bmhxvmak/hDq5eIPUTwISPCS9GSZUV5mkvnTwvlHrLeg0ai7xBX7WLv360V9uzYLEq9dHYeCBubRDhz0htHDuwS1/7bfxrZcuQS7ZvULI1rl88LBR2pdBddp7I1xXOlFG1uPg0QJKGL506hZT1NmR4iCfUeOALv3vqjbqXC4lqtek2Rv3Ax3Lx2Gbu3b9TGQzG7uE9D9py5UNQuubh+3eeLIO5MnzASC2ZNwL9uU9Cxx4BQG1YqK7Zp9wkULlYqFJmneKnyqFG3sYiTlICoHA6Rh4hgROV1iATUsn5FULt1Hl5meRAw8ccsMFv1IGp4pk7beBnFWPXHqtexNHlrUvuhOath//LCNR4CTPwxHpZq88TEH7VllOdjjQisa1gFZWIEI5YKS2Fd9fdHsbkrka6A5h0Am3UhoFjij7kJP2GXBROA5LlRokr8uXfvnihhRWW5SNGGVILmz5+vnZwhxB8qF5Y2bVpRJuvBgwdaX6QElC1bNlSoUAFENDp58qRBxJ/Dhw+jatWqqFOnjlD4iR2mHnmrVq0EKejUqVMoXbp0hMSf4OBgTJs2DUOHDgWp+5w9exbx4sULl/hDkyBSVJUqVTQvgKOoRiTP1cJRMQKMACPACFgDAvzy1hqyzHNkBIyLgLU9N9Q4X3MTfwIDv2P+jPGYP2PcH4uxdPlKGDFmBuzz5A91793bN3Du0FiQX3Stas36QtknVZp04jKV/sqTMb74WSrdJbWXSogRaWfDjqPiMpXTalithCDZkF289xaJEieBVBJM6kvkov7/uCN3vkJo21jzdx6VFsua3V4Qh4jEQ2Qess6tauOY5wFBziGSjmRBP34gb6YE4tcrjz4iQQLNNyaJfER9SOVHMiol1nOAC5q26igISmRrV/wP7sP6oFvvoRg8YrxxN3IE3pj4YxaYrXoQNTxTSfVn54nHaFjZ9OX3rHqxKGDyHkeuIU8WW9SxArUfSoca9q8ClpViQpQr8efAkdM47HX2Dxyp3Gy+PNlRrHAe2OfM/Ef1A8UAr4BAmfijgCRxiIxAJAjsHOSMbHeuIUncuKrD6vTnL2jocQRxE9iobm48ofARoM+wVPXA1dUViiP+WJrwExZSLgMmr20WVeIPRV++fHmcOKF5oXnmzBmULFlSOykiApEiz/Tp00Flup4/fx4uWUdX8YfKc1HJLCIQUdmtDh064PPnz/j3339x8eJFHDx4UBB3DCX+kFpQ9erVBRGncuXKwn/GjBlF+TAi/Hh4eKBatWrYvXs34sSJoyX+1KpVCwUKaF7afPr0CefPn8e5c+dEKS+KK0OGDOIelfeqUaMGdBV/JEBcXFzEdSJLXbp0CQlVWgNTXquao2EEGAFGgBGIDgL88jY66HFfRsA6EbC254Ya52tu4o+0U6h01cMHd/Hq+VOkz5gF2XLaa8kw4e0m+tvO5/F9PLh7G8lTpkYO+9xImjRZtDdeQMBXvH3jh0RJkobyd+/OTTx/+hjZctgjc9YciPHr243v3/njtZ8vsmW305JyohvEt28BuHf7Bl69eIYUqdKgYOHiRvMdndiY+BMd9LivPgio5ZlK5b7u+Lxn8o8+SVdpm21HriF3ZlvUL6f+El9SCi2xfy0xZnhLVi5xyGk7yZX406LDv9j038G/QtWhdT0snjMCsWPHMgjS5y/8MHH6CmRInxrDBmpK1srB5BIXE38gDpjJHB0d5bA0OAZGIMoI3N2/E/7TxiBDokRR7ivnDsEhIbieMSvqzlku5zA5NiMjoPs5TjHEH7kRfsLmhAhAXP7LyCvVAHcS8YdIN0Ta0ceodFXnzp2F6s2VK1dCdSFlnmbNmokSV0uWLAGResqUKYOFCxeiW7du2rbSprpx4wby5s0riD59+vTBihUrQvlbv349WrZsKa5Raa3wfI0dOxYjR46E5Cu8OVA5seHDhwtSUlgjItDMmTORNGlScYt+HjAgtBw7XSflISIIkUJQzpw5tW4OHTokrk+aNEmoAelaYGCgIEoRYSisOpI+WHMbRoARYAQYAUbA3AjwC0xzIy6v8T4FBOPusyB4XfsmArPPEAfF7eIiXXLDXoDKa3YcjakQoJeY9Oygl5j0bRm1mxqfk5Yi/qh9rahhfkz8UUMW5T0HNT1TPY4/xt2nTP6R94ozTXTbj1yDfSZbNChvPaQfQtIS+9cSY4a3auQSh2lWtGFe5Ur8SZOjOvxev8WYEc4oUkhTFjYo6Cfu3HuCQ55ncNDzjLjWs2szzJv2j0GT37j1AFp2dEHzxtWwccUEg3yYopNc4mLij2Wel6ZYU+zTehEIePcWns2qI3+SJKoCwf/bNwQ2aoVSXfuoal48mb8joDjiD5EufP00MtVyt+zZsoHKgLEpB4Fdu3aJUl+LFi0SCj1hjb6FSWo6ROwKW1Yrslm+fPkSt2/fRooUKZArVy5RSsuY9ubNG9y/fx/+/v5IlSoV7OzskCxZ9L8haswYyZfEANf4DYK31zEgRkxjD8P+GAH5IhASDCAEDo6VRYz8bQj5poojUx8C/AJTfTnVZ0YX7gWi2+w3f226qG9KFLNTn6SvPvhwG0ZAFwE1PieZ+MNrPCIEmPjDa8PUCKjtmUolvw6cfYxSBbKgVIHMpoaP/VsYged+H3D+hg9yZbJFPStS+pFgt8T+tcSY4S0zucRh4S0Qang5En9evnqD9PY1RZzP7+xF+nSpQsUcHBwM5wETsWj5f+L6V98TSJAg6ucRg4fPxLQ5azBj4kD07+kkm7TIJS4m/jDxRzabggMxHIGQEGxrURtFg74jhuFeZNfzmr8/8k+YgyxlK8ouNg7IdAgoivijJNKPlDJW/zHd4jW2Z/owTOo2pGDz7NkzJFEZu9PYeOnrTxB9Al/BffRYeJ24AccSqYDg70DwNyAkCI6FiQTBxghYGQIx4sDrcgwgZnx4XfgoJu82pAUQLy1cx8y0MjB4uoyA+RCgf5O8vb3h4ODApDvzwW6xkfQh/IQNjglAFksXDywTBNR40MPEH5ksLhmGwcQfGSZFZSGp8ZkaHAJQ6a/D5x6jdMEsyJA6qfiPTR0IENmH/jt99QmypbdFvbJZYZfJVh2Ti+IsLLF/LTFmeLDIJY4opsykzeVI/Nm9/zjqNuuP1KmSw/fBgXDn/+DRM+Qs1FDcO7zzf6jsUEL8HBISgiPe5+B94iIOHjmDG7ceoHyZwmhUrxKcmteETcIEQjVo1LgF8Dp2QagKlSiaF+VKFxYEILIvXwOw7+ApeB07jwNHTuNrwDfY58yCjm3qoU2L2qHiuXn7oSAPHT91GXfv+6Bgfjs0qV8ZLoM7/VGC7Mz561i2egfOX7yJz1++onrl0ujQph6KFc4jfEYWl0kXQjjOmfijLuKPVP6Y9gibdSGwZ5Azct67gfixY6tm4kdfvULD7Z5IlDqNaubEE4kcAcUQfx4+egQq8aVEY/KP/LPWr18/LF++HJ8+fcLEiRPxzz+GSV/Kf6bmi9B95AB4Hd4DBL0Hfn6Aa9vvcCxsvvF5JEZAaQi4rwQQKwnclv4iAo3oD9cxM5Q2DY6XEWAEGAGLI2AI4Sds0EwAsngaOQALIaDGgx4m/lhoMSlgWCb+KCBJCg9Rjc9U3ZTsOqkp//XoxXuFZ4rDlxAgsk/MGEAdIvxktE7Cj4SFJfavJcYMb/XLJQ457Uw5En/cJyyC24RFkZbgSpK+Ij59/oqDHvNRtVJJQfpp180VazbuERATcSgg4JtoQ9atY2MsnOUi7rftOipUGpo0qIwtqyfjjf97VKnnjKvX74n7GTOkxrPnv6t0rFs2Dq2a1hD3du07hnrNB2jHsk2aSJB/yAb0csL0CRoi0c+fwfjXbS6mzFolfk+cKKE2Jvr9jOdKlCyW769xWWLNMPGHiT+WWHc8pvERuLBqMX6sXYL0KqricyZOAjRdvwMxYsYyPmDsUbYIyJ74Q2QfKu2lVNKPlHkm/8h2D4jANm/ejNOnT6NVq1YoXry4vIOVeXRe+1bC3d0N+PEarm2+MNlH5vni8OSJgNdlwPtmargt9oObSy+4jpsrz0A5KkaAEWAEZITAzjNf4bbGuAdPbm2SoV6pBDKaJYfCCJgWATUe9DDxx7RrRsnemfij5OwpI3Y1PlOVgTxHyQhEHwFL7F9LjBkeUnKJI/pZNJ4HORJ/ajbqg/2HT2Ha+AEY2Lt1uJOlCgexbEuKexePrUWRQrmwfZcXGjkNFqo7c6YMESo+ZOOnLhMKP6VLFMCpw8vFtQuXb6F4xbai7ZWT67VjDPx3OmbMWydIR67DuiJv7uz49i0QDVsNEjGNGNoZY0Y4C8We9HY1BYHHc/dCOFYoJnzs2HMUDVoOFIShp7c0BKQxk5aI8YsWyo0VC9xQIF9O0b9Nl5Hw2O2NBnUcsH39tL/GZbyM6++JiT9M/NF/tXBLOSPw+s5NnO/eGvmSJ5NzmHrH9i0oCG9rNEDpXoP07sMN1YOAqMQDIEaIzPTLiOxDSj9qMRsbG2TPlk0t0+F5MAKhEPA6tB3uIwcBP3yZ8MNrgxEwEgKhCEAjh8B19GQjeWY3jAAjwAioBwFTEH7CosMEIPWsF57J3xFQ40EPE3941UeEABN/eG2YGgE1PlNNjRn7ZwTkggDvX7lkQh5xyI34Q4Qe24yOglBzdN9iVChbJFygXvn6I52dRnnn+Z29SJ8uFabOXi3KdxE5h0g+kkmEoDo1ymPX5pni8qLl/6F7v/Fw7tIU86cP07YlJaAPHz9j5UI3JLNNor0uEYKmjuuPQX3aYOfeo6jfQkPweXDFA3HjxhFtiSQ0ftoyJLJJiKH92+H0uWsoU6WjuHf7wlbkssui9Xn+0k2UcGgXiiQUUVyWWC1M/AHogJmemY6OjnB1dbVEGow2Jpf6MhqUinMUFPgdOxtVQ7F46ij19eDDB2QbMx1ZyzooLhccsPEQkB3x59r168abnUw8MflHJongMIyKgPuwtvA6sg+uTm9Y4ceoyLIzRkCDAJUB87qREo6Va8J14mqGhRFgBBgBRgCAOQg/YYFmApD1LT3pWzL0EtMaTI2HXEz8sYaVa9gcmfhjGG7cS38E1PhM1X/23JIRUDYCvH+VnT9jRy834s+de0+Qu1gTMc0Pz72RJLFNuFNev2U/nDoNF0o7pLgjGX3//8GjZ7j/8CmePvPF7buPMX3uWnF79PAeGPlPF/Fz516jsWz1Diz/nys6tK4XaowfP4Jw684jPHryAk+f++Ls+etYvUGj3uO1ZxEcyhfFYa+zqFq/p7hmnzMzurRviKqOpVC4oD0kgoXuOBTn8MGdQ43z8PEzQT6ikmS+Dw5EGpexcx+ZPyb+RIaQsu4z8UdZ+TJ2tPsH9UCuh3cQM0YMY7s2uz+vZ8/RcNshJMmQyexj84DyQUBWxB9S+lF6ea+IUstlv+Sz6DmS6CNQqaw9HPO/hauTf/SdsQdGgBH4KwLu61LA63pyeJ68y0gxAowAI2C1CFiC8BMWbCYAWc/ys7ZDHzXOl4k/1rNfozpTJv5EFTFuH1UE1PhMjSoG3J4RUCoCvH+VmjnTxC034o9E6KESWzfObgp30kTuqVy3h1D3+W/tFDSqV0m0I3KOi/tcPHvuF26/PVtno1a1suJerqKNcfe+D66e2iBKb5EFBHzHpJkr4T5hUYRgv3/mhaRJEoFiGDx8ppZUJHUgBaBhAzqgV7fmwl/CNOUiTVy1SqVwwGNehHFF6sBEDZj4YyJgLeSWiT8WAl4mw55dMg9x/luLFPHjyyQiw8IIDgnBwdf+6Hj4LGLHU/ZcDEOAe0kIyIb44+fnB1+/8D94qCVdTP5RSyatdx5eXodRqVJVuHWICdf2wdYLBM+cETAzAu4rY8JtRTA8PQ/B0bGKmUfn4RgBZSNAyh3e3t5wcHAQEsRsykJADoSfsIgxAUhZa8iQaK3t0EeN891z+jHefQlByfyZDVkC3EfFCJy95oNkNjFQu0xWVcxSjftX6YnhnCg9gxy/NSPA+9eas//n3OVG/BkwbDpmzl+Hbh0bY+Esl3CTtdXjCJq2HSqUcqjMV+wtU2U3AAAgAElEQVTYsXDI8yyqNdAo8PTu1hwVyxVFjuwZhRpPeruaonTYq/sHkCZ1crx7/xHJM1cWbX+8PSP6k40atwBjJi0Rpbc6tW2AksXyIUe2jPj+PRCFyzkJX3cu/hcqJr/Xb3HQ8wz2HzqlVQWiBhePrUWKFEmRJW9d0X7HxukRLryM6dOgSKFcEcZlqRXLxB9LIc/jMgLGR8Dn7AncGNoL+ZInN75zM3oMDA7GvVwFUGvibEAF6kVmhE51Q8mC+GMNpB9p5WTPlg1U+ouNEVAaAlTWq1KVWvCcAS7tpbTkcbyqQIBKf7mtADwP7xXlv9gYAUZAPwT45a1+OMmtlRwJP2ExYgKQ3FaN8eKxtueGGud779l7bDv6CI2qFDTewmBPqkBg2+GraFQxG+wy2qpiPmrcv0pPDOdE6Rnk+K0ZAd6/1pz9P+cuN+JPScd2OHfxJpbMHYnO7Rr8EfDN2w9RqU4PEOFm8pi+GNKvnVDWyV+qOR4+fo41S8agdfNa2n57D55E7SZ9BZnn6S1Nua4j3udQpZ5zqDJhVNorb4lm4v6t81uQ2/43eXqY6xxMmrESXTs0wqLZw+F59DxOnb2KWtXKCcKOZEQuyluiqVAcOrJrAVKmsEXBMi3F7U8vjyKRTUJt26Cgn5j1v/WCVNS/lxMSJogfblyWXK1M/LEk+jw2I2BcBALe+cOjQWWUTZnCuI7N7O11QACS/zsW2Sryl8bNDL3shrM48ceaSD9S9pn8I7t9wAHpgQBJHrp1AFzb69GYmzACjIBJEPC6DFQaACGby8YIMAL6IcAvb/XDSS6tlED4CYsVE4DksnqMF4e1PTfUOF8i/mw/9hgNKxcw3sJgT6pAYPa6Y5gzQD0KgGrcv0pfaJwTpWeQ47dmBHj/WnP2/5y7nIg/uqWxSDFHl1TzNeAb/rdkiyivRVajShns2jxTqPWcPncNZap0FNd1FXyIzNOw1SBR0supWU2sXTpWtJk6ezWGjJiFgb1bY9r4AeLalFmrMHTkbNSpUV74lWzXvmOo11zTZvGcEejSviGGj56P8VOXYfTwHhj5Txdt2+s3H6BA6Rbi9zePD+PL1wCt4s+10xuRP28Oce/nz2AMHTlLlAmrV6uiVg0ovLgsuVqZ+GNJ9HlsRsC4CISEBGNHh2Yo8umdcR2b2dsF/7eovvUgbFKmMvPIPJwcEKDPsFT1wNXVFRYn/ly7fl0OmJg1BlL8IfIPGyOgFAQqlbWHY+7HcG33Qykhc5yMgGoRcF8VB163s8Lz5F3VzpEnxggYEwF+eWtMNE3nS4mEn7BoMAHIdOvD3J6t7bmh1vn2meGFvk4VzL18eDyZI8DEH5knSAXhqfWZqoLU8BQYgUgRsMT+tcSY4QEhlzgiTZIZG8iJ+ENKP6T4Q0ZlvOLGjS1+/vDhsyjVJVnzxtUECSdJYk3FiWs37muVdZo1qoriRfLi0tXb2LDlgLZPudKFMH3CQFG+i9R7SMWHVIBIHWiiex9BKuo5cKJo37dHS6HWc+zkJVHGS7IOreth7Ehn3LrzWFtWzN2luygpRqSfZat3CCWi8a698O8gDRGJlIVIYYjG6tmlmSAqbd52SKgaUemwo/uWiPJjZOHFZcal8MdQTPyBOGAmc3RUD6HekmuKx7YsAmcXzUay3VsRL5amvKHSLDgkBAde+6Pz4XOIFS+e0sLneI2AgO7nOIsSf6xR7UfKH6v+GGElq8QFbUgyYuLJ0dyHtQX8d8O1tbIZr3LElmNiBAxFwH1tMiBFHbhOXG2oC+7HCFgNAvwCU76pfvH2Jy7c+w63Ne/lG6QBkREBqLhdXKRLrswXBgZMWXVd6CUmPTvoJaZcP6MbE3S1PidnbLqM1CmSomT+zMaEi30pGIGz132QOH4M1C/3u0SFgqcjQlfr/lVyXjgnSs4ex27tCFhi/1pizPDyLJc45LQG5UT8WbJyO7r20ajyhDUizpQpWRCd2tZHzapl/7jfpfcYLF3lob2eOFFCjBnpjEL57VGpTndxffn/XEHknX2HTqJW477iWomieXHWaxU+fPyMynV64OKV21ofRMyZM3UoqLzYgGHTxfV7l7chU4Y06DVoUqjx6B6NOc61F/p016j+kL14+VqoDhHRR9dcBnfCgF5OgmAkWXhxWXKtMPGHP4Nacv3x2MZH4MmpY3g0cgCyJ0lifOdm8Pg1KAjn49ug9cbdiBEjphlG5CHkhoBsiD/WqPYjLQZW/ZHbtrBcPFRCi0yOpXvcRw2F177l8Jz8xnIA8ciMACMQLgKVhqaE6/jFcKzakBFiBBiBvyDALzDltzzUSvgJizQTgOS39jii8BFQ63OSyn3N3nyZVX944WsRUJvaD01MrftXycuWc6Lk7HHs1o6AJfavJcYML89yiUNOa1BOxJ/o4nLj1kM89nmBXHZZkCNbRkjnEf5vP+CVr79Q2IkTR6Mi9PbdR3z6/AWpUiZDwgTxxbXAwB+4fO0u3n/4JAhDkhIP3SO/QUE/kTN7Jm2Yd+49wY1bD8TvGdKnRr482ZHIJuEf06DSXnfvPwG1t02aGIUK2CGZbfgH7+HFFV1cDO3PxB/+DGro2uF+8kTg48vn2NmwCipkSC/PACOJyj/gG0LadEXR1hpFNTbrQ0AWxB9rVvuRlhyr/ljf5gtvxnIm/lBsbh0A1/acK0aAEZAbAl6XAfdNOeB58r7cQuN4GAFZIUDKHd7e3nBwcGAJYgtnxloIP2FhZgKQhRceDx8pAmo+6CHVn7Qpk6J4Plb9iXQhqLzBuRs+SBRPXWo/lDI171+lLknOiVIzx3EzApZ5psrlmSGXOOS0DtVE/JETrmqIhYk/lnlemmrtyPl8zlRzZr+hEfgZGIhVtcqhctLE0Mg0KMvufPyI0qs9kDhdBmUFztEaDQGLE3++fPmCh48eGW1CSnXEqj9KzZxx45brBwv34c7A6//g6uRn3AmzN0aAETAaApUG28B1zCw41upsNJ/siBFgBBgBYyNgrYSfsDgyAcjYK4v9GQsBtR/0TN+oKflVqgCTf4y1ZpTm58w1H/j5f8DAFoWVFnqk8ap9/0YKgAwbcE5kmBQOiRHQEwFL7F9LjBkeHHKJQ89UmaUZE3/MArMiB2HiDxN/FLlwOei/InBkrAuynj+J2DGVVSorBMDpr9/QfO9xLvNlxWvc4sQfVvv5vfpY9ceKd+KvqcuV+ENxec4AHNX3bpQXHSOgGgSE6s/GrPA8xWRa1SSVJ8IIqAgBJvyEn0wmAKlokatkKmo/6AkJAYj8Q8o/JZn8o5JVq/80iPTj++YDBrVU5x+2at+/+mdaPi05J/LJBUfCCEQVAUvsX0uMycQf/VYGE3/0w8kaWzHxh4k/1rju1T5nnzMn8Hb0UCSPF09RUw38GYzziZKi5VoPRcXNwRofAap6QBYjJIReg5nXrl2/bt4BZTwaq/7IODlmCk2OxB/3kQMAvw1wbfXKTCjwMIwAI2AoApUGJ4JjrS5wHTPDUBfcjxFgBBgBoyLAhB/94GQCkH44cSvTIyCXAydTz1Qi/5TIz8o/psZaLv6pvNer1+pU+pEwtpb9K5c1pU8cnBN9UOI2jIA8EeD9K8+8WCoqJv5YCnn5j8vEH4AOmOmZ6ejoCFdXV/kn7S8RyvF8TtGAKjT4L6/9sL9xVRRPlVJRM3gdEICPDtVRaZi7ouLmYE2HgNmJP6z282cyC+TPb7oMs2fZI0AfkMjk9AGJ1X5kv2w4QEZAi4BQ/dmcC54nbjMqjAAjwAhYFAEm/BgGPxOADMPNlL2kb8nQS0xrMGs65Npx4jEOnn2MUgWycOkvFS/us9d9cPrqE2TPYIsBzdWp9COlz5r2r1KWLOdEKZniOBmBPxHg/curQhcBJv7weogIASb+qGttMPFHXfk0dDZB379hsUMRVEubBnEVVO7r0uvXKDZjCTIWL2Xo1LmfyhAwO/Hn4aNH+PLli8pgjN50uNxX9PDj3sZHgD7shHga3y97ZAQYAdMgUGloarhO3ii+ZcHGCDACjIC5EWDCj3EQZwKQcXA0hhdrO/SxtvnSGpEIQJnT2iJD6qQINrsOsjFWKvvQReC533vEjBEDPq/eC8JP3bJZYZfRVvUgWeP+lXtSOSdyzxDHxwhEjADvX14duggw8YfXQ0QIMPFHXWuDiT/qyqehs6HiSBvbN8Hnm9dQKGUKpE6YEDEMdWaGfl+DgnD1jT9eIwa6HjyDuDY2ZhiVh1ACAmYn/nCZrz+XBZf7UsJWsZ4Y3Uf2B14shmvbr9YzaZ4pI6BwBCoNjAPXiavgWL2lwmfC4TMCxkeAlDu8vb3h4ODA5Dgjw0uEH7c173Hh3ncje7Zud06VEsHJ0QbpkseybiAsOHtrO/SxtvnqLq17z97j3tP3FlxtPLQxECDelj2RfGLAKsg+uphZ8/41xtoxhQ/OiSlQZZ+MgHkQ4P1rHpyVMgoTf5SSKfPHycQf82POIzIC5kDg2raNOOg6VBB+UiSIjyyJEyN1ggRIGCeOLEhAgT9/4s23b3j++Queff6MnyEhSFewCFqt2W4OeHgMhSBgVuIPl/mKeFVwuS+F7BgrCNN9aHPg9Wa4treCyfIUGQGVICDKfW3JB8/j11UyI54GI2A8BPjlrfGwlDwx4cf4mIbnsZhdPLi3sWUCkHngDjWKtT03rG2+FlhSPCQjYDIEeP+aDFqDHXNODIaOOzICFkeA96/FUyCrAJj4I6t0yCoYJv7IKh0cDCNgNAS+f/yApbUr4NvHD6F8Jo4bB+ltbJAyfgLYxImNeLFiIXbMmIgVwzSaQMEhIYLU8/3nT3wL+ol337/h5ZevgvRD9yQjtarSPfqhjPMAo2HAjpSPgFmJP1zmK+IFw+W+lL+Z1DIDLvOllkzyPKwNgRiVAJKkZGMEGIHQCPDLW+OtiE8BwVi09zPWeX42nlP2FCkCpADUrVYiJE4QM9K23MA4CFjbc8Pa5mucVcJeGAF5IMD7Vx550I2CcyK/nHBEjIC+CPD+1Rcp62gnJ+KP3+u3mDZnTbjAx4wZEzmyZURlhxLInjWDxZLjsdsbJ89cQYM6jihbquBf47j/8KmYT9FCudG1QyOLxWzowEz8MRQ57scIyB8B//t34NGvKz48f4qQ4OBwA6YTmLgxYyJh7NiwjR8PSePERaK4cYQyUOwYMUQJ6pjQ/D88alAwQkS5cfr/z+AQfAv6gc8/fuDTjx949/07PgX+EKSfv1mcBAlRqntflOjYA1K5OvmjyxGaCgH6DEtVD1xdXWFW4g+X+Yo4pWlSp0bq1KlNlXP2ywjojQATf/SGihsyArJCoNLQ1HCdvJFLGckqKxyMHBDgl7fGycKFe4HoNvuNcZyxF4MQWNQ3JYrZxTWoL3eKGgLW9tyglwOVKlUSnyE8PT2jBha3ZgQYAYsiID2vaO/SHmazPALW9m+I5RHnCBgB4yFgif1riTHDQ0wucRgvm9H3JCfiD5FqGrYaFOmkPDZMR/3aFSNtZ4oGVeo544j3OezfPhfVK5f+6xBLV3mgS+8xGDWsK9xdupsiHJP6ZOIPxAEzGX/+NOlSY+cWQiA4KAivblzBsWnj8fzy+ShHIcg+EZB+6Jb2q9shIb9/1nOUBMlSoHT3vsjXoCni2iTSsxc3UzsCup/jzEb8+fLlC0jxhy18BGxsbECqP2zWhwBtSDJi4lna6AOb++AG8Jz60dKh8PiMACMQRQQqDU4C16ke/AdXFHHj5upHgF9gRj/HL9/+RF1X3+g7Yg/RRmCnexqkTx4r2n7Ywd8REJ+J///bMvQSUw6f0U2dLyb+mBph9s8ImA4BIu3RHmbij+kwjqpn/uwZVcS4PSMgHwQssX8tMWZ4iMslDvmsBkBOxJ+RY/+HsZOXokaVMujTo4UWpoCA77h5+yGmzl6NT5+/CsWf+1e2W0T9YZDLDHz4+BmTx/RD8mRJ/prKbn3HYfGKbdixcTrq1bIMUSk6a42JPxB/L7u5uYn/rOFv5uisF+6rXARI8SfgnT/eP3sKn9PH8PiEN17fuYkfAQFmmRSJNCTNlAWZSpRBtvKOSGmXG4nTpUesOPylQLMkQEGDMPFHhsli4o8Mk2KmkCQZNjmU6BGHHINqwXPaNzPNnodhBBgBYyFQaVB8uE7by8QfYwHKflSDAL+MiH4qu832x4V736PvyAIeitnFU2zs4cFF81nUN4UFkOQh1YwAE3/UnF2em9oRYOKP/DLMnz3llxOOiBHQFwFL7F9LjBkeHnKJQ99cmaOdnIg/kprO3KlD0atb8z+mv3PvUdRvMVBcD/5wziLEn6jkJF/J5oKw9Oz2HmRIr7wqGEz8YeJPVNY7t1URAiEh+BHwFZ98X+Gz70t89nuFj69e4IufLz6/8cO3d2/x7eMHfP/8GYFfPuHH16/hlgujMl2x48VHXBsbJLBNhvi2yWCTMhVsUqZG4rTpkShNWiROkw6J02VA/MRJECMWfwFQRavIJFOxCPHHz88Pvn5+JpmQGpwy8UcNWTRsDnIi/gj1oSfj4Nruh2GT4V6MACNgMQQqDYgJ1xmHmfhjsQzwwHJFgA60vb294eDgwPvDgCQpTe2HiDHda2mkbulnyYi4dOF+IBbu+WQACvLqwqo/8sqHWqKR098kasGU58EImAMB3rvmQDlqY/DhedTw4taMgJwQsMT+tcSY4WEulzjktB7kQvwJCvqJOMlLCWhOHV6O0iUK/AGT59HzqFy3BxInSoiPL47ijf979Bo0Cbnts6JD63pYsXYn1mzYg82rJ6FoodygLyCv27wPG7cexJnz1xEQ8A3lyxTGiKFdULZUQeF/+y4vrN+yH/lyZxcluXTtx48g9Og/Hp+/BIhSXS9fvcHaTXtRxbEkWjWtoW16594TLFvtgVNnr4lrVALMqXlN5CjYAKlTJYfvgwPathQTxUMkpvOXbiJpkkSoWa0snDs3Rbq0KbXtFi77D0eOnsOwAR3w8PFzLF+zQ7Rdu3Ss2ZYPE3/URfzhz9Nm2zo8ECPACJgIASb+mAjY6LotkD9/dF1wfwUiIKcPFu7ubsDj0XBtr60yqUBEOWRGwDoRcF8ZA8g6Cq6ubtYJAM+aEWAETILAzjMBcFvzziS+je20e+3E6FYrcaRuF+39pGgCkFsbW9QrlTDSeXIDRiAqCLBqSFTQ4raMgDwQkF7uUVlCKvXFJg8E+PBcHnngKBgBQxCwxP61xJjhYSOXOAzJm6n6yIX4c+PWQ+QvpVH5+eJ7HAkTxP9jys4DJmDB0q1walZTEGD2HjyJ2k36wj5nZkHKoTJgZEQK+vnzJ1p2cMH+w6fENWpz976P1uf+7XMFQWfNxj1o23WUKB/24KpHqDHnL94siEXlShfC0X2L0W/oVMxdtAm6ikQbthxAq04uf8RK5CSKp1mjqti0cqK4T0Sldt1GibjJiBTk9/qt+Dlv7uzw3rsIKVPYit9LOrbDuYs3xdgnTl8R11wGd8K4UT1NtRT+8MvEHyb+mG2x8UCMACPACOiBABN/9ADJEk2Y+GMJ1C0/pryIP+7AYze4trc8LhwBI8AIRA0B95UAsnJd5aihxq0ZAUYgMgSK9XkRWRNZ3NeX9CMFq3Tyz4U56WWBOwehHgSYQKCeXPJMrAcBPqSVZ645L/LMC0fFCOiDgCX2ryXGDA8LucShT57M1UYuxJ/VG/YIUgwp9Vw4tkY7fVLduXjlNrbt9MSkGfRSEDjnvQrFi+TFmElLMGrcAnGtskMJDO7bFlkzpxMKQC06/IvN2w6hXq2KWLnQDclsk+D790C06jRc+KL2h3f+T5BriGRD9vP9WcSMGVP8/P7DJ2TOU0eQdygeiqtYhTYiFkmR6PS5ayhTpaNov3CWC9q2rCPKjw0ZMVMQhMimjuuPQX3agBSNiKR00POMIC7NnDQIqVImg8+zVyhXrROePfcT1/o5t0JAwHckTFNOiwH5cChfFNmyZECK5EnNtTTAxB8m/phtsfFAjAAjwAjoiQBVPSCLEUIaemawh48e4cuXL2YYSblDZM+WDVTyi826EGDij3Xlm2fLCJgKASb+mApZ9ssIWC8CnwKC4Tj0lewBiCrpR5pQt9n+oBJgSjSvyWmROIHmxSsbI2AMBOgFAan+sHKIMdBkH4yAeRCQ3iWQ2g/tXTZ5IMCH5/LIA0fBCBiCAO9fQ1BTbx+5EH/6DJ6sJcuQWo5kkoqP9Puy+aPQsU198WvdZv2xe/9xQco567UKsWJp/naUVHxIUcfn5i7EixdX6+/C5VsoXrGttlzYu/cfkTxzZXGfSnJRHzIX93mYMG05nLs0xfzpw/A14Bts0pQX90iRKHasWMhTvKkow7V68Wi0aVFbO4auT1LxqViuKKbMWoWhI2cLZaGb5zaHimnGvHUY+O90dOvYWBCIzl64gVKVNN9Y9tgwHfVrV7TIAmTiD0B/P9Izkz6Durq6WiQPxhpUTudzxpoT+2EEGAHrRYCJPzLKPRN/ZJQMM4ZCH5DI5PABScTCij9mzD4PxQgYDwEm/hgPS/bECDACGgRevv2Juq6+sofDUPUbIv0Q+UeJttM9DdInj6XE0BURs/QtGWs7SOdyX4pYnhwkI6BFgA8p5LkYmDggz7xwVIyAPgjw/tUHJetpIxfij6SmQ8jrEn/od7scmVEwv51Q9MmXJ7tIDn3PP2kGB6HIc2z/EpQvU1ibtIo1u+LYyUtatR3dbErEn4wZUuPprT3iVpoc1UXJrYvH1qJIoVx48vQlsuarJ+J4eG2HKL8lqftIikRSmbGwCkXSWEnSVxSxfXjujUQ2CZAlX12h6jOglxNqV9cQiCTz2O0lSE+d2tbH0nmjIJUYq1apFA54zLPYYmTij8WgN8nA/JnaJLCyU0aAEbAQAkz8sRDw4Q3LxB8ZJcNKQ1Ey8WfDEeDSPU3i6pUFyheIOIkLdwIPf1UuaVMNKKD5u8godv85MG0TUNQO6Fo36i7nbQd8fIG+TYAMKfXrP3oVcPwasGsCEPgDGLIASJIQmNQ98v7BIcDKfcChC8ALf2CTK5BKUzL5r7b2EHD1AeDSBkj6S6jM7z0wbSNQMg/QJJpfuFi8C6Cc7psMxIkdWTR8nxBg4g+vA0aAETA2AjvPBMBtzTtjuzWqP0PVfqQglKr649bGFvVK/f62p1FBZWfim4tubm7iPzmQ882VEon4w6o/5kKcx2EEDEfAWp9ThiNmvp6cG/NhzSMxAsZGgPevsRFVtj85EH901XRund8iSnVFZvcfPoVd4UZCQefBVQ9t86fPfJE5bx3x+7unnrBNmjiUK1IIIqWgcqUL4fiBpeJelXrOOOJ9Djs2ThelwajkGJUeI6UfUvwhm7doE3oPnow+3Vtg9pQh6OjsjhVrd2L6hIGCzKNrkuJP3tzZcePsJi1pKLI5jXfthX8HdUSHHm5YuW4XNiwfjxZNqkfWzWT3mfhjMmgt4piJPxaBnQdlBBgBEyHAxB8TAWuIWyb+GIIa9zEmAkom/hTrBlz8RfxxaQ2M6xI+MtceAgU7/753ZSlQ0IjEn6V7gC5TgFHtAHdNKWO9jUg4tnWBT1+BtzuAZKH//grXz5qDQNvxGsJOM0fgxHWgfB+gQkHg6KzIhx67Ghi5TNMucULgwy4gRoy/9yOCUIamQI0SGmKOZIPmA9M3A6fmAaXzRj7231oQEanaYGDbGKBh6C97RM+xinsz8UfFyeWpRQsBUu7w9vaGg4MDl8GIIpJKIMVYK/GnmF08LOqbIooZ5eb6ImDNhz5cOkjfVcLtGAHLISCV5qMI6Fv9bPJCwJr/DZFXJjgaRiDqCPD+jTpmau4hB+LPyTNXUa5aJwFz0Luz2pJdf8N949YDaNnRBe2d6mLFAjdtU1L6IcWfWtXKYs/W2X+4qN9iIHbuPYpxo3rCZbBmzL5DpmDOwo2C6FOiWF6UcGgnFIYuHF2D2LE1CrRtu44SJcSksl75SjbHzdsPcXTfYlQoWyTUOBu2HECrTi7a0l3rt+yHU6fhICLQRPfeEU6rSMHcICWiHAUbiBJi9y5vQ87smSy2/Jj4YzHoeWBGgBFgBBiBSBBg4o+MlkjyZMmQIUMGGUXEoVgbAkol/nz9DtjU/J2tlpWB9SPDz17tYcDeM7/vBR40rqJMt2kAqdXsGKdRHoqK3XkK5G4H2GcE7qyOvOe520BJZ6BtdWDVv5r2M7cAA+YBw5yACV3/7uNbIJC6kYZotGGUhshjmyjycXvNBOZ7ABcWaZSNyJ74AllbAg3KAdvHRu4jshYB34GENf8kF0XWz5rvM/HHmrPPc/8bAvzy1vD1UazPL3k8w12YvCeRX4gEY6gpudyXoSXODMXKmvpZ83NDmjur/ljTiue5Kg0Ba35GKSFXnB8lZIljZATCR4D3L68MXQTkQPyhMld9Bk9GVEpbDR4+E9PmrMG8af+gZ9dm2int2HMUDVoORJ0a5bFr88xQyb73wAf2RRqLa3cv/SdKiJFJpbX+GdAeZ85fh9exC38QejLlqS1KdZGCDxF4pPJgYYk/wcHBgnh04vQVLJk7Ep3bNcD/lmxBz4ETUaJoXpz1WhUqpucv/IS6D5UT69axMfzffkDKrFVEmTEqEyZ9YcESq5aJP5ZAncdkBBgBRoAR0AcBsxF/Ll26hNhx4ugTk9W2YeKP1aZeNhNXKvHn9E2gTK/fMJbIDZz935+wHr4IVB30+7q+qjhRSVC+DsDNJ8CzzfqX6pL8rz8MOI0FOtQElv/z91E/fgWKdAFefwCebPitDtRqjKZE1tbRQOMKf/ch4UbkHSLx6GNUysyuDdDcEdjo+rtH58nAsr3A1aXGK51WsR9w7CrgvwNIrof6kT7xq7kNE3/UnF2eW3QQ4Je3hqH38u1P1HX1NayzGXtFl/yiZOLPTvc0SJ9c8y1LNuMiYO3PDVb9Me56Ym+MgDERkJ5P5JPVfoyJrPF8Wfu/IcZDkq3KEA8AACAASURBVD0xAuZHgPev+TGX84hyIP5IajqjhnWFu0t3veAqU6WjKKF1+sgKlCqeX9vH+/hFONbuJogzj2/sQvJkScS9gIDvQoXHY7e3KM1FJbokO+R5FtUa9NT+7tSsJtYu/f2Nz9dv3iF19mrivqRI1KLDv9j030EMG9gBE9x+q/iMnbwUI8dqXthfPLYWRQrlgqT4kzpVcvjc3IV48eKK+58+f0Wtxn0ESWjGxIHo39MJUiwRKRbpBY6RGjHxx0hAshtGgBFgBBgBoyBAn2FJGdjV1RVM/DEKpMZxwsQf4+DIXgxHQKnEn7nbgD6zgSYVga1HNSWrPu4OjcPPYKBoV+DqQ6BaceDgeeCfVsDEbr/bPX8DTFwHnLyuKRtGJcBqlwZc2wPxNX93aI3UeZbtAU7d1FyqXhxwqgrkcAJS2wK+2363JfX1jZ7AzpPA+TtA0kRAzZKAc30gnU6VDlLqIcWeBQOB7vX+nkeaL817tQvQRvP3lbBMzYFnrzXltqhcFpGdLtwFyhcAhrQAKv1SWKX+Vx5oiDUZU2mUdUglKGcG4MglwPMSkDUt0Ll26DhajwXWHQZurwJy/VJUJaITEZ7a1wBWDDN8/YXtKeGxf4oGX7a/I8DEH14hjED4CPDLW8NWxoV7geg2+41hnc3Yy5qJP4v6pkQxuzAfUMyIvZqHsvbnBqv+qHl189yUjkClSpXECz03NzfxUo9NfghY+78h8ssIR8QI6I+AJfavJcYMDxG5xKF/tkzfUg7EH0lNZ8fG6ahXq2Kkk/7+PRDxU2kk6L/6nkCCBL/VcYOCfiJDrlrwe/1WlOtq3bwWgoKCsNXjCC5euY2ihXLj+IGlofo8efoSWfP9fkn99NYeUXJLsgNHTqNGw96hFImWrd6Bzr1Giyak1JMze0Z4Hj2PvQdPavsF+p9GnDix8fnLVyROp5kXlQVr0qAy3r//hPn/rwREcTZvXA1rl4wVZcUmTFsOF/d5ggBFRChLGhN/ID6PkpFSLBsjwAgwAoyAZRHQ/RxnNuKPp5cXUqZMadmZy3j09+/fI3u2bFzqS8Y5MlVogmzz/9/Wk8NLO6USf9qOB9YcBOb3B/5ZpCld9X4XkNTmd9boPrWjsliv3mqIP1vcNWQhss1eQOcpmr5EHKK+RKAhK5cfODYbiBFD8zsp6pCyTlijftS/mSOw6dc72DcfgHYTfpcXI1KQ33tNz7xZAO9ZQMqkmt+pbBeV7zq3ACieK+IV9+ELYFtXE6e/x+9SZS/9gfRNNf10x5E8UfvHG4AfQUBajXprKHu5FUibXDM3mmPXusAiHYWkS/eAot2AHvWB/w343bXxKGDbMeDhOiBbuojjjuodIrK4rdCoH5EKEtvfEWDiD68QRiB8BPgFpmErY9p/H7HO87Nhnc3Yy5qJP06VEmFQY823NNmMiwC9xKRnB73ElMNndOPOTj9vErmAS37phxe3YgTMgQCT8syBcvTH4M+e0ceQPTAClkLAEvvXEmOGh69c4rBU7sMb19LEn3fvPyJ55soitGe39yBD+t+Em4hwunr9HgqVbSVIPBeOrfmj2aUrd1CzcR9BqtE1l8GdMHJoF8QP881XKs8Vy7akaDrRvQ+o5JeuTZqxEsNc52DkP10wengPcYsIRl16jxFluiQjlSFSCqrfYiDKlS4kCEaSnTxzFTUb9RYqP5IRuWjEkC7o1La+IAiRNW8/DJu3HcKerbNBqj+WNCb+QPy9TER0JqNbciXy2IwAI8AIaBBg4o8MVwITf2SYFDOFJEnpy0Gm29TEn9s+wKJdGpIOGSnVdKsL5NaUDTbYdFVuSCWGSlhdWwbkz6ZxGfAdsG+rIfLcW6MpVUUmEVVIhaeE5m8T/DcaaFheQ/I5cR0o30dznYg/pJqjW1Zs4SCgbTVN2yELNAo8ZFOdgUHNgaCfQO1hGpKRUxVgZm8glS3g4weU662Jh671a6KJMeEvckvA/j8VhnTBWbIb6DoV6NsYmPUrPrq/+zRQ919Ny1qlgMEtgIoFgUcvNfMno/mTqg+ZhNuTjUBmnb8difjz4AUwtCXQ1OH3yOSbxni6SaMSRHbmFlC655+xGJxMnY7j1wLDlwAzegH9fxGajOFXrT6Y+KPWzPK8oosAv4wwDMFifV4Y1tHMvayZ+ENQR3f+Zk4XD6cwBKS/U/hlrsISx+GqEgEu8aWctPJnT+XkiiNlBMIiYIn9a4kxw8u8XOKQ06q0NPHHVFh8+xaIm3ce4vGTF8iWJQNy2WdBwgTxjT7c/YdPcfP2I6H4k8suK2LFihnhGFRu7PqtB3j23BdpUqdAiaJ5tYQfowdmBIdM/GHijxGWEbswAgKBgYFYvHgx9u7di1u3boF+t7e3R7ly5dCjRw+kT58+wlF8fX3x4sULZMqUSW/Rknfv3mHixInh+rSxsUHevHlRpkwZswh8TJkyBW/evMHYsWMRJ04cI6DJLpSMgEWIP9u2b0fOnDmVjJtJY3/y5AmKFC5slgeCSSfCzqOMgDURf3pMBxbuDA0RlbSi0laGGqnnpGmk6f1lH9B1iqYU1a4JQJ3SmutTN2qIOVTai8hGBTr9LgdG5JxcbYGHLzWKQc4NQkdSf7imRNe8/kCXOkCedpq2YUtsvfsEJK+v6UsqPkS4mbIBGLoQyJ4OuLkSiKfz7++MzcDA+RriExGIzt4GSjkDpfNqynT9zSRloBNzgbL5frccvQpwXQ4UtQOOzwF01FyRpI5GjUgi7Ui4hS1LFtG4VBKsYr8/y6NVGagpDSapBRmax/D6ET6E07SewMBmxvSsTl9M/FFnXnlW0UeAlDu8vb3h4ODAEsR6wvkpIBiOQ1/p2dqyzaJLfLlw7zu6zfa37CSiMbrX5LRInCDiF6jRcM1dGQEh307KP2RM/uEFwQhYDgFd0o+npyd/nrFcKvQamQ/P9YKJGzECskTAEvvXEmOGB75c4pDTwlAr8UdOGCs1Fib+qIv4I6fzOaXuCUvETSSc0qVL4+7duxEOv2vXLtSpUyfU/WXLlgll52fPnmmvE1lo2rRpqFu37l+n8vjxY2TL9ktt4C8tPTw8UL/+r8NCE4GTK1cuMfdPnz4hUaJERhnl6dOnmDx5suBy9OvXzyg+2Yl5ELAY8YdKfdna2ppnlgobhYk/CkuYEcOV0wcLUyr+3HmqUbnx/xgavBRJACKw5MpkGKj7zgK1/tGQXS4sAkYtB8as+k3ioVJb2Z00vp9sADxOAB0nAQ3KAdvHAp6XgMoDNUQgIq/YhPmCg0T8WTMcSJ5Yo+AjjRU2Yolc82E3kCgBkKWFRtVnQDOgdqnQrSkOUgjqVAtYOhT4nwfQc6am7fSeEWNx9SFQqLNGcYeUemL+Kj9GPSi2vWf+LI319Ttg80tN6ONuzVwPnAdqDAEaVdCoHEVmpHxECkhvPADKGdmhC0C1wcCodoB7x8g8RP2+pDBEZdOofBrb3xFg4g+vEEaAETAWAi/f/kRdV19juYvUTzG7eChuFzfSduE16FYrsUH9pE5E/LlwP9AgH+fvBYL6W9J2uqdB+uSxLBkCj61yBHQJB0z+UXmyeXqyRID3oCzT8teg+PBceTnjiBkBCQFL7F9LjBlexuUSh5xWIxN/5JQNecXCxB8m/shrRVpnNG3btsWaNWuEys7ChQtRtGhRBAUFCeWfQYMG4cSJEwIYHx8foepDtmLFCnTsqDnIItJQhgwZsHXrVi2Ax48fF2pBEZku8Ye+KCXZ169f8fDhQ6xcuRLnzp0Tl798+YKECROaLDmmIP5cuHABxYsXR4UKFXD06FGTxc6OjY+ARYg/Z8+dw/fv35n4E0E+6ZvojRo2ZMUf46932Xtk4k/0iD9jVwMjlwG9GwFz+gLL9gKdJ2vKVE3qrlHVIdUYqaRWr5nAfA9gfBfg39aA8wxgwQ5gdEdgZLs/l0uxbsDFe8DBqcDaQ8CKfRpiDhF0dE1S/MmbBbixInRJsL8tQikOIiOR7/UjgZaa8s3h2j8LgckbAJfWwLguv5sEhwC2dTWqPq+3AymT/r4nlSeTYqM7Em6EEWH1N5NKiNF4NC4ZjVeiO3DvOeCzEbA1Dqk4VBhSKbLzC4Fi9rLfyhYPkIk/Fk8BB8AIqAaBnWcC4Lbmncnn0712YkSXuGPyIPUYYNHeT1i455MeLY3fxK2NLeqVMt2LBONHzB6ViAATD5SYNY5ZDQiQ4pb0QpmJd8rJKB+eKydXHCkjEBYBS+xfS4wZXublEoecViUTf+SUDXnFwsQfJv7Ia0VaXzRU0itevHhi4gcPHkTVqlVDgfDjxw+kSJFCqOGsX78eLVtqDsDy5cuHmzdvglR/JALQt2/fULFiRUHY6dChA5YvXx4hoLrEn5CQkD/aBQQEIE2aNGLcPXv2oFatWiZLDhN/TAatYh1L7w5ihIS3Ok0wLSL+kOxUoUKFTOBd2S5J7YceGL179VL2RDh6gxCwFuIPgWOKUl+SKsyqf4G21YHDF4GqgzQKMUSqsWujUce5v1ZTaovUckg1h4g8VYsBUqkqKq9FZbZ07fwdoEQPzRUqI0ZEl5tPgKOzgAoFQ7fdcARoNeZ36a71hwGnsQCRbSZ2i3hpFLHTxJfDSVNC7Paqv6sfVRoAeF0GtrgDTSr+9kuKSrnbAfYZgTurQ483bzvQexbQtS6waJDmnoTb4elA5SIRx/czGCjYCXj6GnixRaNkRLb1KNDU1XRluIhsRaQrKpN2b21oZSODNpoVdGLijxUkmafICJgJASp9ZWolm0V9U4CUftRiliL/EIaEJRsjYGoEdMk/jo6OQhqb/s/GCDACxkeAXtjRnpNe3HF5L+NjbEqPfHhuSnTZNyNgWgR4/5oWX6V5Z+KP0jJmvniZ+APxOZWemdLfhuZD3/gjyel8zvizU6fHBw8eiHJUZETckUhAurMdPXo01q5di969e6NPnz54+/atIAMlTpwYHz58gJR36kPt2rRpI1SATp06FSFokRF/qGPJkiUFiYiUhBo3bix8DRw4EM+fP8esWbOQNm1arX9SIxoyZIhQLaJ3LJK9efNG/P5/7J0JvEzl/8c/tmSL7FtJdVupX11LhVARskS2RCl1ZSclpO5FIbJEyG2hLNmyRGmTKy3IpWwtihBS9p0s//93njnmzNy5d7Zz5pwz83leLy/3znme7/N93s85M3PnfObzletMhEpSikzES7169bporuJP+HPkyBFXvEOHDuGee+5Bx44dXSHPnTuH1NRULFmyBJs2bUJCQoKrrHunTp1w2WWqvIccnzVrFr766isXIxEtdejQAXXr1o3NkyiGVxU14Y+c1PMXLEDNmjVjGGd4S6PwJzxusTLKVV4L8Hpit2ptZpb6kjX9sgNIXQxM+0KtsG0dJZS54crwViyi2oJul5uNk4GbrwJ+36XEPrdcreLOTgO0UlHHTwH53SLb/R+p0l2aEGjVRKDKDd55tB8GvPcZ8Nj9wJS+QImmwD+HMgp/xP3m7u6qFNbbzwEdGnhKd1W+AVg90Tvurn0qrrjyyPql/FnRJqoE16HFWYtcNIHQ2lRARENa04RHWukw/YyPDgWmfu7JTc/twEfA5VlUSdEETG/0ALo8qKKePQfc3B44dAzYNhPIa8J9276pwKsfKNemQI5E4Z09sTeKwp/Y21OuiASsIpDYbbepU8eK048vJKvEP+njSpu6X/EYXLvZTmFLxt2nA0k8XhFcc7QI+Ap+KLKLFnlj56FwwFiejEYC0STA6zeatO0/F4U/9t8jqzKk8Mcq8ubMS+GPOVzNjCqOPpdccolrip49e7rurRYqVCjLKUW0M2rUKIhgpouPCcfo0aNd4pznn38ew4YNyzROIOGPiHTEVUiavtSXJtLZsmXLRcGS9Fm/fr3LLEVfWkv6VK9eHf/8848rjohwxEFImvx9KA5HOXPmdK1DzFbkWP78+V1iHxHrrFy50tVv0aJFrsclj4ceegifffaZK0bx4sUvxhbBkTgTlStXzsVkwoQJXmuXEmpJSVm4Gpi5yYwdNoGoC3/kJA50AYa9GocOlDJf0uj449ANjKG0zRb+GI1KE/lI3P++BHLmAE6eBvLW88wkwpuVE5SY5rtNQLWuykXmjxmqj+agM/Bx4CVdqS9x1ZFjIsbZ8C5QrgTQaqASEvVtAwx9yjOHVjZLHtEEOZpgpnghYMds5TYkTUpx1X9eiYRGdwF6Nge+TAfqPAvUrwp8kvn7Ctd4EdyI69De+YDE1ppW0uzNZ4COjbxJ+4qF/tgNXPtIRncgESAtWwdkywY8WB0Qtx8ZK01zTJKfJy8BnhjuERLpZxMnIBEW3X2rJz8RfG3cpoROtf7n6b1iPbD3IHBjOSXa0prMW/ohJbLaNRcoTSODoC4dCn+CwsROJEACAQjsOXAODZP3msYpVkU/GrBouCX5bs6igSVQunAO0/YsHgPzpk/Wu653/5GeLEEUj1cJ12w0Ab2ojteV0XSjG4+vIdHlzdlIwEgCvH6NpOn8WBT+OH8PzVoBhT9mkbUmLoU/1nCPdFYR6ohgR2vicCMlv+68804kJia6BDNZtV9//RV79uzBd999hxdeeMHVdc2aNa6xmTW98OeVV1652E3ENRs2bHCJbaQNHToUffv2vXg8FOFP48aNXXHq1KmDmTNnomDBgvjmm2/QqFEjrxJieuGPCKHuv/9+l9OQjFuwYAHy5s3rml+cj0QYdfvtt7tciK666iqX+5E4HIkDUJMmTVz9paWnp6NSpUpeQqRI94njo08g6sIfEf2w3JdnozW3nzJlyqDpg247jeifB5yRBFwEnCb8mZMGtByoSlVJySqtac488ru+LNe4eUD3cR4HHzk+aZEqQSatWzNVZktEKm9+pB7T3ILk53eXAB2Gq8fFqefaMsCyH4Elqzxzn/kCyJUTOHYSKNBAPS5lwaQslzjkTFigBC0tawHTByix0rAZQL+3AF/xkb/Tskon4IdfVNmtUjpBjPb4D28Cla73jNx3GCjmfmrRctO4+boDaa5BInY6vFix6TQamNpfuTNJE2HVVa1VyS8pSyZr1dr2veqYtM1TlKDHxWok8NZioM29as1au6Il8Ne/qvyYlCHT2vKfgFo9gSbVgAUv+6PAx/wRoPCH5wUJ+Ccg354XkbW4TtK9I/BZkr7lDJLG7gvcMcweFP6ECS6LYandiyIxQX3Tic0YArzpExxHXwGQPMfKPz7fBsePveKbgOYspi/pJUTo8uP884KvIc7fQ64gfgnw+o3fvfe3cgp/eD5kRoDCH54bJGA9ASlfNWTIEIwYMeKiI44+q3bt2rlKY912221+kxWBz9q1ay8ekxJZw4e7b/5lsjy98CcrApMnT4bMnyOH+pJesMKfjRs3omLFiq4xe/fudbnzaE2+cCXvU/r37w8RHWkxJScpKSZrEcefuXPnXhT9SOkvEQ5JE2cfOa61gwcPonDhwq5fRQAlJcgo/LH+vDYig6gJfyTZN8aPd+VM1x/P1lH4Y8RpzBhGEXCa8EfEMiKaGdAOGPyEh8LdPQBxk/EVjmiluyb0BDo1Uf2lbFWv8cAb870pXldWiVT0Ihrp++QIVaZLayKSmf4C0PgFoFoF4JtxnmPiMFSvj3L50VrZYipfEd1oohkRL4kYR9x+xPUnq1b3OeCLNcDWGUD5Up415LpP/XzyM+BS3b0/cfC55xnv3Pq/DQydDvi6A2nltRrdBXw4ECjbQrn0/PSOEihJm7gQ6DzGWxCl5bv4e6BRf3dOS4Ec2dXPWjm1MV2BHg+pxw4eBQo3Vj+npwK368qWaaXJguGRNa34OkrhT3ztN1cbPAF+eBs8K+k5ct4RzFh2LLRBIfSOdeGPFeW+2tTOj97NVE1uNmMI8HkjNI6+AiBttCYE0n5n2e/QuLJ3bBHQnJ41wY/2v/56kW9iUqTs/H3na4jz95AriF8CvH7jd+/9rZzCH54PmRGg8IfnBgnYh4AIgNatW4cVK1bg22+/xeeff+4lBFq9ejUqV66cIeG3334bX3/9tasEllZWS4RCUg4ss6YX/nz55ZcXu0kOO3bscDnupKamuh5/+eWXLzoJBSv8EUee5s2bQ0pwbdq0ySuNs2fP4tSpU64SZ/JPi3n11Vdj69atrr67d+9GqVLum4ZuByNt7SL8yZXLXZbEHfmRRx5xrV3Kh4lbEoU/9jmvI8nEEuGPWElJzTg2uL6BLq1KlSqo4ufJh4xIIJoEnCb8MZLNrn3A+j8AEeHeVA4oU1SVvPLXpMSYlNsSxx9xCNIELv76ikOOOAiJs02JwkDl671dckJdwwtvA0OmA0teBepVCXW0/ftLCbTq3YCmNYB5g+yfr50yjBXhj7oJcgHL05ZnfhHaCTxzyUhA6v0BqOl2frAaET+8DW0HErvtDm1AiL1TuxdBYkLuEEc5p3v6ltOQcl/RbunjSkd7ypiej88b4W2v62+J/2/yTTQ2EiCBrAloAh+KfWLvTOFrSOztKVcUPwR4/cbPXgezUgp/gqEUn32U8Kckiia0jE8AXDUJ2JiACGREyNK+fXuXqEVKgC1dujTLjBcvXuwqpSVNXHIyKxOmF/5ccH/+7Rv4rbfeQlJSkuthEQRlz549U8cfKS0mwpwaNWq4REjiXtSnTx9XGa6pU6dmmbMm/NF3knknTZp08aFZs2ahdWt3iY4soongSFyDKPyx8YkdIDXNSVg+X4iq8Gf+ggXYtWuXKz1+2w/Q3H6Eh5T5knJfbCRgJYF4Fv5YyT2UuTUHn0GPAy8+GspI+/cVkdT/nlQl0TZNUW5DbMETcLLwJ+3zWS6ryrTvfkatxMuAC6dR65b/AJwPHgB72ohAdiBHPqT9mA1p6UeQ8mwz4NIrkTzYU3c5msnyw9vgaR89eR61+vwd/IAwelL4Ewa0IIakDS+JAnncVntB9GeXrAnweSPyM0RzM9G+6CIRfR1OIp+FEUjAOQQ0oY/2WRidfZyzd6FmyteQUImxPwnYh4AV168Vc/ojLu/Tateu7XKeW7ZsmX02xcJMThzYjH9/mYJyFVtZmAWntiMBOv6ov+3kbz25ycxGAtEmICW+3nvvPXTv3h1dunTxO/348ePRtWtX17Hz58/j008/dTnyiBCoevXqGcZcc801LuecJUuWoF69en5jBiP82blzJ6688krXePm5bNmymQp/5syZg5YtW14U/owZM8ZVnuyBBx6AiJGyaprwRwROTz31FKpVq+bqLq/h2t+aixYtQuPGjV1CpunTp2carlKlSi6nIAp/on0mGzef/v1kVIU/IvoR8Y+0eHf90Yt+hEfXTJ6cjNt2RrIrAe2bsXZ4k0Thj13PEk9e5y8ACY8ARQoCqyfaP99QMnxmAjB6DvDDm94l1kKJEc99nSj8SVu6GANffAY4sxfJbY+g1v/ieQdjd+2uczN3WSBfRSD/rUgeODSqi7XLB6lRXXSYk+05cA4Nk/eGOTq4YRT+BMcp1F6LBpZA6cLuupyhDmb/DATkQ0x57pAPS+zwHp1bRAIkQAIk4BwCfO/pnL1ipiTgS8CK69eKOf3tPIU/Gam4hD+/vo9yFVrwYiEBLwLbN85GsesfQ97CN8UtGbs8d8XtBsT5wjVRzx133IHvv//eLw1x0JEvXYjoRVx8RCz0wgsvoEWLFpg9e3aGMZrwR8qF3XXXXX5jBiP8+fjjj9GwYUPX+OPHjyNv3rwXhT9r167FbbfddjG2lAN78cUXLwp/9GP/++8/5MyZ82LfkSNHuj6nEkegAQMGXIypORT16NEDY8eOhZT+2rBhg2vezZs34+abb3bFEH1G6dLebuETJkzAoUOH0LFjRxQpUoTCHwdfVyLelvdyIvyKqvBHmL0xfvxFdLfeeisKFSrkYJThp64X/rDMV/gcY2FkNnc9qcys4aK5Rgp/okk7/LnGzQO6jwP2LQSKXBZ+HDuNTPsRqN0LmDEAePheO2XmnFycJvwZ2D8JaUs/QvLDeyn4cc5pFlGmco6mbS6BWvc2RvIQVe84Go0fRgRPedGqk0iZdjD4AWH0pPAnDGhBDElpWwiNquYNoie7kAAJkAAJkAAJmEmA7z3NpMvYJGAuASuuXyvm9EdRE/7IMTt8Rm3uTgcf/eclrXBj9T7BD2DPuCDw8zfDcWP9WXGx1swWqb/JHAtOlvIcGAvriJeTct26dbj99ttdyxWxS7du3byWfvDgQTz22GMQxxvNPUccf+rXr+8SAv30008oX768a4y85ol70OOPP+76XYQwBQv6L0WRlfBHynqJsEfKdP32229erj2tWrVyiY1GjRrlcvSRtmPHDlSoUAFHjx69KPyRvMuVK+d6bOHChS63Hmki7hHnIHn8s88+Q926dS8Kf+Sx/Pnzu/IWFyApb/b8889j2LBhOHPmDG688UaXk5EvJ01kJDwOHDjgEhlpjj+33HKLixGbcwhYKvzRl/sS0Y+If+Kt+br9UPgTb2eA93op/Inv/Q9n9WfPAUdPAAXzA9mzhRPBfmNOnQGk1NflBeyXm1MycpLwZ2C/Dkj7ch6WjTjkFLzM00ACtZ8rhFr3NUPy0HcMjJp5KM1+WL7lwT/is0aeNHY/0recNnVfKPwxB29iQm4IWzYSIAESCIeA3HTk62Q45DiGBDISsMtNfO4NCZBA6ASsuH6tmDMzMnb6jDr03TNnxPaVL6JY2UTkLXiFORMwquMISJmvf3d8G/fCn1h6vtBumKekpNDx10FXpLj3iIuPtMqVK0Pcf8S1Ztu2ba5yXSKAKV68uKu8l5TeEoGPOPmsXLnSJf5p164dcufODSm39ddff7nijB49Gj179syUgl74I0IcfdNiyGPXXXedKwdx35E2btw4V1kyaU888YSr9NiHH37oEvJIq1GjBsShSNrrr79+MQcpVZY9e3ZMnjzZ1VfWKP1y5cqVQfgjY7XSYfKzrFtKeOldhJKSkiCiHnECgg1r/gAAIABJREFUErcfaVOnTnWJlaSJeOjyyy93/Sx8pISY5MZmfwL65+SoO/7oy30Jqnh0/ZHal/rGMl/2v2jMzNBOb5Lo+GPmTjM2CZhLwCnCn4EDuiPt8w+wbPg+c4Ewuq0J1O5TFLXqPozkl8faOs94Sy6x227Tl0zhj3mI08d5W/aaNxMjkwAJxBoB+ZtUxLFiC81GAiQQGQE73cSPbCUcTQLxR8CK69eKOTPb2Vhz8DDiDD6xfwP+/W06y30ZATNGYuzbuRrIVRhFE1rFyIrCW4ad7mmFtwLPKJY6jJSgNePPnj3rEsT07t37ooBGn0mTJk0wePBgVKxY8eLDe/fudYlZxAlI30QI9Oqrr0KEMTly5Mh0QeLSI448/prEEAGSiIv69u2LfPnyXewmucq8U6ZMufiYiILEAejBBx/0Ev5Ih4kTJ6Jz585e0zRt2hRvvPHGxXJd4u4jzkJaOTGtc7169VyuQHrXHnEPEiGPJjSSvpLv0KFD0aVLF695xD1J5pEm//set2a3OWsgApYKf+QknKw7uSVZ+WZZvDS6/cTLTge/Tju9SaLwJ/h9Y08SsBsBpwh/5DnvAu8p2e30sSSfbLVpIW4J+Ewm3XPgHBom7zU9JQp/zEO8aGAJlC6c+QcU5s3MyCRAAk4moN1wlDWI8IfueE7eTeZuBwJ2uolvBx7MgQScRMCK69eKOTPbExH+SEtOTub7AR2k7SsHoFjZSnT9cdLFbFKudPtRYGNNKBNr6zHp9Ldt2BMnTuD33393lbM6efIkypQpg4SEBJQqVcpvzuL8I+48W7ZsgYwVN6Brr70WefPmNX2NUrJL3HaklJjkKOW1MmtSpuvnn392remqq65CyZIlI8rv1KlTrrlFoyBOSImJibj00kv9xhSB1OnTp10io6xyjCghDjacgFayMOqOP7ISfbkv+T1eSn75in5k7SzzZfi57biAFP44bsuYMAnYkoAThD8Dn38E2DcPye1O2ZIhk4ougYFTLwWKNkPyq9OjOzFn80tg0aqTSJl20HQ6FP6Yhzi1e1EkJlxi3gSMTAIkEJMEtL9HZXF0/YnJLeaiokzATjfxo7x0TkcCjifA69fxW2jKAk4c2IR/f52GchWamxKfQZ1DYPvGuchX9DYUTWjpnKRNyFRuLmtVTUQoGAvNTvfoYoEn10ACJGAdAUuEP77lvmT5oljLzCLLOjzGzUzRj3EsYy2Sy2XH/W0Kq9dGxx+rd4Dzk0D4BJwg/KHbT/j7G6sj6fpjn50dOe8IZiw7ZnpCFP6Yh7hN7fzo3ewy8yaIo8jyQaY0Op/E0abH6VL1bj8aArr+xOnJwGUbRoDCAcNQMhAJRJ0Ar9+oI3fMhPt++wDH9//Ekl+O2THjE92+cQ7yFbkFRa9rY3xwRrScAEsdWr4FTIAESMAgApYIfyR3X9cfeSxWxT+HDh3CTz/9lGHL6PZj0FnMMIYRcLLw5/M1wNL0jCikJOfNVwGJ1wHXXQFkz2YYLscH2rYHaDcE6NoUaH1PeMs5fBz4YzdQsjBQukjoMS5cAF6eClySC3j+Yc/4fw4BI2cBVW4EHro79Lj6ER1HAvnzACO9y6JGFtSGo+0u/Bn4Ym9g7/tIbrPPhvSYklUEavfOi+Rh76FWHX5zzqo90OZN7LY7KilQ+GMu5vRxpc2dIE6i86ZPnGw0lwm924+Gg64/PDFIIDICfA2JjB9Hk4CVBHj9Wknf/nMr8c96Ov/Yf6sMz1CJfiqi6HWPGB6bAe1BgKUO7bEPzIIESCByApYJf/y5/shyYlH8I6IfEf/oG0U/kZ+8jGA8AScLf1oNBGarL2dn2trXA956FsiZIzx2u/YBw2YAZYoCfW0k7l/+EzB3OVD7NqBZjeDWduwkUK2r6rv6TSB3ruDGab2mfwkMeg/47S/PuPpVgZ7NgbqVgo/10XdAkxeAVzsCfVp7xvWeAIyaA3w/HrjjpuDj+euZPBkY9D6wey5QKgxxUmSzR2+07YU/fR9Twp/HoseEM9mfQNqPwMAPb8WyFT+alqxmQVyzZk26d2RC+ejJ86jV52/T9kAfmMIfczGnDS+JAnmymztJHETnTZ842GQuEf7cfjQsdP3hCUIC4RPga0j47DiSBKwmwOvX6h2w//z7tszEv7/PR7Fyd6PoFXfYP2FmGBGBfTu/w7/bv0Gxa5uiaILug+uIonIwCZAACZAACZhHwDLhjyxpWVoaNm3alGF1sST+8Sf6kQVT+GPeSc3I4RNwsvCnRFNAXGIGPwHclqAYnD0H/LoT+DId+GKNeqxzE2B8z/AYzVoGtB4EtKwFzLJR+drOY4CJC4E3nwE6Ngq8NnHZaTUImJMGbHgXqFA+8Bh9jxfeBoZMV4/U+h+Q71Lg45WeHjtnA2WLBY4p+3Nze+DQMWDrByqOtO17gataA02qAQteDhwnUI9vNwLVu2UUFwUa57Tjdhf+1L7rOiS33OI6Z9hIQCPgEv7MTsCy734zDQo/vA2Mds+Bc2iYvDdwRwN6UPhjAMQsQiwaWAKlC4epcDY3NUdF5/OGo7aLyYZJwJ/bjxaKrj9hQuUwEgAuiupSUlKQnGyjDw64OyRAAgEJ8D1gQETs4Caw77fp+PePj1CsXE3gwlnkLXgl8ha8gnwcTuDE4Z2uFfy74zucOLwdeS+/HsWua428hSP8VqrDuTB9EiABEiABexKQLzzL5zf6ZqnwRxJ5Y/x4v7ScLv7JrLyXLJaiH3teIMxKfUCFP1Mc58ixZz9Q2l0lZtfcjCWnzl8AOo0CUherXT7xKZAnd+g7/uxEYORsYHQX5Wxjl3ZrB2D9VmDNJFXSLFB78yOg02hg6FOhOxfJPDJf8ULAFyOBW65Ws/19ALiuHXD0BPDFa8B9iYGyAKZ+Djw6NKNgqcNw4N0lwPp3gIru+IGjZd7jxGkgXz2V60/vRBLJ3mPtLvyRm0sXltmbIbOzhkC22sAFUSSa1PjhbWCwi1adRMq0g4E7GtCDwh8DIGYRIqVtITSqmtfcSeIgOp834mCT43yJWbn9aGjo+hPnJwmXHzYBvoaEjY4DScByArx+1RbITSRhIe8F2LImsG/LLJfw5/iBn3Hi4BbicjiBvJfLt4mzoVhCc+QtcqvDV8P0SYAESIAEYp2A9oUu/ec3lgt/Vv/wA1avXu2XvVPFP9u3b8eff/6Z6fnUtUuXWD/XuD6HEnCq8EfcZhr2U2KUvfP9w/9jN3Ctuwzv0lHAPbepfnKv+at1gJTLElegTX8C1SsCTasDbe5TLjTiGvTSu4A4U4irUOUbgGoVlABI2u79wKergaXpyl0ofx6gaQ2gVW3VV982bwdGzgK+2aDKZIkY5aGaQP9HMpYgW/Uz8O4nwJpfASnNVbcyIOXKNHHPgm+AD5Z6Spw1ugtofBfw5AOZn4Cam851ZYH173qX+AomN02U824f4PH63vOIe4/E+PYN4K6b1TFhu2wdcFVJoEMDT/9TZ4CEtsAlOYGf31f/S5PxEuex+4EpfY27kLTcjnwMFIjR+6EU/hh3vjBSdAlQ+BNd3v5mSxq7H+lbTkclkcSEjMrbSgmXuOZOvPYS+DselcQMmkQ4Ck+rmvATcRVbZAR40ycyfhxtfwJZuf1o2dP1x/77yAztSYCvIfbcF2ZFAsEQsOL6tWLOQCxq167tEv/QuSwQKR4ngfgiIM9XmrsEXQ3ja++5WhIgAfsRyOw9pOXCH0E1f8EC7Nq1yy+1QoUKoVy5cpD/ndACiX7o9uOEXYxuji6xzf8LUOzwZsmpwh8RPKRMCVyC67IHvB1pRPQjjjPTvlB7LsKhk2dUH2lJDYFJvdXxdkO8z4uH7gbmDgRW/wLc19sz5upSwNY9nr5bpgHXllG/L/4eaNTfM1eh/Er8I61XC2BUZ/XzufNAv7eAETPV7yJU0XKS31dNBKrcACSNBN5yuxhpM77RA+jyYObnsMbKt18wuQmv595U+Q150ts1SYRMNboDtycAP0wCsmdTOTw8GJj5FfBUQyC1tyev8QuArq8DH7wItL7H83izl4D5K4CtM4DypYy7FqXUl5T80u+HcdHtEYnCH3vsA7MInQCFP6EzM3pEYrfdRoeMKF7HBgWQVL9ARDHsNlgEQem/n3GlNemTo6amlz6utKnx4yG49i1nET7Y4T16PDDnGqNHIBi3Hy0buv5Eb184U+wQsONN/Nihy5WQgLkErLh+rZgzEEV5LyziH2lmuvMGyoPHSYAE7EVA+/IARYH22hdmQwIkEJ8EMntOtoXwR7YkK/GPHLe7+4+U9hLRj/yfWaPoJz4vvkCr1i5OO/whZbbw55cdqtyWJrRpW0eJa264MhClrI/X6wN89gMwsjPwTAv/faXcVw63wGRtKnBbAiCOOU1fVK4743ooFx9pQ6YBL00G7rgJ+N5djTD9N6BSR+9yURLztidVma2XOyinnRKXA/uPAOUfVmKdz0YAdSspxx4pRyaPLRsN1Pqfmuuj74AmLwBliwE7Z6vHBr+v5hcRjbjeSLkrGd/2FWDht0CTasCCl1XfMXOBXuPVumX9WbWz54AyzZVr0e65QCm3IUAouenjb9gK/HsYWP2zEipJ069Nfhfhj7gt9WkNNK+p+giDMi2A8iWBtW8BObKrx8Xh6I7OQPdmwOvdIjsnfEff+4xyHwq2HJqxs0cnGoU/0eHMWYwnQOGP8UxDibjnwDk0TN4bypCo9I1F8Y8enJkuS4sGlkDpwjmisk+chARIwHkEgnH70VZF1x/n7S8ztp6AHW/iW0+FGZCAMwhYcf1aMWcwu0HXn2AosQ8JxA8B7bkqHv4+0ISPLHcYP+c3V0oCTiOQ1ftH2wh/xPFHxD9ZNXH90RyA7LQJgVx+JFeKfuy0Y/bKJZ6EP0+PAiYt8ubfsRHw5jPh74mIbwo1VGKSr18HatziP9bfB4BSD6lju+YCpYsAr81S5bsGtFMiH61pgqAH7gAWD1WPimCp40igUxNgQk93nH3qMXGmGdfde16ttJTmzrPoO6CxW+DzxwxPaSspeTVkuioPJuKYlZuBO90lxH55H7j+Ck9cKflV+WlvkZDmqDPzJVVaLKu2ZBXQoC9wf2Xg0+GensHmpo994jSQr573bMHkICNemQYMeEexFcZa08Q5ez4EShYO/5zwN9J3P4yNbo9oFP7YYx+YRegEzBb+yLcVly9fjpo1a0I+oGDzJrBo1UmkTDtoSyyxXrYqdclRU9x/UtoWQqOqMVrX0pZnKpMiAecQCMXtR1sVXX+cs7/M1B4E7HoT3x50mAUJ2JuAFdevFXMGswt0/QmGEvuQQPwQiCe3Hwof4+e85kpJwKkEsnpOto3wR+AGI/6RfuL+U7BgQcvLfwUj+JF8y5Qpg6YPZlF7x6lnFvM2hEC8CH9+3QlU66rccPStyGXAt294C1xCAStxb3hUjTj8MXBZJve5PlgKtHlZOe2IK43WpHyVONL8vgvY+Q8grkSj5qijgx4HXnTH7jAceHcJMPl5oL2P4EVER5v+BLbvBXbsBRZ9D6xYr2Kc+FSVxFq6VpUEk3ZdWeUOdF8i8L9rgWzuslhyTJtH8nyhrTcJKSEmQiMpSbZ3vjp2RUvgr3+DK2HVPBn48Gvg/X5Au7qe2MHmps/m0DFg9BzlHjTva/W/tB/fBm69JvMd3HcYKPagclf6Zpyn35fpQJ1ngZceBQY+HsoZELiv3u1JE30FHuW8HhT+OG/PmLEiYLbwh5yzJjBy3hHMWHbMtpjo/BP61rSpnR+9m10W+kCOIAESiHkCobj9aDDi4Vu9Mb/xXGBUCdj1Jn5UIXAyEnAoASuuXyvmDHZ7tJvfFAEHS4z9SCA2Cdj5ecoM4nrhI5//zCDMmCRAApEScFXv+f+SrMnJyRlC2Ur4I9mt/uEHrF69Oqg1iwBIWrly5YLqb1SnYMp6aXOJQ5GIfvLly2fU9IwTYwQo/IlM+KMJem4qB2ya4v/kEHHPPc8od595g4CmNVS/qZ8D/d9Wwhl/7ZNhQP2q6sj17YDf/gLWv6NKb0kToZCM10qX+caofAOweqJ6VHJ4dqJHVKT1lRJffdsAXR4ETp4G8vqIivzlVacS8PkIYM9+VT6sQF7g8GJvAZHvOE1wI48fXAQUyu/pEUxuWV124v4jJc+Ez3v9gEd1oiLfcc9PAobPBFaMBapXVEdFmFO5I7BlF7BjlnduRlzu2/YAV7dRkc59BWTXCa2MiG+XGBT+2GUnmEeoBCj8CZWYsf0Tu+02NqAJ0VK7F4G4/8RiS99yGlL2y+iWPq600SEZjwRIwOEE/Ln9iKhHPtgO1PiBdyBCPE4CHgLxdnOMe08CsUTAiuvXijmD3TPtPQKdc4Mlxn4kEJsE7Pw8ZRbxeCptZhZDxiUBErCGgO2EP4IhFPGPhk1EQGYKgEIR+2g50enHmpPaabPGi/BH9sWMUl+9xgNj5gJJDYFJbkcd33NAXG7E7UaccsTxJWcOQHOYkb5dmwJ33wJcU0a58YiYRlx8/p4HlLgcOHgUKNxYRf3vSzVexCp3dwe+3QiIwOfhe4BbrwWuLQN8shLoNBro3gx4vZt3NuKM88Ua4LMflPBIa2tTgSIFgXKt1CMfvZL5mSxiodsSgI9XAg37qXJZWkmyzEZ9vR6o2UOt79ep/ntlldt/54BPVwOVr/eIofRR2g1RAqhRnYFeLfzHF6HUla0y5qvtz8jOwDOZjI3kun79Q6DnG8BTDYHUTM6RSOLbZSyFP3bZCeYRKgEKf0IlZlz/oyfPo1afv40LaFIkuv6EDjZteEkUyJM99IEcQQIkELME9G4/cgNPvhkm//u6AF24cAG+IiG6/sTsacGFmUAgHm+OmYCRIUnAEgK8fi3BzklJgARIwJYEtL+T+CUIW24PkyIBEsiEgC2FP5JrOOIfGScOO/JPWqRCoHDEPhpnin54zQVLICtLrmBjGNXPlcufKUh+zKiI3nGkjFbqYo9DTts6SrBzw5Xhz1elE/DDL8DbzwEdGmSMs3k7ULunKkU1vCPwXGvlrFPhcUBKZ017AXjkPs+4JauABn0BEdfsnK0e/2odcO//Owbpy4RNXgI8MRwQp6Ef/t/FJq/OiEDLSYu9bB3w/WagfhUl2NGaiItuaq8ch74aBRQtCNzSQR09+gmQP4+n79lzgAhYTv8H9Gyu5hOhR8oUYPATwIB2WTOckwa0HAg0qQYseNnTN9jcvtkAvDTZv8BKE/RI1O/HA3fc5D8XKVMm+68vBybrurk9IKXDts305hj+WeE9MjEJWLsl69yMmsvKOBT+WEmfc0dCgMKfSOhFNnbPgXNomLw3siBRGC1uP+L6E6vNDNefRQNLoHThHLGKzPR18dvNpiPmBFEmoP/Gqib40VLwJ/zRjukFQPzAO8qbxukcS4DCAcduHRMngYvC15SUFL+lE4iIBEiABEggfgjI5wLyvk7+DmIjARIgAacQsK3wRwM4f8EC7Nq1K2yemghI+79gwYIZYh0+fBgi8tGa/udwJq5SpQqqVK4czlCOIQFLCZgt/DF6cfrSWOKYoxfVSPmpiQtVeS1p91dWrjji1rNyM3BnF/W45uAjP/+8HXhwgCpZ1eZeYPoA1ee1WcBzbyo3GnGlkSbiIBEJvdYJ6N1SPXbuPPDKNCB5svr95/eUqOmFt4Eh04FBjwMvPuqhsHEbUPEJ9fu+hcDxUx7Hnw3vAhXKe+L2eVOVCWt0l8cNSMth4StA47uyprvgG6Dpi0o0NNq9dhkRbG7jF6h1iahHynQJR2nCuWWKch+6PQFIT1WP7z8CiKgoWzbgwerA77uAGx4FROw1tb8nV01A5U+4JU5AUobs7luVW5M0EY8JNxFJiRBLa/76yrFfd6p5s3I6ypqcc45S+OOcvWKm3gQo/LHujFi06iRSph20LoEgZ6bwJ0hQum4pbQuhUdW8oQ/kCBcB3rTliRBrBGrXrn3R4cd3bVkJf7S+ck3IB9/80DvWzgyuxwwCfA0xgypjkkB0CPD6jQ5nzkICJEACJEACJEACJBA8Afk8JtjSq7YX/siyw3X/CR6ZcT0p+jGOJSNFn4DThD/i9CPuOtJEGHJJLvXz4eOqVJfWWtYC3noOuMx9/2vDVo+zTotaQKXrgXVbgJlfecZUqwCM6gJUuQF49QOgb6pyARJ3oGFJyj1HXHRk3s4PKhchEQKt3+qJMeRJoM/DSgBT51n1+MDHgWtKK/HKu58oJyLp1+8RdVychcRhSObq3EQJbOYsV65GIl75eqwqPyatXh9VMkzEOB0bAe3rZX7OSJmu+s+rsmbjunv66UueZZXbqp+BO9yiJ2EjYhwR4cxf4eEvzkdXFle/C8uHBwMF8gKHFwOtBwGz04At01Q5NGnC7KrWytnol/eBXDk9eW3fq45J2zwFuLGc+jlpJPDWYm9hVmZ9pf/g95VT0dhuQLdmmfOJhSMU/sTCLsbnGswW/sgb4+XLl6NmzZpBv0GOl51IGrsf4jbjhJY+rrQT0gw7x8Ruu8Me629grIulDIXlJxhv+phNmPHtRCAY4Y+d8mUuJGB3AnwNsfsOMT8SyJwAr9/AZ4cw4t/WgTmxBwk4mUAoN5idvE7mTgIkQAJOICDPyfJlrmAdKR0h/BHwdhf/SGkvcfmR/9lIwKkEnCb8eftj4KnX/NMW4cydNwNP1AfqVcnY58kRwDufeB4XgYqUzLr1GqB2L/X45OeVmEYTzchjlW8AVk9UQqGaPb0FRnUqAeN7KHeghd8qUdDe+ao8V5cx3vNJLJnzlQ7egpTd+5XrkAh99K3/I0CvFsrpRmt9JgEjZqrfRDgkAqLM2nebgGpdVTk0cdfRWii5aaXFfOd4qiHw0qNKrKQ1EUqJYEocimSNUsLMV3QkjkydxwCzkwERYOnb4u+BRm5noLNLgRzZ1dFbOyhx1ZiuQI+H1GOZ9ZW1XfuIKqX2z3ygmNs1KHNKzj5C4Y+z9y+eszdb+MMPbzM/u4wWm5h5Hsey8MeMUl+yF7HMLLNzTRP6SSmjSBqfNyKhx7FOI0Dhj9N2jPnanQBfQ+y+Q8yPBDInwOs367NDu/EkvVgClFcSCcQmgVBvMMcmBa6KBEiABOxBQP/eK+aEPxpiuwmAKPixx8nPLIwh4DThT6Sr3vQn8OffwPVXKBceKUslTcpU/X1AOexoLjQHjiqRj4hH8uZW/Q4dA378XYlSpMyYONdoTStHVbKw5zEpOyVzSitTFLj5Ku8xWk8pGfbbTlWmqlB+JUa6vID/1YpjkDjnSDyt/Ja/nkdOAAUf8AiXfPsEm5uwkVJpMueVJZR7T+FMcot0fyIdP2wG0O8t5XAkoqNYbxT+xPoOx+76KPyxZm/3HDiHhsl7rZk8xFlj3b0mdclRTPrkaIhUAndfNLAEShd21+YM3D1mesi3YOQP42D/IPa3cN70iZnTgQsJggCFP0FAYhcSCIEAX0NCgMWuJGAzArx+A2+Ixkh6RvJ+O/BM7EECJBBtAvobzFJShmV+/e8AHZGifWZyPhKITwLhiH6ElGMcf3y31Q4CIJb1is+LLZZXHW/Cn1jeS39ru7sHsGI9cPxTj3gpVhmIkOmGR4H6VYHFQ4HsblFXrK5X1kXhTyzvbmyvjcIfa/Z30aqTSJl20JrJQ5y1Y4MCSKpvU5VpiGvx190s4U9K20JoVNVd59SAPJ0SQv+Hcbg3JHjTxym7zTyNIEDhjxEUGYMEPAT4GsKzgQScS8CK69eKOSPdIYp/IiXI8SRgPwLh3mC230rMzUh7/qMwylzOjE4C8U4gkudkxwp/tE2PtgBIHH40l594P/Hiff3yIh9pGQFh6BLbAIbEinRPKPyJlKC9x0//Emj7CvDZCKBuJXvnGkl2/50FqnUD9h8G1kzK3C0pkjnsOJbCHzvuCnMKhgCFP8FQMr7PyHlHMGPZMeMDmxAxtXsRiOtPrDazSq61qZ0fvZtdFqvYslyX5vqj7xTKN5LlD2x5Xywf5hnxfj8uN4GLdgwBCn8cs1VM1CEEnHgT3yFomSYJmE7AiuvXijmNAKkX/1y4cMGIkIxBAiRgEQGK+YIH7/tFI5Y9DJ4de5IACYRGQD7bDOdzSccLfzRMIgCStnr16tDIBdFbhD7SqlSu7BL9sJGAENAEO/JzJDcEtA9a7fBHEoU/sX1unzoDFG8KJDUEXusUu2sd/D7w0mRg8xTgxnKxu07flVH4Ez97HWsrpfDHmh01S2xi9Gro9hMZ0fRxpSML4NDRvh/G6ZcRigDIoctn2iQQEgEKf0LCxc4kEJCAU2/iB1wYO5BAHBCw4vq1Yk6jtlJyr1mzpuumFBsJkICzCcjfBPxbOfg91H/ZiNyC58aeJEAC5hOIGeGPHtWuXbuwa/duuP7ftStkinqhjwym2CdkhHEzQPuQVF7cpYUjAKLwJ25OF1ss9OgJIEeO2C71deykQp0/jy2QRy0JCn+ihpoTGUzAbOGPCACWL1/ODyR1+3b05HnU6vO3wTtpTrhYFq6YVeJLvxNpw0uiQJ7s5myOzaP6c/3Rp8wP52y+gUwvagQo/Ikaak4UJwScfBM/TraIyySBTAlYcf1aMSdPARIgARIggcgJ8Pk7coaMQAIkYDyBmBT++MOkFwCJKEhrZUp7vgVLgY/xJ1isR9TbIMpawxEAUfgT62cJ10cC0SFA4U90OHMW4wmYLfwxPmPnR9xz4BwaJu+19UKktFfH+vljtsRXNEQ/ssGLBpZA6cI5bL3XZiWXleuPfk4KgMzaAcZ1CgEKf5yyU8zTKQR4E8gpO8U8SSAjASuuXyvm5N6TAAmQAAkYQ0Cew8MxAzBmdkYhARJwOgHtC8tGPo/EjfDH6ZvP/O1LwPeDUsk0FAEQhT/23VtmRgJOIkDhj5N2i7nqCVD4E/3zIX3LGSSN3Rf9iYOcMVbLe6VvOe0iMGnJMWg/B4kk7G79Gx/DQ3WuuzheX6o27KDRfgLSAAAgAElEQVQOGqi9Jw8mZQqAgqHEPrFIgMKfWNxVrslKAryJbyV9zk0CkRGw4vq1Ys7IKAUerV+T9DbyZlbg2dmDBEjAHwG5uax9HrBs2TJCIgESIAESsJCA9pws/0sz8jNJCn8s3FhOHRsEfF1/9KsKRgBE4U9snAdcBQlYTYDCH6t3IPT5t/wFHD0JXJYXuLZM6OOzGnHkBDB+PlC0IPBUQ2Dx98D6rUBSQ/WYnRqFP9HfDSuFP+Lkk1kThx9pWfWJPq3QZhRBjwh7fFu0hD6+87a5dSN6P1n34sP+BOuhrTD2exv5x3bs0+IKY4EAhT+xsItcg50IxOJNfDvxZS4kYCYBXr/G0DXCId+YTBiFBEjA9+ayEBHhT61atQjHRAL615OaNWuSt4msGZoEnETA33OyPB+LSNqo52VbCH+OHz/u2hft/2Pu37XN0h530ubly5fvYrr5dT/L4/pjTloTc82cQKCbKFkJgDSltR2+/eDK5c8UJD/G3SYBEnAaAQp/Itux8xeACxeAbNmA7NkiixXs6GvaAFv3AA/dDcwdGOyowP3OnQceeglY+C3wXj/g0brAyNnAsxOBEU8Dz7YKHCOaPSj8iSZtNdfuA+fQyKJSX+njPGV2o79y82cUgU/S2P3mTxTkDM3LL0G/Zzpc7B3oPWuQYeOiGwVAcbHNXCTkvY/3G58L8oaIjQRIIGwCFA6EjY4DScByArx+jd0CXwEQ32MYy5fRSCAQAd9r0Oiby4Hmj+fj/thr/OOZC9dOAvFOQIQ/tWvXdmEw6znZEuGPCHnknwh8nCjqMerELFG8uCtUcff/RsVlnOgTyMr1R59NMA5A0c/eM6NThT/j5gF//Rs8ueT2QN7MDQeCDiQ31b/bCDSpDtx1c9DDotLxn0PAyFn+p8qeHbimNHDP7cDVpaKSDieJAgEKfyKDXKIpINdNhwbA289FFiuY0f8eAoo3VT2NFuO8NBkY/D7QohYwO1nNIW4/t3YAyhYD/pwJ5MgeTJbR6UPhT3Q4+86S2G23JRNT+BNd7Hre+j8uo5uFs2bT3q/L/xT/OGvvmG14BCj8CY8bR5FAZgQoHOC5QQLOJcDr15y9C/SlVzkujhjSjPq2uzkrYVQSsBcBrURMZteN5ixhpJOEvQjYOxvhv3z5ctfnClrjZwz23jNmRwKRENCek+W6l5aZ2Yf0M/P9TlSEPxT6BD5VxAVInIGiIQIKVqQSOGv2CJeAXQVAThT+iLNFznuD34kCeYHDi5WrR6Tt3meAr9YBn40A6laKNJqx40WU9OCAwDEXvgI0vitwv1jpsfwnYO5yoPZtQLMasbIqtQ4Kf8Lfz937gTLN1fg3egBdHgw/VrAjZU4pxSWtbR3gxnLBjsy6n5zfLVKA4oWAze8BRS5T/eXL+yWbKXHTF68B9yUaM58RUcwW/viz0DQib6fFkD8o9HXcm3eaiG05m0R9GRT+RA95z4bZ0O5+j8JX+9ApehlYP5OsWfvDO1A2+g/geNMnEC0ejyUCFP7E0m5yLXYgwNcQO+wCcyCB8Ajw+g2PWySjMvtygu/fr9oc7K9IkI/iwPMh6/MhkmuTY40lEEgAKQ4g/j67yKwsG/ur/SEfxYHng7XnQ2bu6laVVTRV+COCn73//BPXrj7hvDyY7QRE4U84u2LOGLsJgJwo/PnvrCpno3ekFzHOmx+pG99yE1/fCl8G3Hu7MfvZewJw+Dgw/GmgcAFjYhoV5cV3gZenAvdXBro180Q9eRrYvB14bRZw9IRy/Pl9ujFCKKNyNzNO5zHAxIXAm88AHRuZOVP0Y1P4Ez7zxd8Djfqr8d+PB+64KfxYVo7cvheo+IS6tv2J+loNBGanAU83Bib2sjJT77nNFv7wfY+Ht95a/fu1f6Dr5DxRPxEo/Ike8sUDS6BU4RzRm9BmMwV77fv7xh1v+thsM5mOqQQo/DEVL4PHIQG+hsThpnPJMUOA12/0t1L7coJ2w1vvYKL/4oqWGYUeigSFP4pDvJ8PmmMES0hF/7nL6Bkp3FBEKeRRHHg+OPN80D8nywoyc/wx+vnDN54pwh8KfozbNhEBGe0CFOyH4MatgpEyI2BWDb9wiTtR+ONvrf3eAobNAFrWAma5y9yEy8Sp4zQ3oszcSxZ9BzR+Qa3u/FfxI/yRUkdS8mjNJCDxOqfurv+8KfwJfT9FKLP6Z2DeCmDmV2r85OeBgvmApm5HqA+/Bs6fB6reBJQuohyjvt8EJJQFurpLdcm4Q8eAj74Dft4O7NoHFMgD1KmkhIbiNObbVm4GjpwAShYGbrlaHd2zH/hmg7oeH6wOnDgNfLsBSP8N+PNv4LorgKbV1dy+TdzPavcCVqwHmlQDFrycsc+ImUCfScB1ZYFfp4bOy6wRFP6YRTZjXN8/oEe+/Tlm/FQhegkAoPAnOrhTuxdFYsIl0ZnMprME+psnK4tt3vSx6aYyLVMIUPhjClYGjWMCfA2J483n0h1PgNev47eQCyABEiABEiABEiCBuCZgqPDnn3/+cTn8sBlPwEgBUKAPwY3PnhF9CdhN8KPlFyvCn7t7qJvfo7sAPd3le7Q17jsMdBkD3HAl0L4eMOVTYNoXwJyBwO0JwPFTwKergbQfgc9/UDfe5Sb54/VVOR6tLVsHTP9S3dR/2F1q7MkRgDjqiJvMmLkqxsZtwG0JwLOtMpbWkb7jFwBf//+N+nVbgIpXq5JhUmYoV07PXJMWAV+tBfq2AbbuASYvUcKE6ZmU8jp7Dsh1nxqfmXuJ5H/PM0qQcORj1Vdck8QtScphfbEG2PQnUL2iEhq0uQ/Id6knp25jgX8OKkelOcuBdz4GOjwAdG4SPMO//gXENemaMoqt7MPH3wNFCwKt7wGefABY9TMg6//6J+DSSxTrF9p6C5Uk71nLABEzrfkVKJgfqFcF6NQYKFVE5bzgG+CDpcrtRFqju1SJM5lDmhF78e8hYNx8tYYtu9QeNagKDHxciTvMbhT+hE548PvAS5MzjhO3sL3zgR3/AOVaqePikPPWYmDtFvV7n9bAqx3VdTNkOjDgnczn930ukjEFGypnnqcaAqm93XMsBMSVSpqU43rkZVWay7d9Mw6o5qPVkGug9SDVU1y8rimdcZyImx4e7D7nP1PXlB0ahT/R3QW964/M3O6lr7H54LVRSyJawp/0Ladda0r//Yzr/8RrL0FiQm7T1ynzJo3db/o8WU2Q0vZyNKoafTcnSxftM3lWf+9kJfjRwvCmj512k7mYTYDCH7MJM368EeBrSLztONcbSwSsuH6tmDOW9oxrIQESIAESIAESIAES8BAwRPgjDj9bt20j1ygQMFIAFIV042aKYMVU/gQ/gep7RhNiLAh/9KKXFWOVcEXflqwCGvRVYp49B9SNd2kifjn9HyBOOeIII61sMUDEKVqbMcAj8hHhyxvzlfBFhDri1FHaLTKS2L/9pUQ1WnyJ8e8CJWqRJuKBFslKyCNN37fNvcD7/YEc2dWxKp2AH35RN/q/3age6/8I8MqT/s8OEexUeFwdO/4pkNfPfc5Oo1U5NJlLBEQiRHh0qBLfSBPhw8kznvyTGgKT3OIEKW9WqKHqJ2IpTQjx2Qj1e7AMxTmlRYr/Ncij4tikCXX0vfT7IEIuyVv2VctbE0rcVA5Y/rpinjRSiTb0Tds7I/ZChGHVuiqRhuzlFcVUSTWNUXpq5us06giFP6GTHD0HWLoW+HilGiul70SAV+l6YEA7JRhr+qL/uLOTgRa1gP5vA0Onqz5yztWvqq6nFRvUdas1/fX/+y4goa068tazHgHa468qMaK+3XObOodFSKid27X+Bywb7eklbj83Paaed8SpaJ5bAOSb+fwVQLOX1KMibJLr3A4tWsKfYG7224GHFTkkdtsdtWnNFv6kLjmKSZ8czXQ9HRsUQFJ98+pz2kH4YzbjqJ0sEUzk7715KM8BYhkvMWiZHsEmcKhjCFD445itYqIOIcCb+A7ZKKZJAn4IWHH9WjEnN58ESIAESIAESIAESCA2CUQs/KHLT/RPDIp/os880Iy+H5b69s/K4Ucb6/sN/EBzmnHcbOHPLzuA1MUecYm4vIigRNx3jGoi2pFyTtKOfgLk9/nCu97hQ26oixPPVSWBG8sBz0wARAgggpPk9uom/qkzwIMDgM9+UEKAwU+o2IlJSvCiOeqIcKBhP3Wsxi3A+B5KQKDPZ8s04NoySiT0vyfVTfzhHYEezYFcOZTbzn1ucY0IRUREI040eet56LzWCah5K1C+FFDkMv/Upn6uxDAyXi84+e+syllu/r/6gRr7w5tK5KAJHKTk0LgeHjeRIdOUI8odN6m1ShNHoFo91c8ijpI13FxeialEBBEsw+cnAcNnqjjPtACSGqm9uKuLR0wkjk3iyiMllhr1V8Inme+51oCIvETEJe5EImAa0xUoVki5tIgIR0Rb8liPh9Qc4sLUa7yaa2Rn9ZhReyEuKpLHsCSgd0sgZw5vt5jTXwCX6FycjDrf9XEo/AmPqpTmuqm9Gju1v7ezl17UI8dFcCfn6RXFgezZVPmt8g+rseLcM6Gn2nutiSBIYkjbMUuNkzYnDWg5UP28NlW5gkm7xu3qJT/LtShiO7n2pO09qMRCIiaU627nbM88ehGdiN3uvsU/C/3zlPZ8FB41Y0dR+GMsz3CiHT15HrX6/B3O0JDHmCVKEcHNpCXHoDn9ZJWYOP+kdndbwoW8gqwHWC38SRteEgXyuJXDBq/NKeF8RT+hCH6cskbmSQJGEqDwx0iajEUCcAlH5bWHrz88G0jAeQSsuH6tmNN5O8OMSYAESIAESIAESIAEgiEQtvBHXH6krJf8z2YNgavLl0e+fPmsmZyzXiSQldtPMCW94kn48/QoVbZJ3zo2UqWxjGpSBuuJ4eqm+U9+Su+IOEdufosoZvWbHlcdmb/dEEDcbN7rC1yuMwPQBEEiuhFRh5T/yucW42iOOiK6SJmi5l05Acijc9kp0VSJfLQb/yJWEYcaKTU2+XnvlTd+QZWs0lxtVv8CVO2k+ix8RZWnCtQ0NyLpJ+4zWtO7D8lj7/ZRJcykvTZLOYqIuEkTGsjjmiDogTuAxUNV35GzgWcnqp//mgOUKeqZI1iGMqJ6NyXk6dYMGNvNE0Nj0K4u8L5bTCVHu48Dxs1TfWXMiJlAn0nKpWXze0DuXJ4YIj6SfdM7FYk4R0odzXwJaFVb9TViLw4cBYo0VvFk76ve6Mlj4kLlLCVl2vw5LwXay1COU/gTCi1PX3G5kvNW2uYpSgSotdq91HUhzVcUJI+9uwTol6oEhj9MAgr7mIjI+SrnrbSDi4BC+dXPct7K+StNE4XpzyNx4pFz2lfcJ6JGEROKKHHTFE+e2vOaryDIl4j2/OhvreHRM2aU2cIfce5Yvnw5atas6XLvYPNPIH3LGSSN3Wc6HjOEP4FcfjJblBm5WCn8Se1eFIkJNqnhZ/qZlPkEvHliIXxO7UgCFP44ctuYtI0J8HXIxpvD1EggAAErrl8r5uSJQAIkQAIkQAIkQAIkEJsEwhL+0OXHPicD3X+s3wt/bj/BCH60zONF+PPrTuXCsv+I957Jje1v3wCuv8KYvdRKWD3dGJjYyzumlN8p2FA5ZvgrAya9xRXn5x3Atj3Azn8AEd6Ig460tDHKbWflZuDOLt6OOvX6KFegD14EWt/jmVfKh11aV/0u5cT+PaxcPaSJkKBkYe8cRTwkYhgRvIjwZcJCoMsYoE4l4PMRwTHS3Iikt174I78nlAFuuUY5Hd18VUY+f+wGpAyRrF0cmkbNUX0GPQ68+Kj6WZxKxLFkyJNAv0cy5hQMQ+lzSR019o8ZSryjNc315JtxHuchOaYx/nAQ8GB1oFwr5erTqwXQoKp3Hgu/VaXYnqgPvNNHHbuipeqvOZ1ImTUj9uLYSaBAAzWH8O7cRO2XOD+Z7fKjXzWFP8FdH769NEGZPH52qUcMqC8bqBe+BZpFxu3eD3y1Vol+5PlG3LB+neoZqYnepHyfnOfSvkwH6jyrftauf9+5tHP4obuBuW7HoOOngPxuAV/XpsC47pln+OK7wMvuPA4tBgraRDtstvAn0J7xuIdANMQ/Zohtwi1VZobzj1XCH4p+1HlspxK6fG4hAacQoPDHKTvFPJ1CgDfxnbJTzJMEMhKw4vq1Yk7uPQmQAAmQAAmQAAmQQGwSCFn4Q9GP/U4Ein+s2xNft59QBD9a1hT+GCv8ubk9sHm7ctIRRx19E0GLlMoRkYmITfRNSmpJ+SuXeCKTpt0oH78A6Pq6x6nm/AWgkFtQ9O8CoGhBT4D034BKHT0OHVLaSkpcBWqa6KX9MOC9z7xdarIaq3cj+vm94MuoibhJShKJMMZf+2QYUN8trtEcjHzdfkJh+NMfqtyZrzPTwaNAYbd7zn9fesom6Rlv+wD4+4ASXwVqmjhJSnqVbq6EOYcXA9myqTJjRu3FB0uBjqOUyENrMtdj9wPiFKV3IwqUc7jHKfwJj5wmlPMV123cBlR0l/abnQy0yMQoZstfwIylwPebgE1/+r+G9AK0M2eB3G7Rm5Ssk9J10obNAPq9pX7+ex5Q4nLv9YhosmgT9djQp5SLlDR9+a5ArmCtBgKz09R1IEJEuzQKf+yyEyqPkfOOYMayY6YlZbTwJ1y3H22BUvJLBEBGNSuEP21q50fvZpnU/zRqYYxDAiQQswQo/InZreXCLCLAm/gWgee0JGAAASuuXyvmNAAVQ5AACZAACZAACZAACdiQQEjCH4p+bLiD7pQo/rFmb7QPScMR/GgZx4vwR9ZrdqkvEV1c9oAiK2W+RFSib7OWAa0HKTHGlL7ex16aDAx+H5BSOXKTvsqNwDWlAXHsEYGK3rFDygJJeSCt9I+4Gd3waEZXD5khdTHQcSTwVEMgtbf6WR5rWwdomUXFmXsTVWkozf1Gc6kJdKZ/t0k5K0nTu5dkNU7vNCKOIXffAlxTRq1HxDLCVRMi7NoHlG0BSCmivfPDZ/jOJ8CTIwBfh5Kla4H7eiu3nK9f98TXGGuCBRHatHlZCaqGJWW+utsS1J5q4gi9c4vReyGiq+U/Al+kA9O/UOXdpIkDi6zT7EbhT+iE9UK55MeAlPaeGFM+BR5/Vf2+fRZwZXHv+OLsI+XkpJyXb5NzTq6fr9apI1LOUMoaSlu3Bbjdfc7qBUUPDgDEqSqzMoX66/SL14D7ElU8fdmwAx95lyn0zUt7Pqn1P2DZ6NB5mTWCwh+zyIYX9+jJ86jV5+/wBgcxymjhT7huP1qqRrv+WCH8SRteEgXyZA+CPruQAAmQQEYCFP7wrCABYwnwJr6xPBmNBKJJgNdvNGlzLhIgARIgARIgARIgAaMJBC38oejHaPTGx6P4x3imWUWUPwbT0tKQnJwMEf6E2+xUksCVy58pkBvgZjQpHSWiFxHNSBPxS1LD4F1pAuX0zQaghrvMjd4tRhv37ERg5GxgfE9VjklrP28HbnLf8Pd1yembqpyANOGOjNHK7WyaooQnmghFHIbEaUjfRNwiIpe3nwM6NPCUyer/CPDKk959RbST9iNQ6XqgbiVVFk0cPvQuNYEYSHmrbmODLw0mLj0VHgek7NW0F4BH7vPMsGQV0KCvEs7snK0eX/Qd0PgF5X4iooVwGWqiG9+SRsJamD//sLegZ/qXQNtXgCbVgAUvAxMXAp3HAJVvAFZP9KYi4iRxSRLnJTm/pIkoRsqoDX4CGNBOPaaVLItkL6Qk2tQv1Hkg5ce0du488EBfVf5t4OPAS+4yaYH2L5LjFP6ETk8r2+c6t4cADe/0xJASe1JqLzN3HLnO5HqTJiW75NqpVhEoX1KN0TvxrJkEJF6n+r79MfDUa+pnvaBPRIsispPnJnmO8m16R6D9HwGFC6geDfupuQK5+GiOZzJGXKh6twydl1kjKPwxi2z4cXcfOIdGyXvDD5DFSCOFP0aJbOyYU7DwFw8sgVKFcwTbnf2CJCDv8aVF8h4/yKnYjQQsJ0Dhj+VbwARijACFAzG2oVxOXBHg9RtX283FkgAJkAAJkAAJkEDMEQhK+EPRj3P2neKf6O2V3BCItZsBZgt/zN6d0XOUA0dmbhZSGkpu9K+cAFS90ZPNiJnKNUPvBiNHF38PNOqv+r31LPDkA8C/h4DibvcWzVFH5pS5J/YCnnaXqdKiX98O+O0vYG0qIO4zmuBF3H5m6YQzUi4osaO68f/Dm0r8ozl8SIktKbUVTNPciERoIoKTQE0vfNCLpUQMJQ4kknube4HpA1QkzRlpxNPAs63CYyijtJJsGycDN1/lidPsJWD+CuDDQUCzGp7He40Hxsz1lDjSxFbiPLRjtqeUlvCr/zzw7UZgdBegZ3MVQwRMImTSl0IyYi+WrQPueSbjOXfsJCAlpITfkleBelUC7UTkxyn8CZ2hVrZPRu6aC5Qu4olxawdg/VagaQ1g3iDv2FISTwSA0uRanvEikMPHbEM7l6XPqc8956gmBtQL+v78Gyj/sIrnr0yhPK45AvmWKtSuJREfSYnAzJrmPibHfa+70MkZO4LCH2N5GhUtfcsZJI3dZ1S4i3GMLK0VaZkvLSk75hQM+NTuRZGYcEkwXdknRAK86RMiMHZ3NAEKfxy9fUzehgT4GmLDTWFKJBAkAV6/QYJiNxIgARIgARIgARIgAVsSCCj8oejHlvuWZVIU/zhvz+ySsdOFP60GArPTgL5tlEBE36Rk16V11SMnPgXy5PYc1dxj5JHuzZRTzIoNwBdrPH3EzeflDsCmP4H7n/N21KnSCfjhF+U8Iw40Wjt0DLjcXd7nzBdArpyA3pWoXV0lQPptJzDWXS5IXxZq6HSg/9uhOcZobkQfvQI0uivwmbVhK3BLB9VPXHxEcCSliGZ+5RkrgoJRXYAqNwB1n1NcpEyQCKy0FgpDETwUdJdk83Vm0lxPtn0AXFXSE19jrJU4EmFNgQbquJQFe+huQHhPWKBKbIkYQ8RKOd0mCPX6KPedO25SJZdkP43Yi217gKvbqDzE0UmYiChk3gp1TtxfGfh4WEZRSOCdCb0HhT+hM3t0KDD184yl646fAvLXV/GklJw4UOmbvgzYZyOUQ5e+Lf8JqOV27ZFz7vvxnqOaGFAvNJTz5aGXVJ/17wAVfcoUyuPateHrLCYCs7VbVInCd/pkzkBzBvIVDoVOzfgRZgt/RKi7fPly1KxZM+YEu8bvhnfERatOIGWau26hQZPZUWRjx5wC4U5pezkaVc0TqBuPh0mAN33CBMdhjiRA4Y8jt41J25gAX0NsvDlMjQQCEOD1y1OEBEiABEiABEiABEjAyQSyFP5Q9OPcrb26fHnky5fPuQtg5pYQcLrwRxO9+LrFCExx7hAHj9sTgPRUb7yHjwP39FI3z7V2XVlgXA9g85+AuM1Ik7I8H36tSlG9+Cgw6HHg7Dkgl7s81snPgEt1X7zXhCW+ThxvfgR0Gu2dg/SRElR6ZxitFJW4/YjrT6B28ChQ2O049NccoEzRQCPUcc2BROstwhwpiXXrNUDtXupRzYVEEx8cXAQUyu+JHwpDEeZU6wrccxuwdJQnxu79QJnmGUsW6RnrSxxJaTQR9IjLj9akLJlwFBGECK20Jo5O4uwkrd8jwBB3mTUj9uL1D4Geb2RkLSWbhj8N5Ls0uH2ItBeFP6ETvLsHsGK9Ev5smwnkdQsC5dySc1TalyOBe2/3jq0XuonQUESB4vjz9wFg8hIl2NOauE6J+5Q0uU4KucvP6cvO9XsLkFJe0vyVKdQ7Avk6i2lryKxEmMTUl/l68xklfrNTM1v4ww9vI9vtxG67IwvgMzoxITdEaGNEM8rxp2ODAkiq766fF2FiSWP3Q0qQmdmMZGhmnk6OzecNJ+8ecw+VAIU/oRJjfxLImgBfQ3iGkIBzCfD6de7eMXMSIAESIAESIAESIAEgS+HPho0bycjBBCpWqODg7Jm6FQScLvyJhNmZs8CPvyvXGBG8lLjcE01uuov45NoykczgPVZEOjKfONeUKwnc4sfhw7jZAkcSJyNZ5/VXANeUBrJlU2P2H1FiBhFC6YU0/iJGm6HkcPI0sHGbctkpURiofH3meYrgSPqLIEpzApIYRuyFxF61GTh1RuUhHPXnUOAdiLwHhT+hM9RccLSRUh5PyuSNmwd0d5fN0ovNtH5SSq56N898LherfOo8lCbOX+L4pLVOTYAJPQG9E5C+BJwI7NJ+zLxMod4RyNdZTHOzEsept5/zz0ArRygCp+2zvAWKoVMzfgSFP8YzNTLi0ZPnUavP30aGdAl/RLwSabOb8MeofAJxSRteEgXy+NQXDDSIx0MiwJs+IeFiZ4cToPDH4RvI9G1HgK8httsSJkQCQRPg9Rs0KnYkARIgARIgARIgARKwIYFMhT90+7HhboWYkjj+iPMPGwkESyCehT/BMmI/ErArAQp/Qt8ZX8enOSlA85pAh+HAu0uArMpi6V2ktJlFWNOrBfBsK6B5MrDwW3Wka1NAyviNXwB0fV099s98oFgh4MIFIPs96jG9G5V+NbK3KVPUI77OYg8PVqX5pLzdrOSMDDQnLTni6xYUOjFzRlD4Yw5XI6OmbzmDpLH7DAtplGONUUIbIxx/xOVH3H7MbqndiyIxQWcvaPaEcRqfN33idOPjdNkU/sTpxnPZphHga4hpaBmYBEwnYMX1a8WcpoPkBCRAAiRAAiRAAiRAApYQ8Cv8oejHkr0wZVKW/DIFq6FBXWIbAMnJfu7YGjpT4GAU/gRmxB4kYFcCFP6EtzPiaCVOX1KSTUrFaW5XwUT7ZQfw0x9A9mxApeuB8qU8o8T96eftwOn/gArlgfx5gokYep8xc1U5QnHl+nVqxvGPvAzMWArUuAVYNlqVJLNbo/DHbjviPx+jxT8yS6SCG7sIf4zKI9CZQNFPIELGHU9LS4O8L65Vq5Yt3qMbtzJGIoGMBCj84VlBAsYS4L5s0f0AACAASURBVE18Y3kyGglEk4AV168Vc0aTKeciARIgARIgARIgARKIHgG/wh+W+IreBpg9E11/zCYceXztg9YLYvtgcaPwx+IN4PQkEAEBCn8igOfgoWt+BSo/rRZwaLEqOaa1z9cA9z8HSCmyDe8C5UrYc6EU/thzX/xlNXLeEcxYdszQhMX9p1LCJUi8NnQXm/Tfz2DSJ0cjzkdy6Fg/f8hxZP41W85A3H7Mbm1q50fvZpeZPQ3jkwAJxCEBCn/icNO5ZFMJ8Ca+qXgZnARMJWDF9WvFnKZCZHASIAESIAESIAESIAHLCGQQ/tDtx7K9MG3iEsWLo3jx4qbFZ+DICFD4Exk/jiYBElAEKPyJzzNBNKM3PAr89heweCjwwB2Kw4GjwI2PAv8cAhYNARreaV8+Zgt/xLlj+fLlqFmzpsu9gy0yAonddkcWgKPDIpA+rnRY4ziIBEiABAIRoPAnECEeJ4HQCPAmfmi82JsE7ETAiuvXijntxJy5kAAJkAAJkAAJkAAJGEcgg/CHbj/GwbVTpIoVKtgpHeaiI0DhD08HEiABIwhQ+GMERWfGmLAQ6DIG6NoUGNddreHhwcDMr4AhTwL9HrH3uswW/th79c7LbveBc2iUvNd5iTs448UDS6BU4RwOXgFTJwESsDMBCn/svDvMzYkEeBPfibvGnElAEbDi+rViTu43CZAACZAACZAACZBAbBLwEv7Q7Sc2N1lWdXX58pCyX2z2I0Dhj/32hBmRgBMJUPjjxF0zJudDx4DLGwFliwE7ZwNz0oCWA4HW9wAzBgDZshkzj1lRKPwxi6x5cdO3nEHS2H3mTcDIFwmkdi+KxITQy6ARIQmQAAkES4DCn2BJsR8JBEeAN/GD48ReJGBHAlZcv1bMaUf2zIkESIAESIAESIAESCByAl7CH7r9RA7UrhFE9CPiHzb7EaDwx357woxIwIkEKPxx4q4Zl/PBo8D5C0CRy4ATp4GjJ4DCBYBcOY2bw6xIFP6YRdbcuItWnUDKtEPmThLn0VPaXo5GVfPEOQUu384E/tp3Dl+uO4lyJXLi7gqXIkd2O2fL3DIjQOEPzw0SMJYAb+Iby5PRSCCaBHj9RpM25yIBEiABEiABEiABEjCawEXhz/Hjx7F12zaj4zOejQjQ9cdGm6FLRf6olJacnGx5gq5c/kxB8mOWp8IESIAEQiRA4U+IwNjdNgQo/LHNVoScSNLY/UjfcjrkcRwQmEBiQm6kdi8SuCN7mEIgLS3NFbdWrVqmxHdy0HPngeOnz+P9L45j5vJjOHnmgms5CaVzomfTgrjtmkuQO5fNreacvAEm5E7hjwlQGTKuCVA4ENfbz8U7nACvX4dvINMnARIgARIgARIggTgncFH4wzJfsX8m0PUn9vc40hU6WfgzbwWwarMi8OKjQH4/X5A/+f/3JlOmqD6vPAnkzBEpMWPGi2DjxCmgZW0g8TrvmKfOqJwvXAAa3gnUuMX7uNx8kfGnzwBNqgN33WxMTkOnA1I+aNATQO5cxsRkFHMJUPhjLl9GN48AhT/msTU78tGT51Grz99mTxOX8dOGl0SBPLRPsWrzedMnI3lxldv45xks/fEUPl1zEvuOnMvQ6ZKc2XD7tZeg7u15UO2m3Cha0CZvtq06kRwyL4U/DtkopukYAnwNccxWMVESyECA1y9PChIgARIgARIgARIgAScTuCj8YZkvJ29jcLlT+BMcp3ju5WThT+1eQNqPavfefg7o0CDjTq7+BajaCShbDNg52z47XaIp8M8h4L1+wKN1vfN6azGQNFI9NuRJoN8j3sc/Xgk07Kce2zELuKJ45Os6dhIo0AAoXgjYOz/yeIwQHQIU/kSHM2cxnoDZwh9x7li+fDlq1qxJ9w7jtw/pW84gaew+EyLHb8jU7kWRmHBJ/AKwwcp508ezCSI+/333f5j48VH8tO0Mjhw/7yotmVXLlTMbyhbNgVZ358ODd+aF/M5mXwIU/th3b5iZMwnwNcSZ+8asSUAI8PrleUACJEACJEACJEACJOBkAi7hD91+nLyFoeXOcl+h8Yq33k4V/pw9B+S6z7Nbt1wN/PROxt2buBDoPAZocy8wfYB9dvf6dsBvf2UULJ05C1zTBvjrX5Vrn9bAqx298773GeCrdcBTDYHU3sas6ZsNQI3uQNMawLxBxsRkFPMJUPhjPmPOYA4Bs4U//PDWnH3TR6X4xzjGFP0YxzKSSHzeAE6cvoCtf5/Fgu+OY8makzjlLukVKtcri+dE+/vy444blANQDhpZhYrQ9P4U/piOmBPEGQG+hsTZhnO5MUWA129MbScXQwIkQAIkQAIkQAJxR4DCnzjbcgp/4mzDQ1yuU4U/67cCt3bwXuz344E7bvJ+7PFXgSmfAmO7Ad2ahQjHxO6JScDaLcDEXsDTjT0TSa6Ss9bExUjcjLS2bgtwe5L67Zf3geuvMCbJMXOBXuOB4R2B51obE5NRzCdA4Y/5jDmDOQQo/DGHa7Sjjpx3BDOWHYv2tDE1X5va+dG72WUxtSanLiaeb/qc+e8CVv56GotWnsDa38/g0PHzEW+jiH0SSudCjQqXosmdeVGqMEuARQzVwAAU/hgIk6FIgI4hPAdIwNEE4vk9oKM3jsmTAAmQAAmQAAmQAAm4CLiEP1u3bcPx48eJJA4IsNxXHGxyBEt0qvBHE8g0qQbs3g/88AvQvh4w+XlvGOKes3UP8O0bwF03A3/sBvq/BZQvBQxzC2i0EdO/BD76Fni8PlCvinLd6T0BuKYM0LYOMO0L4OPvgaIFgdb3AE8+AKz6GZi0CPj6J+DSS4CH7wVeaAtkC1DdQHPtGdcd6NpUZSAuRuIEJPm+0QPo+jrw0N3A3IGeNWlCppa1gFnJ6nEpxzBjKTBrGbBqM3DyDFC9IjCgnVqz1vYdBrqMAW64UrEShrKmOQOBETOBmV8BX40Cat+mRpw6A6RMAbbt8eYl88lci74D1vwKFMyveHVqDJQq4plvxXrgjflAs7uBciWAd5cAS1YB2z4AcuYAPl+jjouY6fBxIPE6xfQRnZNTBKd2XAyl8CcutjkmF0nhT+xsa2K33bGzGAtWkj6utAWzckp/BOLxpo+8p/vlr/8wdNZhbNr+/2/8TGq5cmRDh/sLoHWtvCiQh/Y/JmEOKSyFPyHhYmcSCEggHl9DAkJhBxJwCAErrl8r5nTIdjBNEiABEiABEiABEiCBEAlQ+BMiMKd3p/DHfjvoEtv8v2AjOdmt3LAwRacKf6R8l5TxGvIkcFVJoM3LCuK/C5QwR9r+I0DRJurnY0uAfJcC738OPDZUCXmm9vcG36CvEqZ88RpwXyIwdznQIiXzzRHxzey0jMdnDFACoKzagwOAhd8CIzsDz7RQPUWE024IIHFfaKccjWr9D1g2Wh0XgVOZ5urntanAbQnAoWNA60HAZz+ox68rq0qIae2zEUDdSuo3WZusUfrsOQAcPaEeP/IxcFN7JXQ6uAgolB/Ysx9o9hKwcjNQpxLwwYtAkcsAEQ89OlTFkla8EPDPIfXzTeWA5a97+Pd7Cxg2Q7kwSRxplW8AVk8EtGNazrIOLc7iocADd2RFj8c0AhT+8FxwKgEKf5y6cxnz3n3gHBol742dBUVxJYsHlqALShR5B5oqLS0N8r64Vq1atniPHijfSI4fOXEeK38+jU/TT2LFxlM4fyGSaMGPLVMkJx6okhd3V8ztcgMSITibNQQo/LGGO2eNXQK8iR+7e8uVxT4BK65fK+aM/Z3kCkmABEiABEiABEggPgm4hD8bNm6Mz9XH6aorVqgQpyu357K1D1ovyNdsLW5mC39+2QGkLlaiFmkiuElqqFxnImkiipFyXyLSEXeb4k2VkGVUZ6CXW0jzZTpQ51nglquBn95Rs3Ubq1xm9E478rjc8CjUUMXYt1CJXJ6fBAyfqcaJOCepkRIZ3dVFlemS1rO5cqkpXQRo1B/4dmNw5bJEPDP1c+U69PzDyu3n5vZKtCO5FswHXNXaO/fkycCg94H6VYFPhimnn1aDgDlpQKO7gPf6ApcXAE7/Bzw8GJi/ArjnNmDpKJXr4PeBlyarn+XxZ1up9YjQp3RzJQj6dapyT2rYTwlxhKWU/5IbM5KjCIe+WAO0uRcY0xUoVgjY8Q9QrasSDsljPR5Sc9TuBaT9qH4WVyMRNMl8O/9V/UU0tO5txU7W8tybwMjZwOAnlFsRW2ACFP4EZsQe9iRA4Y899yXcrNK3nEHS2H3hDo/LcandiyIx4ZK4XDsXbR2BU2cu4PO1JzEj7Th27TuLE6et+VukeKEcqHp9bnS4Pz+uKJbTOiBxPDOFP3G8+Vy6KQR4E98UrAxKAlEhYMX1a8WcUYHJSUiABEiABEiABEiABKJOgMKfqCO3fsKry5eHOP+w2YNAPAl/nh6lSmHpW8dGwJvPhL8Xx04CBRqo8fs/AgoXADRRzNWlgC3TgezZgKHTgf5vA52bAON7qv6aYEgr/aVl8etO4IZHARn/xwz1aPVuSsjTrRkwtpsn38YvqDJX7eoC7/fzPN59HDBunuorY7JqmmORJnKR0lni3KOV9hIHnMsbKXHM3vnA8VNAqYeUMGnFWCV20hyCpM+O2UDuXJ4Z038DKnUECuRVjj7SRMzz8Urg9gRg9ZtADnelBXlMjnVooByGxHVImqxN1qg1KQfWZ5JitPk97/lGzwGemaBEXZN6K5FQLnfJLhFNibOR1p6dqAQ+moBJvwdSbq3qjXT8CfbqoPAnWFLsZzcCZgt/xLlj+fLlqFmzpsu9g818AotWnUDKNLcFnPnTOXqGlLaXo1HVPI5eA5N3DgERVx88dh7r/jiDdz47il//+s82yct70WbV8qFFjbwoWzQncucKUCvXNpk7PxEKf5y/h1yBvQjwJr699oPZkEAoBKy4fq2YMxQm7EsCJEACJEACJEACJOAcAtmOHTt2Yeu2bc7JmJlGTIDCn4gRGhogXoQ/IqYRZxcpuaVv4qYjwpvrrwgPq4hxRJSjF+ns/Ae4spWKp5Xq0sppTX4eaF9PiWfy11d9jn8K5M3tmX/mV8ol57H7gSl9gf/OApfUUcdFCCRzae2aNsDWPcA344BqOjOten1Uya0PBwHNamS9tr6pwKsfACntlbvNLU8Am7d7SniJA1GOe1SMC8uUa1LHkWo+mVfa3T2AFeuB1zoBvVt6z6cJf8oWA3bOVo46Bd2ORppwSBshLkIinNK3N3oAXR70PCL5lGulXH3EBahBVe/+UrZMnJSeqA+800e5MYnISoRH22cqJyKtpUwBXIIVqDJirWoD996u3IDYQiNA4U9ovNjbPgTMFv7YZ6XxlUnS2P1I33I6vhYd4moTE3IjtXuREEexOwmER2DvoXP4dM1JpK0/hU3bz+Dc+fDimD2qcIHsqHbTpahXKY/LCSgb9T9mIweFP6Yj5gRxRoA38eNsw7ncmCJgxfVrxZwxtWlcDAmQAAmQAAmQAAmQwEUCFP7E4clA4Y+9Nv3/2DsP8Ciqr42/m04voQlIUZqCgiKgIn8SBRQFERBQBAVFLAiIBUHQEBGliKAgSBMpgoI0qdISLKggTVApggHpLfSStt93ZpjNJCTZ3WR3Z2b3vc/jY7Jz595zf2dmdtn75j0U/uRN+DP6W6DPZ+kiHS277WPVsletGwHzYtOFLtu/AGpVBtb/qQqRxPFm08SM10SP0cC4RaozkDgEbdsL1OmWsdSWnJF4Hij+qHpu8mq1BJY0famwf2c7F7FoZbfefgqoWx1o+65aruu7IelxFX5EdfgRkdId3dQyYFLiS5xy9EKnxMVquS5901x8NKHQP4eAqp0yiqW0/ppgSX/+g/WAFcPTX/n1L+CeHs7vow+6Af2fAr5cAXQdBrzUChh3zW1JO1vcjLoMBUQspG+SFxExRd/hfB72UAlQ+MMrwaoEKPyxauZyjvv85TRE9T3qn4vz0Krih5dBoXzXLPc8NCaHIYHMBETg81XcBUxbfQHnLqYpn1Ot0EKDbbi5bAjefbIIqpUPowDIi0mj8MeLcDl0QBLgJn5App2L9hMCRty/RszpJ+niMkiABEiABEiABEiABDIRsB07dsx+7PhxggkgAhT+mCvZgSL8EereKPUlzjzi0COCEhGWaC1+KxDdR/0tfjQQdU1wogl0pAyXlON6pTUwplf6eUkpQIlWqsjmt/FA/RrAlGVAtxHX912zGWjyOtDoduCHT9LH0EqF6Utr5XTVaeIlcepZ9bvqkLNhPFCvRvpZmrOQOOg8N1wVIW2dDGUTRJx+xPEnc7ks7WytHNmQboCIi7RSYpqjkdZPL1jq1QZ45B7gwTfVo39+CdxaUf159hqg4/vq70O7Z7+yO6oC4jKklTLT3JayOuPAcbVkmvwnTknShN/p79IFVea6c80XDYU/5ssJI3KNAIU/rnGyYq9Ne5LQ/dOTVgzd6zFP7FUCdauGeX0eThCYBOQzXcKxFPy44wpmr7uIE2dSLQsiLMSG6NoReKhuftS5ORSF81Ms5+lkUvjjaaIcL9AJcBM/0K8Art/KBHj/Wjl7jJ0ESIAESIAESIAESIDCnwC8Bij8MVfS5R+V0mJiYgwPTIklYRBinvFOKDsPqGWqZq5Sx+/UFOjeAqhRIffz3dheLTmliXS0kaScVY2nVWccEZ9In6g6QNwotYcIeUTQM+kNoNsj6fMv+QVo+bb6+6UVQL5wtayWxD29P9C5WXpfKc8lZbreejKjAOar1UCnIUCrhsDC952vbfJS4PmPVKGLCI6yEvDUfwnYuDO9z5wYoF2UOvZ364FWA4BH7gaWfJhxvj0HgWqd1dd2zwCqlgfeGA+MnJPuaKSdoQmW7r4V+OUztSSYxlCcj8QBSdr4RaqYR4RJIlDSt0MngWnfAyWKqLmVJmW+RMy0bYoqWNKaCIj+PQq80BKQkm9a+2k70OiaGOvKSiA81DlD9qDjD68B6xKg8Me6uXMlcop/rqdE0Y8rV46xfeLj45UAoqKufdgyNhy3Zj9wIgXTV1/A7/8vvDt8KsW0Jb3cWhTkM7kNNcqHov3/CiDqtgiEhbIGmLsMs+tP4Y+nSHIcElAJUDjAK4EErEuA9691c8fISYAESIAESIAESIAEAAp/AvAqKF2qFEqVKhWAK+eSnRHwtvDH2fzuHj9yCij7uHqWJtLRjzFhseoypDVxuxHXG2lPfwjMWKm6/YjrjzQRvvyvF3D8TEZRS80uwF/7gR1TgZqV0sdr8y6w4Edg3ntAm0bpr0vpMXHx+fB5oF9H56sSxyJxLtKaiG5EfKNvD/cDlv+mvnLTDcCuGelOOOu2qY5GIhxK+BooXkjtd/mqOq6U0erTDvj4ZfV1KdMl5bp+HQc0uCV9Fs3JR5yHpMyWtM8WAq9cczM69Z06ttavVFHgwJx0YY4iWnoL+HkHMKoH8OrjwIXLQKGH1bH05dDkd3EpErcicWRqXDs9jqnLgWeHZy0sck4zcHvQ8Sdwc2/1lVP4Y/UMOo9/5PxzmBV3wXnHAOjRMbogXm+jU7sGwJqtuESrbfokp9pxLDEV3/16CTPXXsDVZCtSdz3mKmVD8cqjhXDHzWEoEB7EMmCuo8uyJ4U/eQTI00kgEwGrvYcwgSRAAukEeP/yaiABEiABEiABEiABErAyAQp/rJy9XMZO4U8uwQXAaVYT/iz9FWjRP3uBiAhRCuvcfBYMBh67T01k12HAlytUsYyUvBIR0bwf0pMspa4+6QmcuwQUuTZGZuGKjC1z/DsbqFQm/VzNnWfVR0CTus4vHL3LUNO7gJUjrj+n8wfpTkmZS2alpALlHlcFS+Ko81RTQF6btw7YvAe4syrw0xjVvUg2giKuuRZlFku9Ng4YNRf4+l2gQ7QaQ+J5oPij6s8iBhJRkF7MI2XO2v4POHMBGLdQjaF9FPDVQFWYJCKg+3peXw5NxtNcl8SRSVyTCuYDNuxUHYWkiTuTuDSxuUbA7MKf6HurIab9HubUtXQGTC8pyxg7pyri1u/22prFuWPdunVo3LixJd07vAbGxwPX7XnYxzOac7pNY8qaMzBGlYGAVTZ9klPs+OtAMpb9fhnr/riCE2etW9LL3UswOAi4q2o4om6PwAN1IhBZONjdIdj/GgEKf3gpkIBnCVjlPcSzq+ZoJOAfBHj/+kceuQoSIAESIAESIAESCFQCFP4EYOYp/AnApLu4ZKsJfz74ChgwWXWWEYeZrJomZpFj+78BKlwzu/p7v+qSI0IVrXV5CCicH/h0PjBzAPBUE2D9n0DDV4D77wDW6NyDDp9SxTYiHDq3NH0MEdyENlF/1xxynOGXje/oPmqvHz8F7rvt+jN6jQHGzAcyu+xoPbfsAR7qm3E9ckxcjt55GogIU3tKyS0pvSVioE0TM84jAh0R6uyZCVQpl35ML9D5b476unCR+UT4pDUR8AzsDDzbHAgNUV8dtwjoMfr6cmhybN8R4LnhgKxf36qVV8uKuSKacsY2kI6bXvjTqA5i2m6j8CeQLkoX1qpct6WfRsxQ+cE7jV/eeoeru6MePp2KljHH3D3Nr/oviS2NG4pTnGCFpFrhuZFwLBWjF57F5n+u4uIVuxWweiXG0GAbCuW3oduDhdDy7vzIH84SYO6CpvDHXWLsTwI5E7DCewhzSAIkkDUB3r+8MkiABEiABEiABEiABKxMgMIfK2cvl7FT+JNLcAFwmtWEP3lNiYh0tv6juuNULQ9EWrzyxpUktSRZwlGgchmgegUgf3heKWV/vpQS2/EvcPAEULo4UK96uuDHnVlFRHT4JBAWqjon3VoxvYyZO+MEel+zC3/iV32L2H7PIG6kTi0W6Enj+hE7q4Qq/Bk80ms0+OWt19C6PfCmPUno/ulJt8/zhxMm9iqBulWvqXD9YUF+vgazPjfE4WfrviQs2XAZS3+7hMCV+2R9AVYuHYKO0QVQv3o4ykWGsASYi/cphT8ugmI3EnCRgFnfQ1wMn91IIKAJ8P4N6PRz8SRAAiRAAiRAAiRgeQIU/lg+he4vgMIf95kFyhmBJvwJlLxynYFBwOzCH8mCbCzZ4wIjH1ylawRs0YDd7t2ta35561oufNVr8W+XMGimzm7PVxMbOM+gTsXQskE+AyPg1O4SMOtzY9mGS/ho/jmcvZjm7pICqv99NSPwbseiiCwcFFDrzu1iKfzJLTmeRwJZEzDrewjzRQIk4JyAEfevEXM6J8EeJEACJEACJEACJEACViRA4Y8Vs5bHmCn8ySNAD5+uiG0AxMTEeHhk94ej8Md9ZjyDBMxCwArCn9i3ngJOzkdM5ytmwcY4DCQQOyMCKNEGMcO+8moU/CLVq3hzNfjI+ecwK+5Crs612kkdowvi9TYWtxS0GnQPxBsfHw95dkRFRZniM7q2pJfGnsKGXVc9sEL/HkIEP2NeikT18qH+vVAPrY7CHw+B5DAkcI0AP3vyUiAB6xIw4v41Yk7rZoiRkwAJkAAJkAAJkAAJ5ESAwp8AvD4o/DFX0rUvWr3teODKqin8cYUS+5CAOQlYQfgj5Oj6Y87rx4iofOH2I+viF6lGZNf5nIt/u4xBMxOdd7Rwj0GdiqJlg/wWXgFDNxOBi1fsaDbgKK4kedclzUxrzm0sQUHAiOeKI+r2iNwOEVDnUfgTUOnmYn1AgJ89fQCZU5CAlwgYcf8aMaeX8HFYEiABEiABEiABEiABgwlQ+GNwAoyYnsIfI6hnPyeFP+bKB6MhAasSsIrwJ3ZgL8SvnI244Setippxe4BAdN8SiGr2JGLe/9QDo+U8hDh3rFu3Do0bN1bcO9jMQ+DI6VTMir/od+4/4vLzZFQBlC0ebB7YjMTyBLb9m4TnRp2El6sjWp6TtoBnmhREr1Z023IloRT+uEKJfUjAdQLcxHedFXuSgNkIGHH/GjGn2bgzHhIgARIgARIgARIgAc8QoPDHMxwtNQqFP+ZKF4U/5soHoyEBqxKwivBH+Mb2fw7xq+cjbsQZq+Jm3HkgEP1mUUQ1aYOYD6fkYRSe6m8Ezl9O84slFcoX5Bfr4CLMR2DODxcxfO5Z0O/HtdzUuSkMU/qUcK1zgPdyVfgjQlppFNEG+AXD5TslwE18p4jYgQRMS8CI+9eIOU2bAAZGAiRAAiRAAiRAAiSQJwIU/uQJnzVPpvDHXHmj8Mdc+WA0JGBVAlYS/gjj2Le7I37Nd4i69RhinrEqdcbtDoH4rUDs7NKIeuBRxHww0Z1T2ZcESIAEAppAahowdM5ZzP/5YkBzcGfxEWE2rPqgDPKH29w5zW/7yr85Bw0ahJiYmOvW6Ez4I4If2ZSU/5uhPLXfJokL8xsC3MT3m1RyIQFIwIj714g5AzC1XDIJkAAJkAAJkAAJBAQBCn8CIs0ZF0nhj7mSTuGPufLBaEjAqgSsJvwRzrEx/YEL24CL24GrBykAsurF5yRuRfAzszAQVhoxgz9G1AMt/HSlXBYJkAAJeIfA2Ytp6Dc1ERt2XfXOBH466tiXInHPreF+ujr3lqVtKspZmQVA2Ql/9IKfrM5zLwL2JoHAIcBN/MDJNVfqfwR4//pfTrkiEiABEiABEiABEggkAhT+BFK2r62Vwh9zJV3+USktq7++9HWkSiwJg7j57mvwnI8EPEDAisIfbdmx7/QBrhzAoI/mI6puYUTVsQOp4mrgH6V/PJBeiw0RhPg/QgFbOOI3nUPUvbco73FRzTpYbB0MlwRIIFAJmK2k0YETKeg1/hT+O5EaqCnJ1bo7RhfA622K5Opcfzwps8BHEwBlfj0uLs7h8KPnQLcff7wquCZvEKBwwBtUOSYJ+IYA71/fcOYsJEACJEACJEACJEAC3iFA4Y93uJp6VAp/TJ0eQ4OzqvBn5ipg+z7grupAu6jrEX62EDhwDLilItDloeuPT10O7DwA1KoMdG7mmRTMjQd+3wV0bQ7UqOCZMXMzyrfrgI07sz7z/x3/cWMpYpSfdwAAIABJREFUoNHtwO035WZ0nmMmAlYW/ug5ymbruvh49SW5SNmsR8BuR+OoxpJAREVl8VC23ooYMQmQQIARMNumzx//JqP7pyeRnGIPsEzkbblVy4ViVt+SCArK2zj+crbe9cfdNWVXJszdcdifBAKBgNneQwKBOddIAp4iwPvXUyQ5DgmQAAmQAAmQAAmQgBEEKPwxgrrBc1L4Y3ACTDy9VYU/T38IzFipinqmvpUR8F/7gZpd1Nea3gWsHJHx+PEzQOnW6mtzYrIWDuUmZff0AH79C9g5Hah+Y25G8Mw59/UEft7hfKyPXwb6tHPejz3MS8BfhD/mJczIrEpAEZOtW4fGjRtTiGTVJDJuEvAxAbNt+syOv4iP5p31MYWcpxMxTf4woHghG64kAYkX7UhJBewm0iZFFgrC1NdKolyJYFOxMzKYzO4+rsZCtx9XSbEfCUBxzBKxHAVzvBpIwHoEeP9aL2eMmARIgARIgARIgARIIJ2AT4Q/27Ztw5kzZxyz1q5dG0WLFmUerhHYv38/EhISHDwqVaqEihUreo0PhT9eQ2v5ga0q/On5KTB2AdCpKTDj7Yxp0ERB8uqdVYFNEzMeHzITGDgFuOkGYNcMIMQD+wJXk4GIZkCh/MCZJUCQQaYlSSlAeFN1veNeBSqUTl+7bMokHAWmr0x3BEr4Gqio62P5CzrAFkDhT4AlnMt1mQC/vHUZFTuSAAlcI2C258abk09j7bYrhudHPtMWzm/DnTcF4baKQShTzIaaFYJx6rwdOw+m4dgZO37emYoDJ9Ign4eNbvkjbBjapRga1owwOhTTzJ8b1x+KF0yTPgZiEQJmew+xCDaGSQKmIMD71xRpYBAkQAIkQAIkQAIkQAK5JEDhTy7BefI0Cn88SZNj5YWAVYU//SYCw2YD7aOAb2LSCez6D6jxdPrv5UsC/81J/13+OrlUa+D8JeCLvmpZLk+0TbuBu14AmjcAlg31xIi5G2PLHuDO7uq5V1cBYSHXj3P0NHBDW/X17V+o5c7YrEmAwh9r5o1Re58Av7z1PmPOQAL+RsBMzw0RazfpfxRnLqYZhrlgBHBbxWB0axqCMsWCFKF8cBblsyRWcf1JTgXid6Rg7s8pOHLajhSDQhdXot6tiqDT/QUMY2fGid11/aHbjxmzyJjMTMBM7yFm5sTYSMCMBHj/mjErjIkESIAESIAESIAESMBVAhT+uErKi/0o/PEiXA7tFgGrCn80157WjYD576Uv+bnhwBfLgbG9gVc+UV+3x6Uf/3IF0HUYUKoocGAOEB6qHpMSXWPmq//fdwRoWAt49mHg2UzCIHEaOp6ojj93HTBlKfDcI6pr0AsjgdiuwLs64dHkpcCq34H8EcDIl6U0gjrfb38DXywDft8FXLgMNKunli2rWy091pNngR6jgRoV1GMS+8xVwNxY1ckoqybzPf+RGv9PY7Luk3geKP6oemzPTKBKuWuc7MA3ccDi9WpcRQoCD9UHXnoUuCEy41hSTm3kN8BP24HdB4HbbwLaNgbefiqjg5JsBs1ao47721/A5STgvtuAgZ2Be2umj7n0V2D690CLe4DOzTLO9fZkYO8hYPiLqjuRMy7Cc8TXwMrf1XyK+EsEWe91BcoUTx9bYvP0et26+TzQmcIfD0DkEH5JgF/e+mVauSgS8CoBMz03dh1KRsehJ7y6Xv3g8jm2SH4bapRTHX3urh6M2pWCICKa3LRzl+xYuz0Ve4/Ysf9EGhKO23E5ye6zkmCt782Pt9oVQWiIQRacuYHm5XPccf2h24+Xk8Hh/ZKAmd5D/BIwF0UCXiRgxP1rxJxeRMihSYAESIAESIAESIAEDCRA4Y+B8LWpKfwxQRIMDEER2/y/ICUmRmdVY1A8VhX+fDIPeHUs8MjdwJIPVXh7DwNVnkoX9UjpLWnJq1Uxigg9anUFRLQyphfwSmv1tf6TVPcgaSISOXtRdQSSJiIeEfNIk9eLtlB/FuHN5j3qz9+PAObEAVOWqW4/IjKRklu9xwCff6eOuXSoKo5JTVPnE2GKNCkNps0lv/82HqhfQz22/Dfg4X5AtfLAkdPp/c4tVc/LqnUfCUxaArzeHvjopaz7SEwvjQLuvwNY87HaR8Q0UiJN5pQmwqjj16o13loRWPcJUKKIemzJL0DLa+XVpF/Rgqr4R1qfdsDHL6s/n7kAPPEe8P1G9XdZh9ZP49bsLvWYiLFE2DT5TeC5h9Pjlr8gD22i/n5+GVAwX85c/jkEPDoAOHhtr0zYaz83vQtYOcJ7682atndfpfDHu3w5unUJ8ItU6+aOkZOAUQTi4+Mhz46oqCjDP6PPWHMBoxee8yoKce+REl7RtwUrQp8i+YHykUEOUbynJj993o6jZ+w4cdaO7zamYNehNIgDpzdbnZvD8MkLkSiYj8IfPWdXXX/o9uPNq5Nj+ysBfvb018xyXYFAwIj714g5AyGXXCMJkAAJkAAJkAAJBCIBCn9MkHUKf0yQBAND0L50NcOXqt4W/uw8AExcojrVSOvUFOjeQnWxyUsTVx9x93mwHrBiuDqSiFlE1DLuVeClVsCN7VXRx8lFQGRhYPUmoOkbqmjmyDygQATw2ULVGeimG4BFQ9SyV2l2YNRc4I3x6ria0GbdNiDqVfU1EZQMfwGoWVkVtNR+ThW1HJ2vHm/7LvDzDlVcI6XINNHM4OnAu1NV4dCX/YDbblIdfzoNARb9DLRqCCx8Xx1D6ys/yzhvdAAqlQFuqZg9ueqd1ThmvwN0iE7vdzVZFSrFbwUGTFZf//FT1X1HxDUiMBJnoo4PAKNfAUqKI9JxoOErKkN5rXdbNdayj6sipLhRQFQddazv1gOtBqhcpLSaCKo6vAfMjQda3gtM6wcUKwRIHE8OBhb8mFF4pMW9eSJwh87N6I99KlsRTW2bkjOX0sXVvhLva+2AmC6yoQWs3QI88Jp6buJiVTzk6fXm5VrOy7kU/uSFHs/1ZwL8ItWfs8u1kYB/E7AD6DXuFNb/fdWjC7XZgEL5bChe0Ibq5Wx4qnEoyhY3Rhjz45+p+G5DKg4npuHMRbvy+dCTrWjBIHzTvxRKFM6lZZEngzHRWK64/tDtx0QJYyiWIsDPnpZKF4MlgQwEjLh/jZiTaScBEiABEiABEiABEvBPAhT+mCCvFP6YIAkGhhBIwp8XPwYmLM4I+4WWwOfXhBi5TYOUaBI3GRGeiABl/zGg0hOqU03C10C+cKBud1XssneWKuwRsYc42gzpppakEneYqp3UCP6YoopwtCbin+D71d9EcCLCk5Fz0sVAB+cC5Uqox7XSWSJ6+W4I8FBf1S2nVxvVdSc0RO0nZafu6aH+vHM6UP3G9PmktFa9F9OFM3KkRX9ASmCJSGjD54D8ZXZOTe9IlFM/YbRqpLomaeI+1HeCyuivaenlz+SYCKBeG6eKtSa8rpYBE0cdWatwDbu2NvnL7Q++UkU1fZ9QhV6dP7i+pJqMuWk3cNcLqgBLRFX60mNJq9J5SV9N4CVCLhF05cRFcw0S8dJXAzPmUpyaRKx0fIHqLOTp9eacGe8dpfDHe2w5srUJiHPHunXr0LhxY8W9g40ESIAErELgzMU0PD3iBA6dSvVoyPJ59OG6IehwXwhKFLLluoyXJ4IScVNyCrDzYBo+X5GMPUfSPF4GbHzPSNSvFu6JcP1qDGeuP2b4wxS/As7FBAwBbuIHTKq5UD8kYMT9a8Scfpg6LokESIAESIAESIAESAAAhT8muAwo/DFBEgwMIVCEP7v+Ux1jTmWqVCDuOz+PzSh8cTcdIogRYUzDWsBPY4CenwJjFwCf9gR6tlFHa/am6mIjLjLhYUDNLurrp79T3Wfemw7ETM1YLkwfh+2aY44IiSqWBtrHqg42H3QD+j+V3jNuC3B/JiFT2/8B36oV3RxNHIpEyCJipQHXBEfawX1HgBdGqkKZYwtUx5wi18QqmjOPM0Z6RyIpz6VvUspLK90lry/+AGhxj+puVLGD6pIjZboebpDxPHEhEq7PNgem9AXWbAaavK72Eaejbo8ATeoCdaoA8pfkWvtfb+DHP1Thk5Qd0zdN+KO5A2ljarnU99VcnKa+BXR5KHsuIuop/Ih65sbPgbuqZ5zz0lUgLQ3IH+Gd9TrLjbeOU/jjLbIclwRIgARIgASMIfDHv0noM/E0zlxI83gAocFA/nAbIsKATo1D0KhmCApGeHyabAdMSQNOnrNj+tpkbNqbhivJwOWrduXzqKdb5wcK4tXHCnt6WMuPl5PrD91+LJ9eLsBAAtzENxA+pyaBPBIw4v41Ys48YuLpJEACJEACJEACJEACJiXgE+HPyZMncebMGQeCEiVKoGjRoiZF4vuwUpKTkbB/v2Pi0NBQVKyYQ/2ePIZYulQplCpVKo+j8HRPEaDwJ+/CH03kUq8GsGAwUL6d6iAjpbbyX/vj3g6xwJx4YO3H6v+lDFi/jsCHz6uZvLkjIIKb+NFA49oZs6t3obmwXC0LVrq1Kp7Ru/3IWcO/Bt6akPF8fTkxOXL5KpD/IedXUNO7gJUj0t2IxIVHnHVcaR99A7z5uVpaS5yHMrdjicD/eqmlwN58Qi1VpnchymkOTewkgiQpgfbx3Iy9RcQjbHs8Bvx3HKjQQT0upbWKFszYN7Noa+gsoP8k1Slo2AsZ+2olwDTXJc2lKTOXr9eqJcT0JcGyWo831utKbrzVh8Ifb5HluCRAAiRAAiRgDIElGy5hyNdnkZTsWTXM7RWDkJwK7D+RhstJqpha2k2lbXjkrhCUKWZDpVJBKFHY5tRl0hUyMn5SCrD/eBqOnbHjz//SsGJzKi5cUScWJ0spO1Y+0oa/D6VB3CM92aqUDVHKfbFdTyA71x+6/fBqIYHcE+Amfu7Z8UwSMJqAEfevEXMazZnzkwAJkAAJkAAJkAAJeIeAT4Q/N1WujAIFCjhWsO/ff3Hx4kXvrMiCo2YW4hw/fhzHjh/32koo/PEa2lwNHCjCH4HjrVJfmmuMlMFqXEctSTXyZeC1dukpeXk0MH6RWiJKfpZ2+FvghkggJRUIbaK+lroWCNK51chrWomr++8A1nwMHDqpios0Rx594tu8Cyz4UXXykRJmNZ5Wj0ppLCmRJe3AcdVpRlpWohxtPBHQ3FEV0EqZPfMg8GU/1y4zzZHo/eeudxTSRtCYvNIaGNMLmL0G6Pg+IA5BQ7tnP4/EJLFpTQRQ4qb0/UZgxsr018Vd6cJlQBx/mjcAlg29fkwpFSYlw7SSa48NBMRZaE4M0E5XkWfLHuDOazElrwZCgrPnMng68O5U4PkWwMRrjkRZrcYb6xU2RjUKf4wiz3lJgARIgARIwPMExJ1w3JJzmLrqgscHH9k1HJVK27DvqB1nL9mxfFMKtu9PU8Q50oKCoAh/ShWxoVrZIDS/MxiRhW3XfUZ2FpiMt/NQGr7fnILT54F9x9Jw+rwdIveROQpG2PDQHcGoVTEIJQvbEFnIht6Tr+JIomeFTjLX8sGlUaJwsLOQA+54Vq4/dPsJuMuAC/YwAW7iexgohyMBHxLg/etD2JyKBEiABEiABEiABEjA4wQo/PE4UvcHpPDHfWb+dIb8o1JaTEyM4ctSYkkYhJhnvBPKzgPAxCXAzFXq+J2aqmKYGhXyNp+Me4suZnHYEVFPwXzp4w6YDHzwleoEJKWgNLGL9JDyYyVaqX01UYl2poiCKj+plr/SSkyJUEUEKyJMEYGKvmlOQOeXqfNrZcekFNbf01VR0fZ9wO3PqWdp/fTzfTIPuJoMvPq46lgkrjoj5wCfiWjpWpzOiGlxfD8CaHZX1r01kc2oHupcIowSMZA4J20Yn/EcETtN+x4oUUTNmZQ0++UvoHl9VZykNWF7axeVl7grnb8MtBqQdQm1PQeBap3VM3fPAKqWB25sr57797SM10XfCcCIr1VBVdwo9ZzsuLw+TnUhkutrxtvpsUkuH3wT2LhLFSFJHjy93ug7nGXGe8cp/PEeW45MAiRAAiQQWATi4+OVBUdF6VTIPkZwNdmOflMT8cP2Kx6fWYQ/tSsHXTfuht1pmLo2CUcTgctJdkUcr7V8YUCX+0PRqGYwCuWzITw0o1hepDqpqcClq3acOm/HlNXJkPG00l1SBjY8RJwzbcrc3ZuFKo5C+nbuEtBjwhWPC39kjo+eL47o231Yy8zjWfPegJldf+j24z3WHDkwCFA4EBh55ir9kwDvX//MK1dFAiRAAiRAAiRAAoFCgMIfE2Sawh8TJIEhKAS8LfzxFmYRiohgRGtSIkpKRembVvpKe01KZkmJKGkXrwAFm6s/i6hExCVa+/Ar4O3Jqhjm5zFAaIjqJiOuMiNeBN645twj/TUnH32JqW17gTrd1NE0EY7e8Wf7F0Ctyurx1DSg7+eqaEVfouueHmoZrl/HAQ1ucU5Rz+P4AqBkNpUVtfJmWlyaA444GR2YA2VDR5qIeZq/Bfy8A9BEQpqQ6r2uwDvXXI2k745/gdueVc87uUj9PepVVXCV8DVQvJB6TMqdSTkucffp0w74+GX1dU2wJG5BmqBo/o9A23fV4/rybNlx0cqt3X0r8NMYtXyEtCEzgYFTAHGG+n0CICXBxOHIk+uNLOw8P97qQeGPt8hyXBIgARIggUAjYIZNnwuX09Bx2AkcOqVT33goEdkJf7ThRYAevyMVB0+mYffhNPx5IA1XktMnL1vchvtuDUaJQjbFrUfKd/130o6E42n4ZWeqUj5MmgjexcXnripBiCwchHpVgnBL+SDF7Ser5k3hT+cHCuLVxwz8oOah3HljGL3rD91+vEGYYwYaATO8hwQac66XBDxFgPevp0hyHBIgARIgARIgARIgASMIUPhjBPVMc1L4Y4IkMASFgFWFP4nngeKPqkkUgcnBuUDh/BmTOmUZ0G2E+lpWJbM6xAJz4tXzRcwjbj3xW9UyVPLaxs+B6jeq5zd7Uy1tlVkktPAnoPU7wEut1JJiWtMEKo/cDSz5UH31gdeAtVvUklni4iOlq+auAzbuBMQd6IdPgdLFVOefiGbqOZdWAPnCnV+s361XXXZk7P/mZN3/ShKQ70H12G/jgfo11LJchR5WX2t0O9D2f8CZC8C4hYCU82ofBXw1UI119Sag6Rtq39iuwM1lVZHPF8vUvh90A/o/pZZRK/e4+poIop5qqr42bx2wWcp3VVXFOdq6NOGPiLJa3Qds+0flpLV57wFtGuXMRe8kJCXG7qquzvfXfjWXMp/E4o31Os+O93pQ+OM9thzZ2gTEuWPdunVo3Lixoe4d1qbI6EkgsAiYYdPn36MpaP/hcUjJL083Z8If/XwXrthx9iJwNNGOSauS8O8xuyJWlybCniIFbLiSZHeIfcTZJyIUeOjOEDxcNxgFwm0oVsiGUBeqbHlT+FO/ejg+ebE4wkIy1fT1NFyLjmem8tMWRciwScBBwAzvIUwHCZBA7gjw/s0dN55FAiRAAiRAAiRAAiRgDgIU/pggDxT+mCAJDEEhYFXhT1IKEN5UTeKQbsDbT12f0Hk/AI9fK8u1YypQs1LGPifPAlL6Slxt9K1VQ2B8H+CGyPRXCz+iuuAkLgaKFkx/fdCXgIgvtJJg2hEpbdb5A/U3zWno8Cl1PhH66JvELg44UlJL2h/7gNrPqQKZTRNdu1Dfmw7ETL2+1JX+bJlfBDnS3n1aFe9IW/8n8FBfdX1aEwHRwM7As81VxyNpIkjqMRoQQZW+ibBmyHNAzzbpr27Zo44p4p/MaxW3oIiw9Fc11yF9PxERLf1VzY24BlUs7ZzLgh+BNtdcgrSxRHglblD63Htjva5lyfO9KPzxPFOO6B8E+OWtf+SRqyABXxIww3NjdvxFfDTvrFeW7Y7wJ3MAySnA91tT8cOfKUg4bsfp83aEhQDVygXhhqI2PNEoFBVL5U5c403hT/DVg8i3/yMEJZ3wClOrD2qG8nZWZ5iX+PVlBUWoLM3IUoN5WQvPVb9XEfcsOmjxaiAB6xHg/Wu9nDFiEiABEiABEiABEiCBdAIU/pjgaqDwxwRJYAgKAasKfzyVPvnr5X8OAX/vB0oVA26pABS7VprKU3Pox5H5dv8H7PpPFRDVvtm787m6BinDJe49UjKsdHGgXvV0wU/mMST2PxPUV8uVUEU14paUuYnDkDjuJBwFKpcBqlcA8mfjXiSl17b+ox7PqZ+z9Yg46a8EQIRhlcqoDkpZNW+s11ls3jhO4Y83qHJMfyDAL2/9IYtcAwn4loAZnhs9PjuNX3de8crC8yL80Qc0dmkyFv6WghtL2DD+xYgMYu7cBO5N4U/K5VPYt/x5XDj8W25C4zkkYAgBEY5Ii4m59hcshkTBSd0lYIb3EHdjZn8SIAGVAO9fXgkkQAIkQAIkQAIkQAJWJkDhjwmyR+GPCZLAEBz/wEXCIMQ8QyAkQAJWI0Dhj9Uyxnh9RYBf3vqKNOchAf8hYPRzIyUNuOfVw0ize4epp4Q/ny1NxoLfUlChZBDGvRiulPjKS/Om8Ec8iDrWO4I7K5zPS4g8lwS8QkBKkmpNc1/S/q+fkA4yXsHv8UGNfg/x+II4IAkEEAEj7l8j5gyglHKpJEACJEACJEACJBBQBCj8MUG6KfwxQRIMDEFx2THJX/EFuuOPgZcBpyaBPBOg8CfPCDmAnxLgF6l+mlguiwS8SEA23OXZIaV2jHDa2LovCc+NOum1FXpK+JPu+BOE8SL80ZVvzU3w3hT+SDwdowri9baFcxMazyEBQwho3xVozj9aEBQAGZIOlyflZ0+XUbEjCZiOgBH3rxFzmg48AyIBEiABEiABEiABEvAIAQp/PIIxb4NQ+JM3flY/22aTvz8F7HYv/UmvG4Ao/HEDFruSgMkIUPhjsoQwHNMQ4BeppkkFAyEBEnCRwIy1FzB6wTkXe7vfzVPCnzFLk7FIKfVlDeFP7ZvC8EWfEu4D4xkkYAIC2ucZLRQR/zRu3FgRKLKZiwA/e5orH4yGBNwhYMT9a8Sc7jBhXxIgARIgARIgARIgAesQoPDHBLmi8McESTAwBHMJfwYBCe8h5hnjRUgGpoRTk4AlCcROswGV3kVMzCBLxs+gScBbBMS5Q0po+OPm2OrVq9GjRw+X0FWtWhW33normjRpgmbNmrl0jiud5s6di4EDB7rSNcc+Y8aM8WhceQ4o0wDjx4/HW2+9pbw6dOhQvPzyy56eAr1798aKFSuUcV9//XV0797dY3Ps2rUL9erVU8Zr27Ytpk6d6rGxOZBnCUh5rwFfJmLl5sueHVg3mqeFP+VLBOFzCzj+RITaEDe8DMJC1D+8YCMBKxLISgBkhDOZFdn5KmZu4vuKNOchAc8TMOL+NWJOz5PjiCRAAiRAAiRAAiRAAmYgQOGPCbJA4Y8JkmBgCGYS/ihlDfo8gLhRaQYS4dQkQAK5IRA7PRSoOMCQkiS5iZfnkAAJ5J3At99+i3bt2rk9UMuWLSFClnLlyrl9buYTJkyYgBdffDHP48yZMydXa8nzxC4O8NFHH+HNN99Ueg8fPtzxs4unu9StTZs2WLBggdJ38ODBHhFUaRNv374dt99+u/Jrq1atsHDhQpdiYiffEzh9Pg2vTTyN7QlJXpvcU8KfT5ck47sNKSgfGYTPXzJ/qS8B+tnLkbj7lnCvseXAJOArAnoBEEt/+Yq6a/NwE981TuxFAmYkYMT9a8ScZmTPmEiABEiABEiABEiABPJOgMKfvDPM8wgU/uQZoaUHMJ3w5/XmiBt5xdJMGTwJBCKB6NcjEDNyOe3+AzH5XHPAEsit8EeANWzYUHFCCg4OzhO/SZMmecSZRpyDHn/88TzF4s2TKfzxJl2OrSew+1CyIvw5cjrVa2A8Jfz5ZEkSFm9IRblIGya8FIGIsLyFfO4S0GPCFRxJ9J77aPv/FcBb7YrkLVCeTQImIaAX/0jJr7i4OJNEFthhcBM/sPPP1VubgBH3rxFzWjtLjJ4ESIAESIAESIAESCA7AhT+mODaoPDHBEkwMATTCX/eaIW4j84ZSIRTkwAJ5IZA9BuFEfPRIgp/cgOP55CARQnohT+lSpXCsWPHrltJUlIS9u7di7///hvypfIff/zh6DN27FiXS4Vlhyg1NRVXr17N8vCff/6J+vXrO47t2bMHZcuWzbJvREQEgoKCTJsJCn9Mmxq/C+ynP6/gzSmJSEr2nvjFY8KfxUlYvNFawp8bS4Zg3sBSCDbv48bvrmkuyLsExLU3OjpamYTiH++ydnV0buK7Sor9SMB8BHj/mi8njIgESIAESIAESIAESMB1AhT+uM7Kaz0p/PEaWksMLP+olBYTE2N4vEqpr74dEDf8uOGxMAASIAH3CNiiAbvde5uE7kXD3iRAAr4g4IrwRx/HmTNn0LhxY4f458EHH8SKFSu8FqoIf2rVquUY/9ChQ9kKf7wWhIcGpvDHQyAtMox8JpYmm+i+blNXXsDYxd4V4XtK+DN6cTKWbExB2eI2THzZGo4/4aE2zH27JMqVCPF1ajkfCXiVgIh/5NnFsl9exezS4BQOuISJnUjAlAR4/5oyLQyKBEiABEiABEiABEjARQIU/rgIypvdKPzxJl2O7S4BcSCy0yHcXWzsTwKGE6Dwx/AUMAAS8DkBd4U/EuCIESPQt29fJVbNJSglJQXynzQp/RUaGprtWkRgqDn8yGeG8PDwbPvmRvgj4//333+KOEmEQqVLl1bEQ5UrV862LFlaWhrE2UhaWFiY4hwk65ExxGWoZs2aGQRIWsCJiYmOPiEhIahUqRJuu+02REZGXremrIQ/Mu+WLVuQkJCgzHf77bejWrVquS6f1qZNGyxYsECZe/DgwRg4cGC2bE+dOoXt27fjn3/+Qb58+ZT1Va9eHeKclFWTvhKftFatWmHhwoXKzydOnMCGDRuU/996660KqwIFCvj8WjbbhEZu+rw+8TTit3u37K6nhD+jvkvG0t9F+BOEiS+HW6LUV0jAQ6kxAAAgAElEQVSwDUO7FkN07azvFbNdi4yHBFwloHf+ofjHVWre6Wfke4h3VsRRSSBwCPD+DZxcc6UkQAIkQAIkQAIk4I8EKPwxQVYp/DFBEhiCg0D0fbUQ8/ifiKpDKCRAAlYhEDsNQMl2iBk+xyohM04S8BkB2Qhbt26d4nRjhHuHNxeaG+HP/Pnz0bZtW0dYly5dwieffIL+/fsrr5UvXx4HDhyAVoo0c/xz585F+/btlZcLFSoEEc+IWCir5q7wR9yHnnnmGRw/fr3zoIiUvvjiCzzyyCPXTfXll1+ia9euyuuTJk3Cvffei86dO2Pz5s3Ka/369cOHH37oOE9EM8899xwWLVqUZdxvvfWWck7RokUdxzMLf6SEWffu3bF79+7rxnj//fcxYMAAt1PvivBHhD4dO3bExo0bsxxf4uzduzdEyKRvmYU/o0aNQocOHbIc55VXXsGwYcOQP39+t9fgLycYtekjvn0PDTiKk+fSvIrSY8KfRUlYuikVNxS3YZJFHH9sNqB780LKf2wk4G8E9OKfuLg4v/vcY5V8GfUeYhU+jJMEzEyA96+Zs8PYSIAESIAESIAESIAEnBGg8McZIR8cp/DHB5A5hcsE4ld+jdh+TyPu42SXz2FHEiABYwnEzsgPlH0eMYNHGxsIZycBExLw5y9vcyP8mTBhAl588UUlU5rjT2aBzu+//466detmmU0R/Yj4R9rzzz+PiRMnZpt1V4U/qampeOeddzKIc7IbtEuXLpgyZYri6qO1qVOn4tlnn1V+7dWrF+T38+fPO47rhT8imGnRokWW4iL9nM2bN8eSJUsc8+iFP40aNcKPP/6Y49XuzLEnq5OdCX/0oqucJq9Xr54Su+RXa3rhjwi2pOkZZR5P3H9WrVpl2dJseX0UGfXc2HskBR0+OA5vF+70lPDn40VJWCbCn2I2TOphjVJfcm08WDcfYp4qCin75el2+PBhRXgo7YknnlCek5nbxYsX0bp1a8izT9zMJk+enGUYr732GrZt26a4esk97em2ePFijB49GnfddZci9jNrO3v2rMJB2N50002oWrUqihUrZtZwDY9Le35JICwDbEw6jHoPMWa1nJUE/IsA71//yidXQwIkQAIkQAIkQAKBRoDCHxNknMIfEySBITgIyF8JxvbtgLjh1/+1PTGRAAmYkwDLfJkzL4zKHAT8+ctbd4U/ly9fxn333edwwnnwwQchLjvSateurZS9kvb2229jyJAh1yVQhCKFCxd2vO7MTcBV4Y/esUcGl1JUIoKRDV4RrMjm9PLlyx3zyia5OPZoTS/8yRz03XffrfTt1q0brly5omwYHzx4UOkmAhhxGLr//vshZbvmzJmj/Ke1MWPGQNxvpOmFP9pxOf/1119XSmzJmOPHj8e+ffsc54s7z8033+zyjZCT8GfXrl2oUaOGYywp2yWOQ/J/cWj66aef8PnnnzuOd+rUCTNmzHD8rhf+6APq2bMn7rnnHly4cEHhLP9pTURWwjYQm1HPjWmrL+DTRee8jtxTwp+RC5OwfHMqyhSzYbKFhD+1KoZhZPfiKFE4XUDoKegi5hFRijwv5dmyZs2a64ZeuXIl5PmrNXE5K1myZIZ+Uj5QK7uY3Th5jVmeWS+//HK2ceZ1/LyeL882EUhp7m368eR96t13382x3GRe57fy+dHR0ZB/17PklzFZNOo9xJjVclYS8C8CvH/9K59cDQmQAAmQAAmQAAkEGgEKf0yQcQp/TJAEhpCBQHTDGohpt4vlvnhdkIAFCMRvBaL78C96LZAqhmgQAX/+8tZV4Y8Ifn777TeIC83atWsdmZg9e7biSCFNyn29+uqrys8iuNm7d+91GdM7zoibjLgvZFfmS052RfgjpcbE8UIr7yVCFHGg0Dv6iChHxDsiEJImghspsVWmTBnl96yEPzNnzlRKYulLlsm4ffr0cazr119/RYMGDTKs86WXXnIIaBo2bKgIaqRlFv7IMRHJ6F0njh07pghxtLWMGzcOMp6rLSfhz+OPP4558+YpQ8nc4v6hL0Umr0spNL0g6vvvv0ezZs2UczILfyR/Ivq64447HOGJM8TAgQPxwQcfOF7bunWrIgoLtGbUc6Pb6JPYsjfJ67g9Jfz5aGESVojwp6gNk16JQL6wvIV+7hLQY8IVHEn0rudR0QJBmNKnBCqVzlgSL2/Rp58tZfQ0EeHVq1cRFpYRzBtvvIGRI0c6TpC+7dq1yzD9li1bcOeddyqvDR06FFKC0NPNzMIfeQ+S8pyaUFOeWSLcFIGq5lYmDnTffPONp7H4xXj6kl90/fF9So16D/H9SjkjCfgfASPuXyPm9L/McUUkQAIkQAIkQAIkQAJCgMIfE1wHFP6YIAkGhiD/wJMWExNjYBQZp459pw/il09G3EcXTBMTAyEBEsiaQOzsMkCpJxAzeBQRkQAJZEHAn79I1Qt/ZOn60k4aChH9ZFXSScQjUq5KE8aIiKdcuXIOguKwoBeFyAH9Znb//v0zCESyuvhcEf7oBUfly5dHQkJClmIicb8QAcpff/2lTDV27Fj06NFD+Tmz8EcESiKU0TfhULp0aQeLUaNGOYRO+n6ZnXXECadAgQLXCX/+/vvvDA482hiyOT98+HDl1+yck7K7UbMT/kgu9KXXZENcxFlZNXHvkM18aW3btoVcI9IyC3+mT5/uKEekH0dEVrfccosirJIm6xHRQaA1xQEzNlYRHvjqM/rZi2loFXsc5y+neR33iC7huOOmvLvdaMKf0kVtmOwB4c/ZS3b0mHAVR70s/BHAo18ojka1IrzCetKkSYojl7QNGzZAyu/pm7iEafeYvC6CvczlvsTBSxMOZiVS9ETgZhb+6EWY4vj20EMPKUs+c+aMUtpxwYIFyu9yrzZu3NgTOPxuDLr+GJdSf/7saRxVzkwCviFgxP1rxJy+oclZSIAESIAESIAESIAEfE2Awh9fE89iPgp/TJAEA0PQNtzM9pd40fdURkyHBLr+GHhtcGoScEaAbj/OCPE4CUDZvJdSF/5Y7iKz8MfVfLds2RKyMS1CGH2TjVVxiZEmYgdhpjURwIjTjta2bdumuNvk1FwR/jz55JP4+uuvlWFGjBgBccLIrokARQRH0sQZ6NNPP1V+1gt/br31VuzYsSOD04/0EcFQzZo1HUPv2bMHVapUyXIqEQUdOnRIOdavXz+UKFEig/BHxCBS5iyr9tlnnznKg7344osOEY4ruclO+DNx4kS88MILyhDNmzfHsmXLsh1u/fr1iiOQtGrVqkGETNL0wh8RiB05ciSDq5J+QHEq0kRV4kKiL3/myjrYJ3cExOnnlXGncCXJu243El3DGsFodkcw6lUNRlgeTG9GLEjC91tS4Qnhz6nzdizekIL5v6bg0tXcMXTnrKfuL4jXWqeXLnTnXGd99QJCfclAOW///v2oVKmS4zkmx+WePHr0aIbn1lNPPYVZs2Yp/ZKTkxESkp4ouX/FjUwcueSYPPcaNWqUZWlBcXsT8WedOnWUUo0ijJT4RDwjgprsSn1JnPKclCZOOxUrVnQsW1yMxJFI5j937pwiTKxfv36G9wjpLIJNEeZIk+fm6dOnFecyiV/eY3JyjNPEUeJApj33tQASExNRvHhx5VdxKRM3O7brCdD1x7irwp8/expHlTOTgG8IGHH/GjGnb2hyFhIgARIgARIgARIgAV8ToPDH18SzmI/CHxMkwcAQzCr8iV8+BbHv9EbcRxcNpMOpSYAEciIQO6sUULINYoao7g5sJEAC1xOQja9169YpjgCy8ehPzRXHH1mvlJkREUitWrVw3333KW44+hJYGhMpj9W5c2fl18zlvmSzVnPRkU1mEfU4a64If2TDWBxtpG3atMlR2iarsWWT+uGHH1YONW3aFCtXrlR+1gt/ZDN7ypQp152+dOlStGjRwvG6bEjntOmceQB9qa+s3Dm0/lKOrGvXrsqvOfXLan3ZCX/0LkJSrqx3797Zoj979myGEmBJSUkIDQ3NIPzRs8tqIL14SMRdIvJi8z6Bb3+6iOFzzyLV+4Y/ymLyhwO3lg/CgPZhKJTPlqsFDp+fhJVbU1GqqA1Tcun4k5IKzPslBUt+T8GxM3ak+Wj91cqHYPZbpXK1bldOEmGllP3LXI5Ke16J2Of3339HhQoVlOEyiym181u3bo358+c7ppRnsTxjsnJyGzJkCN58803lnteaCB5F+Dht2jSlpKP2vJX3RXlGZyX8EfHkvffeq8wh7wXSVxzZpIloSNYkJbcyNyk3qD3/5NiJEyccTnSrVq2CPOO0uDOLmfRj6YU92Tn6aMIgihNzvho11x8Rq/rbZyBX7kOj+nAT3yjynJcE8k7AiPvXiDnzToojkAAJkAAJkAAJkAAJmJEAhT8myAqFPyZIgoEhmFX4I0ii762CmPZ76fpj4PXBqUkgOwKx04BBXwJmcwtjxkiABHxHQC/8kU3kY8eO5WlycW4oUqSIYwz9RrS+zJeIYF5//XWnczkT/sjzKygovdyQuECUKVMm23HFueLuu+9Wjssm9H///af8rBf+ZFeaSu/EI2P88ssvTuPXd9ALf9577z288847WZ7vDeHPY489hkWLFinzSc6lhFdOTS/qktJp4tShd/x5/vnnIS5C2TU5p3LlysphcXmS64LN+wSWbbyMwbPPICnZ+44/+tWI40+be0LQ/M4QlIt0TwDkEP4UsWFKzwjkC3Od08UrdiQct2PssmT8cyQNdh8uW1Z5V7VwfN4z0vWA3ewpwj8RwmS+h7RnqSYM1IQ5H3/8Mfr06aPMoncFkmeXiHO0+1+ELtJElCdCGrnfRQT5888/K6+L+4244GhNG18fvoh5xMlLypBlFv6IoEcEoiLQEcGoCEbKli2rnC4OQPKa9mx45plnEB4eDhH1aEIgER9JmUNpeuGPfn4ZQ94f9C5G+uOy/mHDhikvieNP0aJFM9C/dOmSUoJRmriyffjhh25mJ3C6a64/OTnVBQ4N362Um/i+Y82ZSMDTBIy4f42Y09PcOB4JkAAJkAAJkAAJkIA5CFD4Y4I8UPhjgiQYGIKZhT/xqxci9u3nETf8pIGEODUJkEBWBKL7lkDUQ10R895wAiIBEghQAp4W/ghGcfwR5x9p8iX0u+++i4sXL6JgwYIOygcOHMCNN97olLoz4c/ly5eRP39+xziy0ayfJ/MEq1evVpx+pN15552KQ5A0V4Q/UlZGBDvaGqdPn+40fn0HvfBn+PDhiqtGVi0r4Y+UxZGyPNLy5cunOGlk1fQCH/3mvWzCa5v6UoqtWbNm2cau3xCXTmfOnFHEXHrhj7MSZPoyRZmdn9yCxs5uEUhOsWPS9xcwZcV5t87zRGebDSgfaUNUrRC0rB+M4gVdEwANm5+EVVtTUbKIDV+4IfzZ+m+a4vKz6Z9UJKV4YgXujVG9fCiGPlsMFUrmoc6Zkym/+uordOrUSemllRYUpzEpUSXPOhHeiIhHylhJGUO9E9c333yDJ554QjlX3HdEvCPPESlPePDgQTz44INYsGCB8jyRlpaWhi5dumDGjBnK77t371bKc0nTC3+kj7j+SMkvaePHj88g/JHyXeKOJ/GJs9vatWszlITUXMkyC4JkXSIolOefNHEekzkyC3/Gjh2rlC3MTvDjShZlrS+99JJDvOjsmejKmP7ch+W+jMkuN/GN4c5ZScATBIy4f42Y0xOsOAYJkAAJkAAJkAAJkID5CNh27dpl332tdru3wrujTh2UK1fOMbx8oXTo8GFvTWe5catVrer4yzntizpv5iTzfJYD5mcBm1n4I6hj+3UGTi1FzFOJfkaeyyEB6xKI/aoYEPkIYoaqGzxsJEACgUnAG8IffTkt2dwVEYhsMMuGr7T7778fa9ascQm4M+GPDKKVs9E+A2ub1VlNIJvaTz/9tHJINsVnz56t/OyK8EfKf3Xr1k3p37x5cyxbtsylNWid8iL8+eeffxyb8Dk56DzwwAPKRrs0vWuGrFnb0M9cSifzIvbt24ebb75ZeVk/l174k7l0UOYxpKyPVhJGBAYrVqxwixU7543AgC8TsWLT5bwNkoezi+S3IeaJMNxWMQgiCMqpDZ2XhNXbXBf+nL1kx4gFSfh1l4/qeWURfGiIDR91K477aobngZLzU0WgowkkRUz51FNP4ddff8U999yjnCyimBIlSij3vNz70jTxo5Tz+/TTT5UyWUePHlVcffTlFuXZKsIcfdOXxxKBTY8ePZTDmvBH+ouLm150oxf+iKBRykJJDOImJELLkiVLOqaQcmEyljRx+GnSpEmG+U+ePOnoL2XF5LmlF/6Is5C4F+WlHTp0SBH9LF68WBlG/z6Ql3H9/VyW+/J9hrmJ73vmnJEEPEWA96+nSHIcEiABEiABEiABEiABIwjYftuwwS4Wz95srR97LIPwZ8HChZAvbdhUAvXr10f9evUcODZs3KjYbnurZZ7PW/NwXNcIyD8qpclfopu1Rd9bDVE1EhDzdLJZQ2RcJBAwBGKnhyJ+ZyXErd8dMGvmQkmABLIm4A3hT3JyMiIjI5XNX2niNiGlVmbNmqX8LiIbcY1wpbki/NE2JGW8hQsXolWrVtkO3bVrV4ejhJSyEVccLaZnn31W+Tm7Ul96MYuUCZNSMvoyY9qk4lzRqFEjiIBGmrgKSf+8CH/0YhwZM7sSjfIZfePGjcq8siEvzjzS3n//fUdpMSkFJCWBsmt6xyF9STO98EcEQeIElNX6ZdyRI0fijTfeUKZ45ZVXMGbMGFfS7Vd9xCVDmiaA8uXiDp5MhYh/duxP8uW0GeYSwU/dm4PQol4I7qkRjOBsBEAfzkvCmm2pKFHYhqm9si71JRW8DpywY+OeVHzzUwoSL/iwplcmguGhNrz6WCG0a1TQqajJE/CrV6+uuO+IWGXcuHHKM0tc1OrVq+f4977e+UwEiSJMrF27tlI6S0ppaS46Us5KSmiJKEcEPFk1Ef3J86Znz56KcEiaJvyRf2sOGjQow2ma8EeeCdK0576UVZTnkb7phUdyf0RERFwXwqOPPorjx48rJcvkOaUX/oiQSBM4uctW3I5ENKQvMSnudBK/VvLL3TEDqb/2Piv5N/N3Dv6UEwoH/CmbXEugEeD9G2gZ53pJgARIgARIgARIwL8IUPhjgnxS+GOCJDAEpwTkL03jRgFRdZx2ZQcSIAEvEYidBgz6MvtNYy9Ny2FJgARMSsAbwh9Z6muvvYZRo0Ypq+7Xr59ShkZr4ipRtGhRl4i4IvwRFwjZvJWWk7tM5hJWS5YswSOPPKKc54rjz5EjR1C2bFlH3NltQs+dOxft27dX+undNvIi/JFNa/0muWyM6500ZC4RXIWFhTnikzgef/xx5Xd92R/ZoD98+HC2JdGkDJi4cUjr27cvhg0bpvysF/7I7+LiJKXFMjcpoyOuS5rwSXMqcSnhftTJyE0fkcX8fSAZXUedREqKcSIZSWf+cODWG4PQ5f5Q1CgfdF2GP/w2CWv+yFn4M/uHFKzYnIrDiWmwG7gcETM906QgerQsjCDXKpnl+YrWnHs09zRx+xHXH62MojZBixYtsHTpUkUwI8KgYsWKKYekJKEIXKRpwse2bdtCnv1ZNa0Ulzwb5RkpTRP+6MWE2rma8CfzWFJ2TEpoac60clzeB6QsmStNhJjisqYX/sgzqFatWq6cnqHP+vXrFQbaM0mEmCKiatmypdtjBeoJWrkvETLGxcUFKgafrtvI9xCfLpSTkYAfEuD964dJ5ZJIgARIgARIgARIIIAIUPhjgmRT+GOCJDAEpwTi165A9APNMagLEPOM0+7sQAIk4GEC8VuB6D5A3JrliLr/IQ+PzuFIwH8JyIaXuL00btzYEPcOb5L1lvBHnCcbNGhwXeidOnVylJxyZV2uCH/EuaJOnXRV8ddff40OHTpkGF7EKM8995zD+UJK1sgmsuZY44rwRwbUOwaJ44ZsbGsb7HJc3H7EaUNK2kh7/vnnMXHiROXnvAh/5HzNiUN+FucOEVTpm5TmEZcOrUl5MK1kl4ieKleurDhpSBMXnk8++eQ6xx49B+knpYa0csuZhT8iIJLyy9oc2rzaZof8LhvsstkeGhrqSrr9qo8ZNn3i/7iCd6Yn4tJVA9Uy17IaFgK0vjsELeuHoGRhG4KvaYA++DYJa/9IRWQhG77sne74czkJ+CMhFeOWJ+PQKePjl2XUrx6OIc8UQ/FC1wuYvHXxLlq0yCGw27lzJ2rUqKFM9csvv0AcubQmQhYpzSUCIXG2EeGNtISEBFSsWFH5WUqFifOaCBNFDJhV05yCNOGN9HFV+COiECnlKMIjaZnd3d577z2HW0z37t2zdQyTc+X9Q5zh8ir8EdcgvcvPiBEjFE758uXzVsr8clwKf3yfVjO8h/h+1ZyRBPyDAO9f/8gjV0ECJEACJEACJEACgUqAwh8TZJ7CHxMkgSG4RCA+fg2io5tgUJcgxDyT5tI57EQCJJB3ArHTgjDoyzTExa1GVNQDeR+QI5BAABHw5y9vvSX8kVJUVapUcTgsaJeLCGXEUcbV5orwR8bq1q2b4g6hNXGVkHI3N9xwA2SzfPbs2Y5SY9JH1i2uF1pzVfhz4MABxya6nCslc1599VWIkEgcgaSkmVZqS46LKEn6SMur8OeFF15wiIhkPBH5iMORiHp+/PHHDOW09GWAtDWK847m/CGvtW7dWhEmiTuPlFAWFwetfKw2vlbqR37PLPyR18TRSMRc4kIiOZdSa1pJNzk+efJkRXAViM0Mz42UVGDSivOYtvoCkg12/tGugRuK2XD/7cF4/N4QFMpnw5C5SYjbni78CQ0Bft2ZqrgAbdiTiqsmqRJcoWQwPno+EjffEOLTy/nUqVMoUaKEMmfHjh2V+0tEd6dPn0ZISHosu3btcoiCtH433XQT9u7d64hXyjTJdXnnnXcqJQgzt3PnzqFIkSLKy1IecMCAAcrPrgh/RHC0detWReQnop3NmzcrcUpc8hyWJs9hiU17nmTl3pOUlITU1FRlHFlfXoQ/IgJ98sknlflEkCTvEZUqVfJp/vxlMgp/fJ9JM7yH+H7VnJEE/IMA71//yCNXQQIkQAIkQAIkQAKBSoDCHxNknsIfEySBIbhFIPreaoiqdRoxHU+5dR47kwAJuE8gdlYk4ncUR9z63e6fzDNIgAQQHR0N2fQSYYQ4GvhT85bwRxgNGTIEAwcOdOASkYgITPSb1c5Yuir8OXr0qFK2SzabnTXZ/H7nnXcyuE24KvyRsfWlvHKa64svvlAcgrSWV+GPlEgTtw/NtSe7uWWzX67XG2+8MUMX2UwXBw0RADlrUgJHSgTpS7LphT/i5CNuQDk1ESaJ24Y7+XYWl5WOm2XT50qSHT3Hn8bmf66aBp+UzCqYD+jWJAyb9qbihz9TUbygDRN7RGD4gqvYsi8NySmmCRcF89nwRZ+SPhf9aATq1q2b4dmWnWOP3PP6+1KcvcaMGeMA+dVXXylCPWniSnbLLbdkgCzvcSKQkbZs2TJFPCnNFeGPnLdmzRql/++//w4RH0rTlxXTvy7PQ70Tj/Q9efIk5Pl1/vx55TklDkV5Ef5oPGQd4pwUiM5jnryLtLJtIvJk8z4Bs7yHeH+lnIEE/I8A71//yylXRAIkQAIkQAIkQAKBRIDCHxNkm8IfEySBIbhNILZfZ0j5r6iaJ1n6y216PIEEnBOQ0l6xs0ooZb1ihs5wfgJ7kAAJZEnAn4U/4tAizi/SRMzx33//eewqkFJT4iajNSnzIoIbd5rexULOE4FP6dKlsxziypUrePvttzFq1Kgsj4v7hLhltGjR4rrjInJ55hm1DqmIlQYPHpxjmH/88QfatWuH3buvF1SKm8awYcPQpEmTDGOMHj0affr0UV4TQYz2c+aJ9M48L774IsaPH+/osmPHDrzxxhtKibGsmmy2f/fddyhTpky28X/55ZcZBEmZO0qexOlDK4OmHf/7778VZyNpb731Fho1agQpB5SVEEmcgvRlx9zJub/0NdOmz+nzaXhl3CnsOmgS+5xrSZZyX0E2IDlV/b+4/ZjF4Ue7DsNCbOj9WGG0b1QAQb6r8JXhNpDnmpT301rmElra61LCSkp+aW3+/PmO57u8dvHiRUVYI/dsw4YNsXjxYkepQhEW3nfffYogKHMpRHeFPzJX7969oTmGaXGIYERKZopDmcQhQiHNgUfEPuIOJsJKaeJoJGUUcyv80buzyfOyQoUK2T5aZJ7s3lf85XnkiXVQ+OMJiq6PYab3ENejZk8SIAEhYMT9a8SczDYJkAAJkAAJkAAJkIB/EqDwxwR5pfDHBEkwMAT5q+5169YpX6RazYkg9t2+GDR4BAY9XwqNbz2OqDoGguTUJOAnBBTBz8wCQGhpxAweiagmj/nJyrgMEjCGADe7csf98uXLyJ8/v+PkhISEDGWycjeq87OOHTsGEciIOEc2k2XTWkrK3HzzzR53n5HyXlLeRgRT4i4hm9kidsosmnEetXs9tmzZAnFDkjI+hQsXRp06dZSSYpGRkS4NJFzkfHHxkdilLJswEkchfc6cDSY5ls+h+/btQ0REBO666y5FNEBnDShcZBNGPpvHxMQ4Q+n149sTkjBgWiIOnUz1+lz+NEGbhgXwWuvCyBduM2xZq1evRtOmTR3zi6gls6OXHBTRX6tWrRz9RDSjlQnTXtSX2xIxpAgUU1JSlOtVngvSVq1alUG4mBvhz9mzZyHlv0RkJG5vUnJRBDZ65zCZX+4PeXbIv2U1EaHm9iOx5Fb488033+CJJ55wKWciOJKyhGw5E+BnId9eIdzE9y1vzkYCniRgxP1rxJyeZMaxSIAESIAESIAESIAEzEPAdvDgQfuhw4e9GlH9a1bR2iQbNm706nxWG7xc2bIoV66cI2wpo+DNnGSez2q8/C1ef/gHXuyAVzDog88oAPK3i5Pr8eDO1fcAACAASURBVCmBdMFPScTEDELUQ6p7BRsJkEDeCHCzK3f89GVlZDNa3IXYSIAEjCEg1XkW/nIRQ+ecRQq1P06TIOXI6lcLx5iXIyHOREa2CxcuQEQy0kRYJ6K9rNqZM2ccDj7iPLZp06Ys+y1fvhwdOnRwCH20TuL6Js9pKS2mb7Vr11aElBMmTED37t0zHJs4cSJeeOEFRZi0cuXKDMf0ZRF79eqFTz75RDkurkJPPvmkMqa+yfxSIvLpp592vHzq1CmHeEnWrbmOOcuHOKONHDnSWTfluKxJ1saWMwF+FvLtFeIP3/H4lhhnIwHzEDDi/jViTvMQZyQkQAIkQAIkQAIkQAKeJGCzs8i3J3lyLBJwm4D8haaUIZG/mIyLi3P7fDOdEPtOHwx6f7QS0qDnCgOp51gGzEwJYiymI6CIfWaEA8FFgJCiiHrgYcQMzrrMjemCZ0AkYBEC8kWqNDO4dlgEGeSfBw0aNMDGa2L9zA4SVlkH4yQBfyKQkmrHpBUX8MX355Fm96eVeX4tVcqGYmjXYqhcJsTzg5tgRCmNKOX7REwjrmHi6lO5cmWvu5VpS09NTYWUgxQR0NWrV5VSXOJiHBLin7xNkPI8h0DhT54RujUAN/HdwsXOJGAqAkbcv0bMaSroDIYESIAESIAESIAESMBjBCj88RhKDkQCuSOgCX/kbH/S4cW+8ypw9SgGjfhGARNVtzCQdgVRdeyAPTl3sHgWCViYQPzWIMAWAgRFAEHhiN94AlENayLm3YFAWBnLlfqzcCoYOgmQQBYEEhMT8e2330JcGxYsWIBJkyYpvaQElZTD0jYNCY8ESMA4AqlpUg40EUs3XjYuCAvM/FmPSDSoHg5x/mEjARKA4z3cn75vMHNeuYlv5uwwNhLImYAR968Rc/I6IAESIAESIAESIAES8E8CFP74Z165KosR0DbTxPFHnH/8sYnASdq6+LUAbIDNYN99f4TMNZmXgD0NjaMaAUj/S2h/vdfNmwRGRgIkkBOB7du3KyKfzG3JkiV45JFHCI8ESMAkBPYfT8HAaYn46wCF9JlTki/Mhl6tCqP9/wqYJFsMgwTMQYCOP77NAzfxfcubs5GAJwkYcf8aMacnmXEsEiABEiABEiABEiAB8xCg8Mc8uWAkAUxASn2JMMafhT8BnF4unQRIgARIgARMTyAr4c/HH3+MPn36mD52BkgCgUTAbgd2JCSh5/jTOH85LZCWnuNag4OAJ6MKKsIf+ZmNBEggnQCFP769GriJ71venI0EPEmA968naXIsEiABEiABEiABEiABXxOg8MfXxDkfCWRBQHPDkUN0AeElQgIkQAIkQAIk4GsCly5dwrJly3Du3Dml3FetWrVQtmxZX4fB+UjAFAS0z+Zm/lz+819X8MbkRCQl203BzFkQUnbrnfZh+GJ1Mg6e8nzMtSqG4tOXIlGkAFU/znLB44FHgMIf3+acwgHf8uZsJOBJArx/PUmTY5EACZAACZAACZAACfiaAIU/vibO+UiABEiABEiABEiABEiABEiABExLwAqbPkkpdkxecQHTVl9ASqrnhTSeTo4If759Kx/ennEVuw551qmoUukQjOhWHDeVSS+p6un4OR4JWJkAhT++zZ4V3kN8S4SzkYB1CPD+tU6uGCkJkAAJkAAJkAAJkMD1BCj84VVBAiRAAiRAAiRAAiTgdwRkk2vQoEFo3Lgx3fT8LrtcEAl4l4BVNn0uXLGj75TT+G3nVe8C8cDo3hL+FC8UjBHdiqHOTWEeiJJDkIB/EqDwx7d5tcp7iG+pcDYSsAYB3r/WyBOjJAESIAESIAESIAESyJoAhT+8MkiABEiABEiABEiABPyKgPaFrSzKbje/E4ZfwediSMAPCFhp0+fCZTu6f3oSuw4me4R8SDDw5mNh2PpvKiqVDkKVMkFIvGjHgl9T8Nd/aZBHqg1A1bJBeKxBMG4sGYSLV+xYvjkVv+9JxcVrGqRSRWxofU8IalUIwslzdnzzUwqGdAqHJx1/JNberYrgicYFEMQKXx7JPwfxTwIU/vg2r1Z6D/EtGc5GAuYnwPvX/DlihCRAAiRAAiRAAiRAAtkToPCHVwcJkAAJkAAJkAAJkIBfEeAXtn6VTi6GBHxOwGrPkK37kvDOtEQcPp2aZ1ZhoTYs6BeB0xfsWL0tFX8dSEXdKsGIqhWMYfOTsGVfGqrcEIS324Vhy95UbEtIQ4nCNjzVOATfb0nFtLXJEHef/m3DUCDChhWbU5AvzIbWd4egVFEbXv/Cc6W+2jUqgN6PFVbGZyMBEsjhiz+5KSmG9tklYrX3EFfB7Dl4BrsOnIH8X0Sg/x4+4+qp7GdSApXLFkWV8kUREgQ8fE8lk0bp27D89f71LUXORgIkQAIkQAIkQAIkYBQBCn+MIs95SSAHAvHx8SxLwiuEBEiABEiABHJBgG4/uYDGU0iABDIQsOKmz8JfLuH9WWeQV48zTfizYXcqPvg2CcmpQHAQMLZ7OBIvAANnXcXwp8NxKcmOofOScOmaw48Ig154KBTvfJWkCH8+6ByGnhOv4miiGtHtFYMw9Jlw9JniGeHPPbeEY+zLkbxySYAEXCBAxx8XIHmwixXfQ3Javgh9lqxPwL5DZ3Bj6SKof1tFpXu5UkU8SI1DGUHg0PGzOHjsrPI+v37bfjStXwmPNgxsAZAR968RcxpxvXFOEiABEiABEiABEiAB7xOg8Mf7jDkDCbhFIDo6GiL8iYuLo/jHLXLsTAIkQAIkQAIAvzjlVUACJJBXAvJZXJ4lUVFRiImJyetwPjk/LQ0Yv+QcZqy9iOTU3Mt/NOHPtLhkzPkpxRH7c01DUa9KEN6dlYTpr0Zg9o/JmLY2/bhsGi7onw+Dv0lChZI2NLo1GO/MSsL5y2osUorrq9ciMGh2EnYdSssTk5tvCMUHXYqiStnQPI3Dk0kgUAhQ+OPbTPvTZ9HF6xOw8rcE3H1bRdS/rYJvQXI2nxPYuOMAfvljPx66uxIeCVAHICPuXyPm9PnFxQlJgARIgARIgARIgAR8QoDCH59g5iQk4DoB7R98stEg4h82EiABEiABEiAB1wlo76N2qUHARgIkQAIBROBKkh1Dvj6L5Rsv5dr5RxP+fL4iGYs3pgt7OjYOQXStYAyek4wpr4RjyupkfP1j+nHBvKB/BIbNS0b1cjbUrBiM975OwoUr6rNYXICm9JTjeRP+BNmAMS9HokH1cGVMNhIgAecEKPxxzsiTPfxlE3/RTwnY/d8ZPHb/bZ7Ew7FMTkBcgOat/gPN6ldCywB0/zHi/jViTpNfhgyPBEiABEiABEiABEgglwQo/MklOJ5GAt4koLn+DBo0yDJ/ZexNHhybBEiABEiABEiABEiABEjAOYEDx1PwxuTT2HskoyjH+ZlqD034s+DXFEXcIxpKEdu83S4MkYVsGDAzCVN7hePnv1Px2bJkpF4z7yld1IZJPSIwcOZVlChiQ8f/haDvtCScPq8Kf/KHAzP7RKD/jNwLf8JDbXjz8SJofW9+V5fDfiRAAorwTlXJURTtm8vBHzbxv/s5ATsPnEFrin58c9GYbBZN/PNgg0pocW9glf4y4v41Yk6TXXIMhwRIgARIgARIgARIwEMEKPzxEEgOQwKeJCDlBUT8wy/nPEmVY5EACZAACZAACZAACZCA/xPYti8Jfaecxslz7pfU0oQ/RxLtGDY/CXuPpKFulSD0bxuGr9alYN4vKWh9d4jy35glyfj9n1SULGpD7xZhKJQPiP06SXEb+qhLONb9maK4AoWFAN0fDEWT20Pw6pSruSr1JaXE2jUqgFcfK4zQEFr9+P9VzBV6kgCFP56k6Xwsq2/iL1mfgL/30+nHeab9u4cm/un1eB1UvbGofy9Wtzoj7l8j5gyYhHKhJEACJEACJEACJBBgBCj8CbCEc7nWIUDXH+vkipGSAAmQAAmQAAmQAAmQgJkI/LDjCvp9kYirye6VPdSEPyfO2lEoP3AlCShW0IYVm1MxdlkS0tKAkCCgV8tQNKkdgnOX7MgXboM9zY63pqtuPmIu0rhmMPq0CkVqqlrm658jaShdNAhD5ubO8adauVBM6BWJwvmDzISZsZCAJQhQ+OPbNFl9E7/nqHg0uK0iGtxWwbfgOJvpCIj4Z8tfB9CnQx3TxeatgIy4f42Y01v8OC4JkAAJkAAJkAAJkICxBCj8MZY/ZyeBbAmI68+6detY6ovXCAmQAAmQAAmQAAmQAAmQgFsERPAzYfl5TF99QSnX5WrThD/zf0nBD3+mokJJGw6dsmPPkTRHWS8ZKyQYuLlMEMpF2nDhMrDjQCouXc04S9niNlQtG4QLl+3Y+m8aKpcOwqFTabic5Go0ar+KpUPwyQvFcWPJEPdOZG8SIAGFAIU/vr0QrLyJv3h9Ai5cseOumhT9+PaqMe9sC9dux2P3VQoY1x8r37/mvYoYGQmQAAmQAAmQAAmQgK8IUPjjK9KchwRIgARIgARIgARIwOMExCEvKiqKQlmPk+WAJBC4BESAL02eLVZu5y6lYeD0RPz8ZyZFTg6L0oQ/c39OwZdrkw1ffokiQXivczE0qB5ueCwMgASsSoDCH99mzsrCAbr9+PZascJsiuvP3wfQp31guP5Y+f61wvXEGEmABEiABEiABEiABLxLgMIf7/Ll6CRAAiRAAiRAAiRAAl4ioJXFlOHt7lhaeCkeDksCJOAfBPxp0ycpxY4uI09i98FkuGL8ExYCzOwTgYW/pWDWDymGJjTIBrzyaGF0fqAg5Gc2EiCB3BGg8Cd33HJ7llXfQ/YcPINFPyWgVfRtuV06z/NTAp/O+hFj+lhbDO1qaqx6/7q6PvYjARIgARIgARIgARLwbwIU/vh3frk6EiABEiABEiABEvBLAtqXsrK4uLg4yztz+GWSuCgSsCgBf9v02fxPkuL8cywx1WlGbDagZoUgnDhrx7EzrkiFnA6Zqw4SR9uGBdCndWFEhFH1kyuIPIkErhGg8Me3l4JV30NE+LPgh3/R+oHbfQuMs5meAIU/pk8RAyQBEiABEiABEiABEiABhQCFP7wQSMBCBKTsgLgbDBo0iCVNLJQ3hkoCJEACJOBZAhT9eJYnRyMBEshIwKqbttnlMc0OLP3tEgZ9dcYyqf7fbREY9mwxhIVQ9GOZpDFQ0xKg8Me3qbHqe8jSXxKQeNGOBrdV8C0wzmZ6AgvWbkfrRpVQtXxR08ea1wCtev/mdd08X0fgiFry19FuCAy3K14DJEACJEACJEAC/kGAwh//yCNXESAE9BudFP8ESNK5TBIgARIggQwENBGsvEinH14cJEAC3iDgr5s+Yxefw6y4i0hOdd/JJzU1TUEdHBzkDeQZxqxYKgRDnimG6uVDvT4XJyCBQCBA4Y9vs2zV95Cl6xOQeInCH99eLdaYbcGaP9D6f5Up/LFGuhilOwS2DFJ7H10HZBb8ZB5HEwDViQEoBnKHMvuSAAmQAAmQAAn4kACFPz6EzalIwBMEKP7xBEWOQQIkQAIkYGUCIv6RFhXFv76zch4ZOwmYlYBVN22d8bx01Y5f/r6CpGRnPa8/3qlzJ+XFmTNmun+ym2fcEBmM/2PvTuBtqvo/jv9UT2gwhEQyZogUSQpxNSiSJA1oMPQQSVEZSt2LoihSKqk06mkOqRS5lwyZFcmQXEQU5aYyd///tU772vfcM5+zzx7OZ79evXDO3mt4r7X39Tz7a61zqxwvarsvDgQQiF+A4E/8htGU4NafIQR/ohnl1Dp3yXdbpOQJhaTVhZU933E77l876vT8QIbqoAr7RBL0CYekwj+EgMIp8T0CCCCAAAIIJFmA4E+SwakOgUQImMM/6qWnWvGAAwEEEEAAAQQQQAABBOIXUOFC9fdt9ffs9PT0+Av0QAkEBzwwiHQhZQW4f5M79G59iU/wJ7nzxE21EfyxdrTc+sywVsWC0lXgZ8XQwAVXbuT7vFTZgt/v3nn0s+xFga+vny5S/9/VgyxoOkUigAACCCCAAAKRChD8iVSK8xBwmAAvJBw2IDQHAQQQQCDhAupnHav6JJyVAhFAAIGoBQgORE3GBQg4RoD7N7lD4daX+AR/kjtP3FQbwR9rR8utzwxrVRJYerDAT4O2vkqOWRl5Zf+p5Tt3e45IoBAQAaDILTkTAQQQQAABBCwRIPhjCSuFIoAAAggggAACCMQqYIRb1a8ZGRmsuBErJNchgAACCRIgOJAgSIpBwAYB7t/korv1JT7Bn+TOEzfVRvDH2tFy6zPDWpUElB4q8BNN2CdUU/6pJ7JsWv4z2AIsAYNHEQgggAACCCAQqwDBn1jluA4Bhwuo/+HI1gQOHySahwACCCCQT8Ac+DG+IPjDJEEAAQTsFyA4YP8Y0AIEYhXg/o1VLrbr3PoSn+BPbOOdClcR/LF2lN36zLBWJc7SA4V+1Ao/iQr8+DcvUACoVaaICgFxIIAAAggggAACSRQg+JNEbKpCIFkCxv9oVPWpF6bqIASULH3qQQABBBCIRUCFflq0aJF3KYGfWBS5BgEEELBGgOCANa6UikAyBLh/k6F8tA63vsQn+JPceeKm2gj+WDtabn1mWKsSR+n+oR8rAz/mZqptwPy3AGPrrzgGkksRQAABBBBAIBYBgj+xqHENAg4XUC9P58yZkxf6MZqbmZkpaWn8awOHDx/NQwABBDwtoH5GBftZpII/6jvCqp6eAnQOAQRcKEBwwIWDRpMR+FeA+ze5U8GtL/EJ/iR3nripNoI/bhqtFG/rZy1Efs46ipCs0I+Z3X/1H8I/KT4p6T4CCCCAAALJFSD4k1xvakMg6QLq/3RSh1o5IdjqCUZQyL9xzZs3D/hylvN9Uvj4HJgPzAfzs4P5wHzwnw/GzyE1N4yDIGrS/zpAhQggEIWA8bwiMH8UjeBAFBOIUxFwmAD3b3IHhOBP4r2zZn0qSxZ+FXHB7W64RarXrB3x+cFOXP/9apn6/mSpXquOtLv+5rjLc2sBBH/cOnIp1m67VvoJxEz4J8UmH91FAAEEEEDAOQIEf5wzFrQEAdsEzFuDmRsR7MWsWpHB/ALXuIbzfRL4+ByYD8wHnicFV1jj+SB5K/rwQt22H/tUjAACYQTc+tLWyoElOGClLmUjYK0A96+1vv6lu/VniJNX/Lnj1nYy+4vpEQ/k9MyVUuOssyM+P9iJE8aNlDEjH5I77h4s/QcPj7s8txZA8MetI5dC7fYP/TRuKXJorb0AhH/s9ad2BBBAAAEEUlSA4E+KDjzdRsAsYKzG4K8SbKsVzvdJ4eNzYD4wH3ieFPyZwvPh6PNBrY5mHIR9+PsHAgi4QcCtL22ttCU4YKUuZSNgrQD3r7W+/qW79WeIk4M/C+Z+KTk5v+dR7/51pwx74G795+Gjn5diJUrmG4aWrdrJsccdF/fAvzf5ZVm5bJFc37m71GvQKO7y3FoAwR+3jlyKtFtt7aW2+DIOJ4R+jLb4h39aZYqUK/gPxFJkpOhmggTmz58vjz/+uKhf/Y8BAwbojwYOHJig2igGAQQQQMBtAgR/3DZitBcBBBBAAAEEEEAAAQQQQMAyAbe+tLUM5P+D3qkaHNjw0x755x8R9esPP+2RQoWsVKZsqwSqnV5CF63Gr8YZJaR6Bd+fU+VI1fvXrvF1688QJwd//Mdy7uwZcnunNnLiSSfL8g2/5f2MsmvMvV4vwR+vj7DL+zfJ9JezBm1FjlnprA6Zwz8q9KPCPxwIxCCggj5t27YNe6UK/xD8CcvECQgggIBnBQj+eHZo6RgCCCCAAAIIIIAAAggggEC0Am59aRttP6M5P9WCA99v3iOffZ0tR/4Ryc3NlfKnlpAKZYtHQ8a5DhL4aWeObs0xhUS2/ZIjW3bskSsaVZY2jSs7qJXWNSXV7l/rJCMr2a0/Q9wU/Bn/5HB5evRQuaRlG5nw+pQCA6NWA/pt1y/y8Min5bOP35f3J0+SDp27SecuvWTf33/J3Nmfy6IFc2TenJmy/++/pXK16nLdTV3kmg6d88ra+fM2XUfZcqdL3/vT9eevvfi0rFiyUO4emCHLlyzU24+tWrFUSpUuk1e+uTHq58enU9/1nffNMjn55GLS7JIrpdNtPaVM2XJ5py5dNE/efPlZaXnVtVK+QiV5/3+vyNwvZ0jmkh8SsnJRZDM3+FkEf+IV5HrLBMxbfDkx9GN03Bz+qZ8uUj/DMhKj4ECrwSSq0iZNmiSqKMqJUECt8DNq1KiIzib4ExETJyGAAAKeFSD449mhpWMIIIAAAggggAACCCCAAALRCrj1pW20/Yzm/FQJDqzdskfUy+8j/+TKBXUryemnEvaJZp646dyl322RBd9sTokAUKrcv06Zf279GeKm4I9a7Uet+tN/8HC54+7B+YZ+7x850qBGKf1Znbr15btVK/TvJ739mdQ5p77c2uFyWbdmlf7stHIVZMfPP+VdP+b5N6XNtTfpP8+Y/oH0vf1GuaJNe3nmpXf1Zy2b1JbsjevzlWuu/NV3P5fGzS7VH/3+2y65v08X3U51lCp9quze9Yv+/Zk1asvkKbOl5Cml9Z+ffPRBeeGZx/V2YmprMXXUrXe+fDDja0dMa4I/1g6DW58Z1qpEULr/Fl8NK0ZwkY2nLNlytPJuuZY3RK0MY1X4h2CJ5cNXoIJSpXw/1yI5du/eHclpnIMAAggg4FEBgj8eHVi6hQACCCCAAAIIIIAAAgggEL1AVlaWqJcwaWlpkp7u+1f+qX6kQnBg2vxsWff/wZ+GZ1ck8JNCE37K7FVSs2IJadvEu6v/pML966Qp69aX+G4J/vzzzz862PPXn3t1mKdp2uX5hn/xwrly87WX6M9UsGfAw49J9Zp19Ko+Y0YMkVdeeEpat71e+tz3kA7gHDiwX3p3aS9fZX4hvfs9KPcMHKqvHT18sLz47Gh9/e2975OcnN+lYc0yeeVmPD5erzj0R84e6dC6sQ4EPTbuZWl/421y5PBhub1zG5k/Z5Zc3b6jPDh8jJxSqoxs37ZFbmrTTIeN1Ge3/bevLu+W9pfqFYjUcXO3O6X1NdfL6WdUknLlz3DE1Cb4Y+0wuPWZYa1KBKV/1kJEhX/U0bilyKG1EVwksmxtEX1eg1r7Izo/0EkxlZHkVX8I/sQ8vI67MJrVftRqTNOmTXNcH2gQAggggEDyBAj+JM+amhBAAAEEEEAAAQQQQAABBBBwnYDXgwNT52XL+q17pN0ldV03NjQ4fgEV/qlxRgm5pqk3wz9ev3/jnwGJLcGtL/HdEvzJ/nGDtGx8lh60xd/vlBIl86+CMOn5MfLY0AH6+69WbNZbdRnH/X1uE7Ui0OPPvCLFi5fM+3xk+n06EDQofZR069Vff35T22ayfPECef2DWXJhkzT5el6mXi1IHTMXrpVKVc7Mu37AXV1kyntvytgJk+WqdjfKS889IaOGDZIzKlWVz75aJccfXzjvXFWPqu/GW/4rw0c/r0NCZ1XwBRG63tFPBmeMTuyETEBpBH8SgBiiCLc+M6xVCVO6ebWfyo1EyvwcUXN6jCqbF/xRF0wcsDOqAJAK/LwwrXi+8FDPtjmRl5HEVX8I/kQ0JVxxUqjgjwr6qP+aNm0q8+bN07+yFZsrhpVGIoAAApYJEPyxjJaCEUAAAQQQQAABBBBAAAEEEHC/gJeDAx/Pzxa1xRehH/fP03h6oMI/tSqWkKs9uPKPl+/feMbcqmvd+hLfLcGfT6a8I/3u6KxDNV8uWl9gGO/+703y2cfvy70PPCI9+w4q8P3hQ4dk44a1snXLJtmxfat8u2KJDu2o482PZssFFzUTdU7tM4rqz5au2yXFipfQq/+oVYA63tZThj7+bL5yVSBIBYPUCkRqq6+0BlX1qj5de94jzS9tle/cWTOmyZuTnpUOHbvKiLEv6m3Hrr6kvpx40smStezHfIEkq+ZotOUS/IlWLLrz3frMiK6XCT47htV+/EM/RouWTdoccePiLiOJq/4Q/Il4WB1/YqixZFsvxw8fDUQAAQSSLkDwJ+nkVIgAAggggAACCCCAAAIIIICAewS8HBy4a2yW9O10sXsGg5ZaJvD0W19J3+vrSfUKJSyrw46CvXz/2uEZrk63vsR3S/DHWJ3n2htulcefnlRgOC46u7zs3vVLgdV+9u/fJy+OHy3PPDEs6BAuW79bTi5WXNZ+9620vfQ8qVythnwxf40+/85uHWTmp1PkuVc/lMuubJtXxpEjR+Ss030r+ixcvV22bt4kN1zVJNw0yQsmffjOazLo7u7SqcsdkvHY+LDX2XECwR9r1d36zLBWJUzp5uBPw4phm6JW6lGhnUBHj2typOc1e+IqI6qVg4xVf+qni9TPCFtvrCcQ/IlVznnXlSqVf2U7o4UDBgyQgQMHOq/BtAgBBBBAwFYBgj+28lM5AggggAACCCCAAAIIIIAAAs4W8GpwQG3xtXd/rjSqG/6lkbNHiNYlQmDRqi3y62850u+GeokozjFlePX+dQywX0Pc+hLfLcEfFapZuWyRpD/2jHTu0iuf/s6ft8nF9StJqdKn6hCO+Rg3KkOeHfOInFaugnTo1FXOqd9QKlauKgcPHCwQ8nnvrUnyYP8ecn2nbvLomIm6GCNQNG/lFjn1tPJ5Rf+wfo20bnaOLnfuimyZ/tHb0r/XzXJmjdpy35ARQadp7br19DUZg/rIW69OkMfGvSztb7zNkdOa4I+1w+LWZ4a1KiFKj2Sbr91/iOw7KFL0eJFSxfTWXMGCP5GGdiIuY98Bkd178+ou0JNfy4lkL/J93C3XMka1PVSoY/78+aL+C3QY20cFu57tpCwbtgIFqzFSIa5AB8Gf5I0DNSGAAAJuEiD446bRoq0IIIAAAggggAACCCCAAAIIJFnAq8EBVvtJ8kRyQXVeXPXHq/evU6eTW1/iuyH4c+DAfqlb6SQ99O99ukDOPe+CfNNg9hfT5Y5b20mrqzvIuBffzvtu44bvSYgmhgAAIABJREFUpdXFdfWfZ8xbLVXPrJX33ROPPCATx4+SG26+XR55YoL+/KH7e8k7b7wow0c/Lzfe8l/Zvm2L3r4rUKBo6vuT5f4+t8k1HTrL6PGv6RCPCvPUrXe+fDDj63ztU8Gkj959XUqeUlqXqw61zZfa7uvj2SukZm1fG512EPxx2og4uz3qZ05GRoakp6db09AVGSIrhvrKbtxS5NDa/PWo0M9ve49+VqG0SNHC0qBbpbzP1Co/y9b5Vurq2TZHGtTaH1FbVXioQc0D+loVBDKOfNuFbdh2tKyihUVU/eYjidt9heqUCgaNGjUq4CnTpk0TFf4Jd4QKDvlfq86dN2+eDhsZZYdbrcYoX7XVuCaW0FGgdgbqn9FGc9tjqc+43qjXv9/q+0jLDRX8UX3wN4xm3PzbFWmbzD7RzgHzWKpyzO2PdpzMcylc2wPNv3DXhJv/6vtgYxxt2fH0PdR9FGoOhrv/Iuk/5yCAgDMFCP44c1xoFQIIIIAAAggggAACCCCAgA0CWVlZuta0tDQbandmlV4MDkxfkC05+3LlgrNZ7ceZs86eVn345bdSp3JJadO4sj0NsKBWL96/FjAlrEiCPwmjLFDQ6m+WSfsrGunPv83eK0WKFM13jrGqz8CHH5fuve/N++6l556QUcMGSdplrWXim9PyPs+c+Yn0vOUa/edHn3xBru/cXf9ereCjVvL5aOYSqVO3vsz6bKr07nqdtG57vTw18X/56hz+4D3yxsvj5eER4+TmbnfmrfijQkJzlm+S44/3hQv++nOvdO90lSxfvEAeGPakdOlxt/z9159Sr5pva8Hvf9ovxx53nHV4cZRM8CcOvBS81HgGqq5bEgAKt83XT7tE1Ko7xnHKyflW/Yl0a69wQ/fC1BIycWpxybdikKpX1W8+qp+e/8//qSWy4AvfZxZv9xWqD4kI/gQrwxwcUsEDdZ5/sEEFVNR55iPYuYH6Ec1qN4G2yjJfH0m90dSn2hvpVmuByg0V9gk1poFMY/GNpq/B+rl79+68qoPNE/8xCLSyUSRzyagoWLvDjUWkQTcrLcPN0VBzKlD7I5nTqkxlFm1IKdyzke8RQMB+AYI/9o8BLUAAAQQQQAABBBBAAAEEEHCIgFtf2lrJ58XgANt8WTlj3Fv2tl9yZMX3Wzy13ZcX718nzzC3/gxxw4o/b78+UR4e0DvgajpqTnS98UqZP2eWvPHhl9KocfO8aWKswqM+uPX2u6TkKaVk6aJ5+lzjUNts9Rs0TE486WQ5r/op+uPVW/7SwZ0xIx+SCeNGyuCM0dL1jn75pt+1lzeU71atkHc/mS/1GjTKF+Y5v1FTuaJNe/kjZ49eCWj3rl90eOjJ597QIR8VArqpbTNR57011Rc6duJB8MeJo+LsNhk/d4xWJjQANKmQr9jKjUTK/FwQwn/FH//gjdV05uDRv6GjAlUu2eL7qFyaSKtMq1sUsPxkBH9C1RFt8CYYUiQhlUChCiMkE03IJpK6QvU5VB/Ud8YKLNG0yVxmqOBPuPBLoLZFEogJF/yJZg4ECv4Y5pG6mg0iDb+ovkcytoZRpG0xzo+k7HjmqDlkpeqMtn3R9t+WBxaVIoBAVAIEf6Li4mQEEEAAAQQQQAABBBBAAAEvC7j1pa2VY+LF4MCYd1bKebUryumnFreSjrJdJqCCP8vXbJH+N9ZzWcuDN9eL96+TB8etP0PcEPwxtuBS4Z0hj4wtMA3qn1lSr6yzdN0uKVbct5KOOvb+kSO3XneZDugYR+VqNeThR8fplX1GPOxbHWjmwrWye9evctPVF+sQjwrzqKN7x9byVeYXOpyjQjrGcfjQIal9hm/VoW82/SFFi56gf798yUJ9jWqLcZxWroL07veAdOjYVY77z3/0x5NffV6GDrpLevQZIPcNGeHYaU3wx7FD49iGmVf9MTcyIQGgcMEfVaEK/6jjhMJ6m6+kH6r+UHV7PPijgg7qCLaVmPrOCEPEGnIxj2m4gEqwUIUKiYRqY6B54x+yMJ8Tb1+MsmMtJ9gqSoECNZHeE+FCK8GCP2pM1FZioXz9V/MJ1E5j67JgW4oF6oexBVq0/Q41tkY9sQSo1LXhVmMKFfwJ9J3RHv9yYwn9GGWFG+tI5wznIYCA/QIEf+wfA1qAAAIIIIAAAggggAACCCDgEAG3vrS1ks+LwYG7xmZJ304XW8lG2S4VePqtr+SZft7Z6s+L96+Tp5Zbf4a4IfgTz7gfOnRQvl/9jV59p1adc6R0mbJ5xW3bmi2HDx+WSlXOjKeKfNfu379PNqz9TnZs/0lKlSkr59Q7Py/wk7BKklQQwZ8kQXusGv9Vf8zdUwEgdaSnp0fX65+zRNRWX+oItuJPdCXac/av5USyF/nq7pZrSxusXPFHhRHCBTXMoY9QwYZIcGIJVURSbqBzQoUjYg2FqHoi2fYqXJsDOcRrq+oMFawK1udI5oA5aBNr2CmcSTTfhwuQxROq8R9j/3bFGk7zn4/xjHckwadoPDkXAQTsEyD4Y589NSOAAAIIIIAAAggggAACCDhMwK0vba1k9GJwgOCPlTPG3WUT/HH3+Nnderf+DPF68MfueeHm+gn+uHn07Gt7VlaWtGjxb0gnSDOiDgCZgz8N2oocs9K+DsZTs8eDP5HQmEMGoQIVka74Eiq0EU8YIlBfggUkgtVj9MHcF3Mwyj+8EWsIJpbVXyIJ6CR6CzFl6l9mrH2OZK5Fek6ofoYL/ahrjfENtcpRtHMnXNvNcyfcfWS0T5Xp38Zwoadw7eB7BBBwlgDBH2eNB61BAAEEEEAAAQQQQAABBBCwUcCtL22tJCP4Y6UuZTtNgOCP00bEXe1x688Qgj/ummfJbC3BH2u13frMCKWiQj/qUH0zfh/q/IgDQObgT+OWIofWxjQ4y9YW0dc1qLU/5utjvVZX+E89kWXTfHV7cMWfQKjG9ktq+yd1DBw4MN9p5pVjVJihadOmeUEK48RQK+qECm2EC/4YbTPqiWaLKuOaUKGLQGEP4/xgKwgZwaBQbTGczJDmcFGora786w0XbAkWDIl0lSOzseqT//hGEvwxylC/hmuv2US1PdKxjSWYE8gmWPuCOYabo0b7/R3N91GwOoPNsXBzMKaHIxchgIAjBAj+OGIYaAQCCCCAAAIIIIAAAggggIATBNQLCvWiIi0tLfotCJzQAQvaQPDHAlSKdKwAwZ/AQ2O8vFXPRi8fqp9z5syJ+fnv1pf4BH+8PKvj65sK/nyzeI6ccGBzfAW54Gp1/6v/1HMuWc+6UHVGEpqJh9Xq8qNtW9gAUIJW/GnQrZJumgrv9GybE3EA6IWpJWTi1OL62h7X5EjPa/ZE20Xf+SkU/Am1NZYZzwi6mFcl8ccNFQ6JNfgTrH2hAi3RBD3CbUMWbgKF6nMo21DBmHBBkEBtCtaPSII/kawmEy74E6jN4a6Jpc3RjK1yinalqWBtChf8ieQ+CrXtmjn8FG7O8T0CCLhfgOCP+8eQHiCAAAIIIIAAAggggAACCCBgmQDBH8toKdiBAgR/8g+KEYZUv6qXsunp6Q4ctcQ2SW1PE2t/Cf4kdiwozX4BFfwZN2qYLP78VfsbQwtSQkD9rGnevHnB8FWCgz8GphEAUn/2X8lHrQ60dF2RvMCPcU1cwZ8U2eorkrBCtBM6VNAk2tVaYt3aKVDYI9aATrj+x1puqCBJMCfVlmgDT+GCP5GEflS9yexntH2MdiUdY0yD1RPIP9R4RXofhepXpGWEm498jwAC7hAg+OOOcaKVCCCAAAIIIIAAAggggAACCNgiQPDHFnYqtUmA4I8P3hz4UX9OldCP0XcV/jGOaPpO8MemG5dqLRMg+GMZLQUHEDBW3Ay44pJFwR//Zqjwj7EdWLBBmjhgZ8QrBRUoI0WCP6ECJpFMfvN2V8bvjV8DXZ/I4E+0QZRwq8+o9gbbwiyURbTtUGXFujKSujbalYISFTaJpZ+qvbEEnEL1MVBQKVgd/lvE+Y9jsG3arAr+RLL9GQGgSJ48nIOA+wUI/rh/DOkBAggggAACCCCAAAIIIIAAApYJEPyxjJaCHSiQ6sEf/8CPMUTRhF8cOKxRN8lY9cd8YSQGBH+ipuYChwsQ/HH4ADmweUZoJ5qtxEIGfsx9nFTI96cGbUWOWRlT781bdsVUgIgsmxTH1ncpEPyJJ2CgAgwqCBIq5BNo3IKtLhMquBFsC6RYgijhVr8x2qwCI+FCI8a5sbQjlmtirS/a1XOC3W+xttnO4E+sz45ow0XRbNMVbsswo82xhNBi7S/XIYBA8gUI/iTfnBoRQAABBBBAAAEEEEAAAQQQcI0AwR/XDBUNTYBAqgZ/ggV+FGkkgZcE0DuqCOVhXvXH3LhQHgR/HDWMNCYBAir4883iOXLCgTiCDgloRzKKUPe9+k+FUAKuOGNBI0LVqba7svKwuo/G3x9D9SHiwI9RiBH8UX9u3FLkQBGRZdNEKjcSKV/cd9ahtWHZGnSrFPacYCeoFYHUij8RHf/U851mbuOCL3yflUsTaZUZUTGJPinaVU8C1R/t6jCh+qCCH0bgJ9a+2h38Ue2OZNUVc//CbYUVSyAmnnGJdrUggj/Rz1Yrgz+RrDxlbnE8Ab3oe84VCCCQLAGCP8mSph4EEEAAAQQQQAABBBBAAAEEXChA8Ce5g5Y161NZsvCriCttd8MtUr1m7YjPD3bi+u9Xy9T3J0v1WnWk3fU3x12eWwtIteBPqMCPMYapGPxRfQ+06o95XgdyIfjj1jufdgcTUMGfkicUklYXVvY8klvvXycOjGEZrG1RB36MglZkiKwYGrrLKhCkwj+BQjf/hoL8V/1pkCuSUeqwnHzCP5L20/G6/KwKB2X9CbnSY33hfPXl2+brP7UKho+M4JF5ZZ9ALVahHxX+seFwUvAn2rBCMC4nBH9U26IN/4QKXxD88W2RNnDgwIDDbvWKP4mam+bGWxn8UfVEG6JTq09Fs6qQDY8rqkQAgSgFCP5ECcbpCCCAAAIIIIAAAggggAAC3hUwtiWw+l9Bu0mQ4E9yR+uOW9vJ7C+mR1zp9MyVUuOssyM+P9iJE8aNlDEjH5I77h4s/QcPj7s8txaQKsGfSAI/agxTNfSj+h5q1R/z/DYbuTU48MmCbPn971xpVLdi0m/d9Wu/k8+nfyDfr14pK5Z+Lfv375N6DRrJhU3SpEvPe6Rw4SJJb1MsFXo1PEnwJ5bZwDXBVvuJOfBjkAYK/pz87zNi7/6j8GorMLXKjv9h2iKsx6iysmxtEel0xkG5d7Mv7KOOZbUO6F8brD0a+GlwjO+7HtfkSM9r9vj+oEI/xuo95nrU6kPZi/LXHOgzgj86pKBWjQl1mLfFmjdvnowaNSrg6U4J/qjGqfCPOoK11b8DwdoeS/AnlmuM9kR7LSv+RP+s3717d4GLYtmOLlzN0QbQArUrXB18jwACzhQg+OPMcaFVCCCAAAIIIIAAAggggAACNgi49aWtlVQEf6zULVj2grlfSk7O73lf7P51pwx74G795+Gjn5diJUrmu6hlq3Zy7HHHxd3I9ya/LCuXLZLrO3fXL91T9fB68CfSwI8x/snc8saJc06FeiI9jHPVr24LTNkR/Dl06KC8OH60PPV4elDimrXryuSPMqVY8RKRDkPM540aNkiHju5/aKQULXpC1OV4NTxJ8CfqqZDyFwRa7SfuwI9S/TlLZEdWwRV/Gv4bWFQr/AQK+/iHbozzVZBnVFmZuCZ8uHBvxYPyVoN9R0M/qj1Lthwda7Vyj2qf/3FeT5FjP/N96r8CkLHNlw2r/jhlxZ9QwZFAK73E0u5YQhXRBmCC3fSqnFBhJeO6YKuuxNKOaLfrMrc92m3CUjn4o+Zn06ZNo37eq7H2P2KZo5FWHGkIjW2/IhXlPAScL0Dwx/ljRAsRQAABBBBAAAEEEEAAAQSSJEDwpyA0wZ8kTb4g1cydPUNu79RGTjzpZFm+4TcJ9q/o7W2ld2r3avAnMzNT1PPNWNXMOyPmzJ4Q/Ak9LgcPHpBbO1wuyxcv0CcOSh8lzS9rJZWrVJc//tgjn059V4YO7qu/693vQblnYJitfeKcBjt/3iYX168U13PWq+FJgj9xTq4UvNz895SEBH6UYagtvkxBHr29lzn8o0I/ZX72bftlfG5a9UcPz5QSIlOKBx+pWvtF2uWIqF+Nw7zaj1FesLqNa4Jt/aWCP0YIKEnzJZYAjX/Tog2JBOpasMBDsBBCLO2OJVQRS+Am3NCFW4El0Ko/sbSD4I9vJIKtYBPtHAoWbkrkFlmxzNFw883/+3AhtET2J9q2cT4CCCRWgOBPYj0pDQEEEEAAAQQQQAABBBBAwMUCBH8KDh7BH3sn9Pgnh8vTo4fKJS3byITXpxRojFoN6Lddv8jDI5+Wzz5+X96fPEk6dO4mnbv0kn1//yVzZ38uixbMkXlzZsr+v/+WytWqy3U3dZFrOnTOK0u99FZ1lC13uvS937f6xmsvPi0rliyUuwdmyPIlC/X2Y6tWLJVSpcvklW9uTG5urn5Zr8/7ZpmcfHIxaXbJldLptp5Spmy5vFOXLponb778rLS86lopX6GSvP+/V2TulzMkc8kPCVm5KN7R8mrwJ14Xro9eQIWt3LJtZLJX/HlkSD95/aVn5IxKVeW19z6XChWrFAC+s1sHmfnpFH3Ol4vWRz8AUVyhnltqm8Vgz9koivLcqQR/PDeklnbI+Ht0wgI/qrVqJZ3PWgRvt3+Qx7wST+OWIofW+q41f24OCxklry0iov4zDiPoYw78GN+ZQzzmsoLVHWxbMKO8+uki9SNfYS7eQYw2/BCovniDP6ECKsG2voql3bGEKmIJ3EQyJtH2OdZ2xLoSTzAr1bdAQZpY6/G3irWf0bZX1RvtHEpUH0PNj1jmaCTzLdA5ofrDdl+xqnIdAs4SIPjjrPGgNQgggAACCCCAAAIIIIAAAjYKEPwpiE/wx8YJKaJX+1Gr/vQfPFzuuHtwvsbs/SNHGtQopT+rU7e+fLdqhf79pLc/kzrn1Ncraqxbs0p/dlq5CrLj55/yrh/z/JvS5tqb9J9nTP9A+t5+o1zRpr0889K7+rOWTWpL9sb1+co1V/7qu59L42aX6o9+/22X3N+ni26nOkqVPlV27/pF//7MGrVl8pTZUvKU0vrPTz76oLzwzON6OzG1tZg66tY7Xz6Y8bW90P/W7tXgj3kbKkdAe7wRrPgTfICzZn0qPW5uq0/48PNFcva5DQKenDnzE+l5yzX62TV3RXbeOeq58cbL4/XzY+vmH+W8CxpLh45d9X/m48H+PfTWXcNGPSevThynA5Ab1n4ntevWk+697tXPryNHjsiAu7rI+rWr9bNS1XVew4tk6KhnpXiJU0QFGr+elymLF86V+XNmyoZ1a6TBBU2kZet2cnX7jlL0hBN1lV4OTxL88fjDKsHda9GihaSnpyc29KhCP8Y2WirkU3i/yPYckWzf3yH0YQ74mFfeCfa5f1goGgdziMdYUUhdf+KFIlm+v0NJ874if5vC2v6r/Rj9WPDF0Zq75UbTirjOjTb8EKiyZAd/QoVDVPuChYViCVXEEkQxPMJtmRSsPYla8UdZxLLqTyzjmahQTCzeqp/JCP7EOu+Me0Zdr45AW3wZ58QyR4Pdk6o+VdfAgQMDPiNCjTPBn7geq1yMgGMECP44ZihoCAIIIIAAAggggAACCCCAgN0CBH8KjgDBH/tm5T///KODPX/9uVeHeZqmXZ6vMepl9M3XXqI/Uy+sBzz8mFSvWUev6jNmxBB55YWnpHXb66XPfQ/pAM6BA/uld5f28lXmF/m2zxk9fLC8+Oxoff3tve+TnJzfpWHNMnnlZjw+Xq+E8UfOHunQurEOBD027mVpf+NtcuTwYbm9cxuZP2eWfhH+4PAxckqpMrJ92xa5qU0zHTZSn932X9+2Pbe0v1S/gFfHzd3ulNbXXC+nn1FJypU/wz5oU81eDf6oAIM61DNOHUYQKBy6WrXBLavWhOtLLN+rrdEi3R7NHK4i+BNc2wgz9ugzQO4bMiLiYVFzWAUHJ44flfds2rs3Rz8f1dHn3ofyViz7defP0uRc3zOlcrUa+pmltks0zlWfL1qzQ/7c+4dc2qhGvjao85au2yXHHHOMDgVNfX+y/l4FGlWQyCjjxlv+K8NHP6+/83J4kuBPxFM0phP5e2cEbJMK+U4yh2zUn/231goU8ol0NaAImpF3SrhVffzbaQ79+LfH/B3BnzxiFVwwwgvhtigyLrI7+GMOb5jbb55a0YYuYg3E6J9ZpXz/MCDYoQJKTZs21V+rdhkBlUDnBwszpULwR3mE6qf63rA0h3uUp+EabhutRAR//OdWsDapvkQzxtE8GjkXAQScIUDwxxnjQCsQQAABBBBAAAEEEEAAAQQcIKBe8KqXMMYWBQ5oku1NIPhj3xBk/7hBWjY+Szdg8fc7pUTJ/P8n/qTnx8hjQwfo779asVlv1WUc9/e5TdSKQI8/84oUL14y7/OR6ffpQNCg9FHSrVd//flNbZvJ8sUL5PUPZsmFTdL0ChdqtSB1zFy4VipVOTPvevUifMp7b8rYCZPlqnY3ykvPPSGjhg3S2/F89tUqOf74wnnnqnpUfcYLchUSOquCbxuNrnf0k8EZo+3DDVKz14M/RrcjDQCpZ6HasioVD+OFfLi+m0M+bn2Jn6ytvn79ZYc0OaeCJp0yc6lefSfSY/Irz8nQwX31s+b51z6SGrXqiApHvvrCU3nPwRU//K4DPuZVhc5v1FQyHhsvNc46W6/qc/Ul9fM929SqP2ed7ntumZ+zsz6bKr27Xic1a9eVh0c8Lec1bKzPmTBupIwblaFXLXv3E9+/5PdyeJLgT6QzNLbz3PrMiK23MV61IkNkhS+0KoFW6jGHZwJt7WW+xhwW8g/oRNK8YCEetdrPul98KxOZ22Ccr+oqX/zotmOqrhPaicx52ldruTSRVsn7WeuEFX9Ut8OFUyIZEuMcO4M/oTxV+1TwI5ZgTTzBn3BtitQ21ApGqRL8CbfqTySWweZnqPsgXGDIXG+oeync/FPlhFupKpI+cg4CCDhDgOCPM8aBViCAAAIIIIAAAggggAACCCDgSAGCP/YNyydT3pF+d3TWL7q/XLS+QEPu/u9N8tnH78u9DzwiPfsOKvD94UOHZOOGtbJ1yybZsX2rfLtiiQ7tqOPNj2bLBRc1E3VO7TOK6s/UKhfFipfQq/+oF9kdb+spQx9/Nl+5KhCkgkFqBSK1VU5ag6p6VZ+uPe+R5pe2ynfurBnT5M1Jz+oteEaMfTHvpbt+Mb/sx3yBJPuU89ecKsEfo9eRBIBU8CcVV/0JF/wJtKqPW1/iJyv4M+XdN2RA365Bn2nBngObN/0gl19US389PXOlDvEYhwr/1Cp/vP7jx7NX6KDOM08M0/+p37/36QIpUsT3jFPHRWeX11sRzlm+Sa809sP6NdK62TkF2vTyc0/q1cl693tQh3yMwwgEpV3WWia+OU1/7OXwJMEfa386ufWZYa2KX+nmrb7UV4HCP0agxxzmSfSWX8FCQ2rrr1VzRfbuz982I/QTqr1GV1M0+BNuJZVo5pldwZ9EBGyCtT2e4I+yi7dt4YInqRL8UZbxhn9CWca74o/V4xzNfci5CCBgvwDBH/vHgBYggAACCCCAAAIIIIAAAggg4FgBgj/2DY2xOs+1N9wqjz89qUBDjBfY/qv9qO1oXhw/Wr/4DnYsW79bTi5WXNZ+9620vfQ8vR3OF/PX6NPv7NZBZn46RZ579UO57MqjS8KbV8ZYuHq7bN28SW64qklYICOY9OE7r8mgu7tLpy536BU4nHikWvDHGINQAaBUXPUnVOgn1DZebn2Jn6zgzysTxsrIjPvzwoCRPgPGPzlcnh49VMxhG/O1NU47Tv8xc+lGOb1CJenesbXe0tBYmcw49+DBA3J2xRP1H43VgVQYUq1kprYuVFsYmg+1vdiW7I2yedNGHZ7c+MM6UX1Qx90DMuTO/kM8H54k+BPpLI3tPLc+M2LrbQxXqRV0VPDH/wi0gk6g8I95xZ0yPx8txbxdV6Bgjn99obYVM68C1LCi78pgoR+1ys/mRSLZiwr2qX66SP2MGJCiv8QpK/6olkez6o+xlVKg1XPsDP6ofowa5duGMtoj1Eor8QZ/VFtiDYWEC/2oslMp+BOPpTEnEjlHzfMs1jE2yti9e3e005bzEUDAwQIEfxw8ODQNAQQQQAABBBBAAAEEEEAAAbsFCP7YNwIqVLNy2SJJf+wZ6dylV76G7Px5m1xcv5KUKn2qqBCO+VDb0Dw75hE5rVwF6dCpq5xTv6FUrFxVDh44WCDk895bk+TB/j3k+k7d5NExE3UxRqBo3sotcupp5fOKNlbGUOXOXZEt0z96W/r3ulnOrFFb7hsyIiiU2s5HXZMxqI+89eoE/XJdvWR34pGqwR9jLIIFgFJt1Z9AwZ9QgR+znzovknOdNP+TFfwxVuLp0WdAyGeGWpHn/f+9IurnT/de9+otD7du/jFvpTKzXU7O79KwZhn90Tc/5kjhIkWlQY1S8tefe2XRmh1S8pTSeaev/na5tG95gX5mfTr3W/35sAfu1iuTqTCiCiUahwoEjRkxRK9oFuh46a3p0uySKz0fniT4Y+2dSvAnjK95tR8V0Cm8X2R7ztHgjH8ASK2+s+CL/CvvqLCNOv6ecrQy4zzjk1Dhn3Dnqu8PFBE5ZqWvtEBtUJ+bw0OqPnWcVNmW7b6cFPyJNLRgBGSChU0SGaqIJXATaT+MKaeCNQMHDtTbgAU7YmlHoLKibVuk2z6lWvBH2aoxUZ6htm7zH4NwYx3vij9GfdGOc7h2WfvTj9IRQMAqAYI/VslSLgIIIIAAAggggAACCCCAAAIeECD4Y88gHjiwX+pWOklXrraqOfe8C/I1ZPYX0+WOW9tJq6s7yLgX3877buOG76WL+TZcAAAgAElEQVTVxXX1n2fMWy1Vz/Rtj6OOJx55QCaOHyU33Hy7PPLEBP3ZQ/f3knfeeFGGj35ebrzlv7J92xa9fVegQNHU9yfL/X1uk2s6dJbR41/TIR4V5qlb73z5YMbX+dqngkkfvfu6fumuylXH1ZfU19t9Gdvx2CMbutZUD/4YOv4BoFRa9cc/9BNNiMetL/GTFfwZ8fC98urEcfmChoHuSBVGVKFEteLYMy+9K2dVKKJPW7v9oBxzzDH5LnnlhadErY52YdMW8vr7M2XTxnVyRZM6+VYxMy5Qzzr1zDM/A6+9vKF8t2qFfoapZ5k6Fsz9UrrccIX+/c3d7pSGF10sFStXkypVq0uTc8/QoaIFq7ZJ6TJldTu9HJ4k+GPtTyq3PjOsVTGVbg7+GKvpqK9VuMYcAIpk1R7/Rvuv4mMu33yueUWfeOsxAj9GSEjV81NVEbWyURK3+zLCC4HGMVwYxbgmVBlGoCCaeRIotGCEYsxtClZvsHarcEqgI1Qb4+mb6oc6VBmBwiGq3kh94mlHoD4bbQu0OpHRrqZNm4YMI5nLDRWAiXQeGVZG2/zbHcoq2NiqMlQQLNCRiLlvtHnevHkBV3oy5q36NRLPWOZoqHsr1BwMdE9Fc59yLgIIOF+A4I/zx4gWIoAAAggggAACCCCAAAIIIGCbAMEfe+hXf7NM2l/RSFf+bfZeKVKkaL6GGKv6DHz4cene+96871567gkZNWxQgS1xMmd+Ij1vuUaf9+iTL8j1nbvr37dudo6olXw+mrlE6tStL7M+myq9u14nrdteL09N/F++Ooc/eI+88fJ4eXjEOP0y3FjxR4WE5izfJMcfX1ifr16Kd+90lSxfvEAeGPakdOlxt/z9159Sr1oJ/f33P+2XY4/zbc3jtIPgT/4RMQeAUmXVn3hexMdzrZ33QrKCP8aKP+qZMe+brXLssccW6PayRfOl4zXN9ecq9FipSjW54KyyAZ8dRw4flhYNz9Sr8hgriRnPpUBbdxmBIrW6mVrlbN++v+XcKsV02as2/ymFCxcRtVXiVc3P1SsMPfHs69L2uk55bZw7e4bc3qmNXsFMrXqmDq+HJwn+2HlnUresyBBZMdQHESh0Yw4AJSKUYw7kqDrNq/2o1YXM24VFMjz+q/z4l2/+PonBn0iabuc5KpwRaiUcO9sWbd1G+MeJ/XFy26J1tvt8J1s6uW12jxv1I+BFAYI/XhxV+oQAAggggAACCCCAAAIIIBCTQFZWlr5OrW7B4RMg+GPPTHj79Yny8IDeAVfTUS3qeuOVMn/OLHnjwy+lUWPfS3J1GKvwqN/fevtdUvKUUrJ00Tx9rnGoF+L9Bg2TE086Wc6rfor+ePWWv3RwZ8zIh2TCuJEyOGO0dL2jX77OGytjvPvJfKnXoFG+MM/5jZrKFW3ayx85e3Qb1FY9Kjz05HNv6JCPCgHd1LaZqPPemuq7z5x4EPwJPCoq0NK8eXPPPxuNoFN6enpM05PgT2i2n7dvlebnVdEnXXvDrTJizMR8IUC1vdaAu7ro7wc8/Jjc3vs+2ff3X3Ju1eL6M//n3QtPPyZPjhiin5PvfPyVHPef/+jVf9QqQEMff1Y63tYzX4NaNqkt2RvXy5SZS0VtQfjN8sVyfevGUrN2Xb0SmTrU9opqm0V1mEOKajW1Xl2u09df3b6jfrapw+vhSYI/MT0KuChRAmolHLXqj3H4b+1lfG4EgMoXFzm0Nrral2zxnR8o2GNe7adxy9jKDhRI8l9tSNVfP12kfkZ0bedsBBBAAAEEEEDAJEDwh+mAAAIIIIAAAggggAACCCCAwL8Cbn1pa+UAEvyxUjd42cYqEiq8M+SRsQVOrH9mSb2yztJ1u6RYcd9KOurY+0eO3HrdZXrrGuOoXK2GPPzoOL2yj9pqRx0zF66V3bt+lZuuvliHeFSYRx3dO7aWrzK/0OEcFdIxjsOHDkntM3yrDn2z6Q8pWvQE/fvlSxbqa1RbjEOthtG73wPSoWNX/SJeHZNffV6GDrpLevQZIPcNGWEPagS1EvyJAIlTggq49WdIslb8UXAq2KMCPupQK/+cd0FjOe7Y42TF0q/1yj3q6HPvQ9L3/qPhq3t6dJRPp72nw4rde/WXE088SRYtmCNqy0P12Yeffy1VqtXU11535YWyauXSfFt3qc9VKPH8mqX1OWu27tPPJvX8Us9AdaiQUJ/+Q+T333ZLmxb19GdqK8Wz6zWQNatWyidT3skbd9XmB4Y+KVXPrOn58CTBHx54tgqYgz81zxU54Nv2T7IX+YI6sQR9/DtkDvf4b/dlfHdyEZFap8ZP4b8C0O6dvr6og+BP/L6UgAACCCCAQIoLEPxJ8QlA9xFAAAEEEEAAAQQQQAABBI4KuPWlrZVjSPDHSl1ryj506KB8v/ob/aK7Vp1zpHQZ3zY56ti2NVsOHz4slaqcmbDK1dY4G9Z+Jzu2/ySlypSVc+qdnxf4SVglSSqI4E+SoD1ajVt/hiQz+HPw4AF5buwIeW7sowVmwYVNW8iQ4WOlxlln5/vu9992Sa8u7fXKYebjsivb6pV9ypQtpz9WW3+dVcEXDDC27jLON7YQU6Gdt6fN1R/v/HmbtLu8oV6hTB3LN/wmJ51cTIwtwYxrVbjonoFDpVadc+WW9pfqj9XWYpWr1vB8eJLgj0cfVm7plnmrL/OKO+YtvmLZgsvc/0iCP+p8/1BQNIahtvwyVhxiq69oRDkXAQQQQAABBAIIEPxhWiCAAAIIIIAAAggggAACCCDwr4BbX9paOYAEf6zUpWynCRD8cdqIuKs9bv0ZkszgjzGif//1p/y4cb3s2LZVyleoJFXOrJG3kligUT9y5Ihsyf5BNq5fK6eUPlWq1aglxYuXjHuC7Nv3t/y26xc5qVjxfOVtWLdGByWrVKshFStXy9v2cs/vu+XXX3ZKlarVExZwdHJ4kuBP3FOMAuIRMAd/AgV84tniy2hXqK2+zIGdWIM/RhtLlRU5ZmV+DXP5BH/imSlciwACCCCAAAIiQvCHaYAAAggggAACCCCAAAIIIIDAvwJufWlr5QAS/LFSl7KdJkDwx2kj4q72uPVniB3BH3eNbOq2luBP6o69Y3o+qVD+pphX/om3kebgTaByQ63UE0/d5nKNclpliqjwDwcCCCCAAAIIIBCjAMGfGOG4DAEEEEAAAQQQQAABBBBAwHsCbn1pa+VIEPyxUpeynSZA8MdpI+Ku9rj1ZwjBH3fNs2S2luCPtdpufWZYq+JX+s9ZIiuHiqhfjUOt/qNW0Cm8X+TQ2tiao1biWfBF/mtVucaRvahguQ3aFly1J5raAwV+1PWEfqJR5FwEEEAAAQQQCCJA8IepgQACCCCAAAIIIIAAAggggMC/AllZWaJewqSlpUl6ejouaqngQr5/aZ2bm+sZj7vGZknfThd7pj90JHECBH8SZ5mKJbn1JT7Bn1ScrZH1meBPZE6xnuXWZ0as/Y3rOvO2X+aCVFinfHHfJ5GGgIIFcCJpYPO+In9PieRM3zmqLnUsm1bwmvrpIvUzIi+LMxFAAAEEEEAAgRACBH+YHggggAACCCCAAAIIIIAAAgggEFSA4A+TI5UECP6k0mgnvq9ufYlP8Cfxc8ErJRL8sXYk3frMsFYlROmBVv/xP91YtUetCFRoh8jxJUQO7hHJPc13pn8AR4Vv1LFjTsGKT2t+9Dv/FYfUN5UaHQ0bqRWE/sz2nb97p0igFYOMGlSdp6WxtZdtE4mKEUAAAQQQ8KYAwR9vjiu9QgABBBBAAAEEEEAAAQQQQCAhAgR/EsJIIS4RIPjjkoFyaDPd+hKf4I9DJ5QDmkXwx9pBcOszw1qVCEuPJAQUrqhoVtwJtuJQuDqM742AESv8RCrGeQgggAACCCAQpQDBnyjBOB0BBBBAAAEEEEAAAQQQQACBVBIg+JNKo01fCf4wB+IRcOtLfII/8Yy6t68l+GPt+Lr1mWGtSgylqxDQDvXfHBHzyjzBioom8GMuwwgbqc/C1VMuTcRYMYiwTwyDyiUIIIAAAgggEK0AwZ9oxTgfAQQQQAABBBBAAAEEEEAAgRQSIPiTQoNNV4XgD5MgHgG3vsQn+BPPqHv7WoI/1o6vW58Z1qokoHT/UI4KBamttdShAjmJOMx1mMtPZB2JaCdlIIAAAggggEDKCBD8SZmhpqMIIIAAAggggAACCCCAAAIIRC9A8Cd6s1BXrF/7nXw+/QP5fvVKWbH0a9m/f5/Ua9BILmySJl163iOFCxdJbIUWlbb++9Uy9f3JUr1WHWl3/c0W1ZL8Ygn+JN/cSzW69SU+wR8vzcLE9oXgT2I9KQ0BBBBAAAEEEEAAAasECP5YJUu5CCCAAAIIIIAAAggggAACrhPIysrSbU5LS9C/BnadQMEGE/xJzCAeOnRQXhw/Wp56PD1ogTVr15XJH2VKseIlElNpiFJGDRukQ0f3PzRSihY9Ier6JowbKWNGPiR33D1Y+g8eHvX1Tr2A4I9TR8Yd7SL4445xopWRCyxZvUVKnlhIWl1YOfKLXHqmW+9fl3LTbAQQQAABBBBAAIEECxD8STAoxSGAAAIIIIAAAggggAACCLhXgJc+BceO4E/88/ngwQNya4fLZfniBbqwQemjpPllraRyleryxx975NOp78rQwX31d737PSj3DBwaf6UhStj58za5uH4lOfGkk2X5ht/EGONoKn1v8suyctkiub5zd71ikVcOgj9eGUl7+uHWnyGfLMyW3//KlUZ1K9oDR62OFfjoy2/l2mZVpHoF6wOpdiO49f612436EUAAAQQQQAABBJwhQPDHGeNAKxBAAAEEEEAAAQQQQAABBBwgwEufgoNA8Cf+ifnIkH7y+kvPyBmVqspr730uFSpWKVDond06yMxPp+hzvly0Pv5KQ5Qw+4vpcset7eSSlm1kwutTLK3LbYUT/HHbiDmrvW79GbJh6x756KtNcu2l5zgLlNbYLuC1Z2IoULfev7ZPEhqAAAIIIIAAAggg4AgBgj+OGAYagQACCCCAAAIIIIAAAggg4AQBXvoUHAWCP/HNzKxZn0qPm9vqQj78fJGcfW6DgAVmzvxEet5yjZxWroLMXZGdd45aVeeNl8fr1XW2bv5RzrugsXTo2FX/Zz4e7N9Db901bNRz8urEcbJowRzZsPY7qV23nnTvda80bnapHDlyRAbc1UXWr10t69as0nWd1/AiGTrqWSle4hTJzc2Vr+dlyuKFc2X+nJmyYd0aaXBBE2nZup1c3b6jFD3hRF2lWjHo6dFDpWy506Xv/b6ty1578WlZsWSh3D0wQ5YvWSgqXLRqxVIpVbqMdOjcTTp36ZWvvaoutdKRPu+bZXLyycWk2SVXSqfbekqZsuXyzl26aJ68+fKz0vKqa6V8hUry/v9ekblfzpDMJT/IsccdF9/gBLjaay+5vXj/JnzQE1igW3+GbPhpj0z9KluuuaRuAjUoygsCXnsmhhoTt96/Xphn9AEBBBBAAAEEEEAgfgGCP/EbUgICCCCAAAIIIIAAAggggIBHBHjpU3AgvRgcuGtslvTtdHFSZu3tndrI3NkzpEefAXLfkBER16mCMU8++qBMHD9KX6NCOnv35shff+7Vf+5z70N5oZtfd/4sTc49Q39euVoNyd64Xm/jZZyrPl+0Zof8ufcPubRRjXxtUOctXbdLjjnmGB0Kmvr+ZP19qdKn6iCRUcaNt/xXho9+Xn83Y/oH0vf2G+WKNu3lmZfe1Z+1bFJb11unbn35btWKAv189d3PdfhIHb//tkvu79NFuxh17d71i/79mTVqy+Qps6XkKaX1n5XBC888rrcTU+EnddStd758MOPriC2jOdFrL7m9eP9GM57JPtfNP0PGvLNSzqtdUU4/tXiy2ajPoQKLVm2RYkUKSdumlR3awsQ2y833b2IlKA0BBBBAAAEEEEDAjQIEf9w4arQZAQQQQAABBBBAAAEEEEDAEgFe+hRk9WJwIFnBn19/2SFNzqmgUafMXKpX34n0mPzKczJ0cF+99dfzr30kNWrVkX/++UdefeEpeWzoAF3Mih9+1wEf86pC5zdqKhmPjZcaZ52tV/W5+pL6+tyZC9dKpSpn6lV/zjq9sP5s8fc7pUTJUvr3sz6bKr27Xic1a9eVh0c8Lec1bKw/nzBupIwblaGDN+9+Ml9/Nnr4YHnx2dEy4OHH5Pbe90lOzu/SsGYZ/Z0KKGU8Pl5vI/ZHzh7p0LqxDgQ9Nu5laX/jbXLk8GG5vXMbmT9nll5F6MHhY+SUUmVk+7YtclObZrLj55/0Z7f9t68u75b2l+rVi9Rxc7c7pfU118vpZ1SScuV9QadEHwR/Ei2aWuW5+WfI95t/l4/nZ7PdV2pN2ZC99drzMNzQ2nH/2lFnOAe+RwABBBBAAAEEEHCnAMEfd44brUYAAQQQQAABBBBAAAEEELBAICsrS9RLmLS0NElP921hlOoHwZ/YZ8CUd9+QAX276vDOl4vWR1zQ5k0/yOUX1dLnT89cqUM8xqHCP7XKH6//+PHsFTqo88wTw/R/6vfvfbpAihQpmnf+RWeXF7Wazpzlm3RY5of1a6R1s3MKtOnl557UAZve/R7UIR/jMAJBaZe1lolvTtMf39S2mSxfvEBe/2CWXNgkTW8PdmuHy/V3RsDIuF6tIjTlvTdl7ITJclW7G+Wl556QUcMG6fo/+2qVHH+8L4SkjldeeEpGpt8nxupCKiR0VoUi+ruud/STwRmjIzaM9USvvej24v0b69gm4zq3v8R/8u2V0qAOq/4kY644vQ612s9JhQtJu4tTY7UfNR523L921On0uUf7EEAAAQQQQAABBGITIPgTmxtXIYAAAggggAACCCCAAAIIIJASAl4MDiRrxZ9XJoyVkRn3S4eOXWXE2Bcjni/jnxwuT48eKuawjfniGqcdp/+YuXSjnF6hknTv2Fq+yvwiL1xjnHvw4AE5u+KJ+o/G6kAqhKPCOGr1HbUKj/lQ24ttyd4omzdtlB3bt8rGH9aJ6oM67h6QIXf2HyKHDx2S2mf4gkVqi7BixUvo1X/UKkAdb+spQx9/Nl+ZKhCkgkGT3v5Mb/WV1qCqXtWna897pPmlrfKdO2vGNHlz0rN5XsaKRXpVo2U/SvHiJSM2jPVEgj+xynGdEnD7S/y1W/boVX/aXVKXAU1hgW2/5MgHs76V1hdVllYXEvyxciq4/ZlhpQ1lI4AAAggggAACCEQnQPAnOi/ORgABBBBAAAEEEEAAAQQQQCClBAj+xD7cxko8PfoMkPuGjAhakFqR5/3/vSLKunuve6Vl47Nk6+Yf5c2PZssFFzXLd515W61vfsyRwkWKSoMapeSvP/fKojU7pOQppfPOX/3tcmnf8gI5s0Zt+XTut/rzYQ/crcM1ajuwTl3uyDtXBYLGjBiiQzmBjpfemi7NLrlS1n73rbS99DypXK2GfDF/jT71zm4dZOanU+S5Vz+Uy65sm3e5eVuxhau3y9bNm+SGq5qEBb33gUekZ99B8uE7r8mgu7vrdqr2JuMg+JMMZe/W4YWX+NPmZ8u6LXsI/3h3mobsmRH6uaJRZWnTOHVCPwrFjvvXjjpTdGrTbQQQQAABBBBAwPMCBH88P8R0EAEEEEAAAQQQQAABBBBAAIHYBQj+xG434uF75dWJ4+T6Tt3k0TETgxb0YP8e8t5bk3Ro5pmX3s3b3mrt9oNyzDHH5LvO2A7rwqYt5PX3Z8qmjevkiiZ18gVxjAveeeNFeej+XnLDzbfLI09M0B9fe3lD+W7VCvlgxtdSt975+rMFc7+ULjdcoX9/c7c7peFFF0vFytWkStXq0uTcM3SoaMGqbVK6TFndTtVec5+M7cTmrdwip55WPq+9xrZip5WrIHNXZMv0j96W/r1u1kGkUEGo2nXribomY1AfeevVCXplIrVCUTIOgj/JUPZuHV55iU/4x7tzNFTPjNBPy0aV5eoUC/0oFzvuXzvqTM3ZTa8RQAABBBBAAAHvCxD88f4Y00MEEEAAAQQQQAABBBBAAAEEYhYg+BMznRgr/pQqfarM+2arHHvssQUKW7ZovnS8prn+/L1PF0ilKtXkgrPK6j9//9N+OfY437Ze6jhy+LC0aHimXpXHCMMYYZpAW3cZgSIVOlJBnX37/pZzqxTTZa3a/KcULlxE9u/fJ1c1P1evMPTEs69L2+s65dU3d/YMub1TGx3CUcEddaggkQoUDR/9vNx4y39l+7Ytevsu1Ue1qo/5mPr+ZLm/z21yTYfOMnr8azrEo8I8KnCkgkfmY+fP2+Sjd1/XKxapctVx9SX1RW339fHsFVKzdnK2HiL4E/t850p7ggNWuastv75YnC0XnlNJLji7olXVUK4DBFTgZ/GqzbJ1Z45ceWFlueqi1FrpxxgCO0I4dtTpgClHExBAAAEEEEAAAQQsECD4YwEqRSKAAAIIIIAAAggggAACCCDgFQGCP7GP5M/bt0rz86roAq694VYZMWZiviCP2l5rwF1d9PcDHn5Mbu99n+z7+y85t2px/dkbH34pjRr7QkHqeOHpx+TJEUN0cOadj7+S4/7zHxmZfp+oVYCGPv6sdLytZ77GtmxSW7I3rpcpM5eKWkXnm+WL5frWjXWIRoVp1LFy2aK87bfMQaONG76XXl2u09df3b6jPPncG/r81s3OEbWSz0czl0iduvVl1mdTpXfX66R12+vlqYn/y1f/8AfvkTdeHi8PjxinVxIyQkoqJDRn+SY5/vjC+ny1olD3TlfJ8sUL5IFhT0qXHnfL33/9KfWqldDf+wegYh+R8FcS/AlvxBnBBbz4En/qvGyZtSRbLjqnkvyTK1KhbHE5/VTfM4rDvQIq7KMOI/DT8oLKcnWT1Az8GKPoxfvXvTOUliOAAAIIIIAAAghEK0DwJ1oxzkcAAQQQQAABBBBAAAEEEPCsQFZWlu5bWlqaZ/sYbccI/kQrlv98FexRAR91qMDLeRc0luOOPU5WLP1ar9yjjj73PiR970/Pu/CeHh3l02nvyYknnSzde/WXE088SRYtmCOzv5iuP/vw86+lSrWa+vzrrrxQVq1cmm/rLvX5Hzl75PyapfU5a7bu0yGh5UsWyk1XX6w/UyGhPv2HyO+/7ZY2Lerpz1pd3UHOrtdA1qxaKZ9MeSevParNDwx9UqqeWVPOq36K/nz1lr90cGfMyIdkwriRMjhjtHS9o1++zhvbir37yXyp16BRvjDP+Y2ayhVt2ut2qpWAdu/6RYeHVMBIrXKkQkA3tW0m6ry3pvruy2QcBH+SoezdOrwcHJi+IFuO/COycdse2bR9j3cHMUV6VqV8CSlUSKT1hZWlZkVfyDLVDy/fv6k+tvQfAQQQQAABBBBIBQGCP6kwyvQRAQQQQAABBBBAAAEEEEAgIgFe+hRkIvgT0dQJetLBgwfkubEj5LmxjxY458KmLWTI8LFS46yz8333+2+7pFeX9jr8Yj4uu7KtXtmnTNly+mO19ddZFYro3xtbdxnnG1uIqdDO29Pm6o/VdlrtLm+oQzbqWL7hNznp5GJibAlmXKvCRfcMHCq16pwrt7S/VH+stharXLWGDg6pEI8K86ije8fW8lXmFzqco0I6xnH40CGpfUZR/cdvNv0hRYue4KtzyUJ9jVrlxzjUVmK9+z0gHTp21QEldUx+9XkZOugu6dFngNw3ZER8gxDF1QR/osDi1AIC/AxhUiDgXgHuX/eOHS1HAAEEEEAAAQQQECH4wyxAAAEEEEAAAQQQQAABBBBA4F8BXvoUnAoEfxJze6itq37cuF52bNsq5StUkipn1sgLwwSq4ciRI7Il+wfZuH6tnFL6VKlWo5YUL14y7sbs2/e3/LbrFzmpWPF85W1Yt0a2bc2WKtVqSMXK1cQY9z2/75Zff9kpVapWzwvlxNuI/fv3yYa138mO7T9JqTJl5Zx65yes7HjbRvAnXsHUvp6fIak9/vTe3QLcv+4eP1qPAAIIIIAAAgikugDBn1SfAfQfAQQQQAABBBBAAAEEEEAgT4CXPgUnA8EfbpBUEiD4k0qjnfi+8jMk8aaUiECyBLh/kyVNPQgggAACCCCAAAJWCBD8sUKVMhFAAAEEEEAAAQQQQAABBFwpwEufgsNG8MeVU5lGxyhA8CdGOC7TAvwMYSIg4F4B7l/3jh0tRwABBBBAAAEEEGCrL+YAAggggAACCCCAAAIIIIAAAnkCvPQpOBkI/nCDpJIAwZ9UGu3E95WfIYk3pUQEkiVgx/1rR53J8qQeBBBAAAEEEEAAgeQKsOJPcr2pDQEEEEAAAQQQQAABBBBAwMECWVlZesWGtLQ0SU9Pd3BLk9c0gj/Js6Ym+wUI/tg/Bm5uAS/x3Tx6tD3VBey4f+2oM9XHmf4jgAACCCCAAAJeFSD449WRpV8IIIAAAggggAACCCCAAAIIJECA4E8CECnCNQIEf1wzVI5sKC/xHTksNAqBiATsuH/tqDMiDE5CAAEEEEAAAQQQcJ0AwR/XDRkNRgABBBBAAAEEEEAAAQQQQCB5AgR/kmdNTfYLEPyxfwzc3AJe4rt59Gh7qgvYcf/aUWeqjzP9RwABBBBAAAEEvCpA8MerI0u/EEAAAQQQQAABBBBAAAEEEEiAAMGfBCBShGsECP64Zqgc2VBe4jtyWGgUAhEJ2HH/2lFnRBichAACCCCAAAIIIOA6AYI/rhsyGowAAggggAACCCCAAAIIIIBA8gQI/iTPmprsFyD4Y/8YuLkFvMR38+jR9lQXsOP+taPOVB9n+o8AAggggAACCHhVgOCPV0eWfiGAAAIIIIAAAggggAACCCCQAAGCPwlApAjXCBD8cc1QObKhvMR35LDQKAQiEuD+jYiJkxBAAAEEEEAAAQQcKkDwx6EDQ7MQQAABBBBAAAEEEEAAAQSSL5CVlaUrTUtLS37lDq2R4I9DB4ZmWSJA8McS1pQplOBAygw1HV1PnIAAACAASURBVPWgAPevBweVLiGAAAIIIIAAAikkQPAnhQabriKAAAIIIIAAAggggAACCIQW4KVPQR8vBn/GvLNSzqtdUU4/tTi3BAJ5Att+yZHla7ZI/xvreUbFi/evkweHnyFOHh3ahgB/B2QOIIAAAggggAACCHhXgOCPd8eWniGAAAIIIIAAAggggAACCEQpwEvbgmBeDA6MfXel1D+L4E+Ut4fnT1+0aosUK1pI2jap7Jm+evH+dfLg8DPEyaND2xAILcD9ywxBAAEEEEAAAQQQcLMAwR83jx5tRwABBBBAAAEEEEAAAQQQSKgAL30KcnoxOLBuyx6ZOm+TXHvpOQmdPxTmboGl3/mCP1ddRPDH3SNpX+v5GWKfPTUjEK8A92+8glyPAAIIIIAAAgggYKcAwR879akbAQQQQAABBBBAAAEEEEDAUQK89Ck4HF4M/qhe3jU2S6677By2+3LUHWhvY55+6yt5pl+avY1IcO1evX8TzJSw4rKysqRFixaSlpYmmZmZCSuXghBAwHoBde+qe1jdu+oe5kAAAQQQQAABBBBAwE0CBH/cNFq0FQEEEEAAAQQQQAABBBBAwFIBgj8Feb0aHPh4frZ8v/l3Vv2x9I5yT+FLVm+Rk4sUkqs9tM2X0vfq/evUmUXwx6kjQ7sQCC9gR/CHv3eGHxfOQAABBBBAAAEEEIhMgOBPZE6chQACCCCAAAIIIIAAAgggkAIC6qWtegmj/qV3enp6CvQ4fBe9HBxg1Z/w458KZ2z7JUc+mPWt51b7UWPn5fvXiXOT4I8TR4U2IRCZAMGfyJw4CwEEEEAAAQQQQMCZAgR/nDkutAoBBBBAAAEEEEAAAQQQQAABRwh4OTjwycJsmfF1Nlt+OWKm2dMII/Rz5YWV5aqLKtvTCAtr9fL9ayFbXEVjHhcfFyNgm4Ad9y4r/tg23FSMAAIIIIAAAgh4ToDgj+eGlA4hgAACCCCAAAIIIIAAAgggkDgBO16EJa714UuaviBbPl9E+Ce8lPfOMEI/VzSqLG0aey/0o0bM6/evE2cl5k4cFdqEQHgBO+5dgj/hx4UzEEAAAQQQQAABBCITIPgTmRNnIYAAAggggAACCCCAAAIIIJCSAna8CEs2tBH+aVS3kjSqWzHZ1VOfDQKpEPpRrKlw/9owfUJWacd2QU4zoD0IuE3ACOCorV4zMzOT1nyCP0mjpiIEEEAAAQQQQMDzAgR/PD/EdBABBBBAAAEEEEAAAQQQQACB2AVSKTgwZV62fLkkWy6sW0kuIAAU+6Rx8JWLV22Rr1dtlqrlS0ibJpWleoUSDm5t/E1Lpfs3fq3ElGBXgCAxracUBFJTwK4Ajl31puYo02sEEEAAAQQQQMDbAgR/vD2+9A4BBBBAAAEEEEAAAQQQQACBuARSMTgwbX62zFycrd3OOK24SG5chFxst0Ahka07cnQrqp5eQm/r5fXAj0Geivev3dMtKytL1Ko/yV45xO5+Uz8CbhZgpS43jx5tRwABBBBAAAEEEFACBH+YBwgggAACCCCAAAIIIIAAAgj8K6Be2KpDvbDl8AmkenBgw097mAoeEEiVoI//UKX6/WvX1MXdLnnqRSA2Ae7Z2Ny4CgEEEEAAAQQQQMA5AgR/nDMWtAQBBBBAAAEEEEAAAQQQQMBmAbZcKDgAvAyzeVJSPQJxCHD/xoEXx6WsHhIHHpcikGQBtudLMjjVIYAAAggggAACCFgiQPDHElYKRQABBBBAAAEEEEAAAQQQcKMAwZ+Co0ZwwI0zmTYj4BPg/rVnJrDdlz3u1IpALAL83S8WNa5BAAEEEEAAAQQQcJoAwR+njQjtQQABBBBAAAEEEEAAAQQQsE2Al7UF6Vm5wrbpSMUIxCXA8ywuvrgvNkJXmZmZbB8ZtyYFIGCdAAFJ62wpGQEEEEAAAQQQQCB5AgR/kmdNTQgggAACCCCAAAIIIIAAAg4X4EV5wQEi+OPwSUvzEAgiwPPM3qlhPDvT0tJEhX84EEDAeQKs9uO8MaFFCCCAAAIIIIAAArEJEPyJzY2rEEAAAQQQQAABBBBAAAEEPCjAi/KCg0rwx4MTnS6lhAAvtO0dZuPniWpFbm6uvY2hdgQQCChg92o//B2LiYkAAggggAACCCCQKAGCP4mSpBwEEEAAAQQQQAABBBBAAAHXC6gXtepluVqhIT093fX9SUQHjPAAq1YkQpMyEEieAMGf5FkHq8l4qZ+RkcHPFPuHgxYgkE/ACc9Igj9MSgQQQAABBBBAAIFECRD8SZQk5SCAAAIIIIAAAggggAACCCDgQQFWQfLgoNKllBAwVrJQ20yp4B5H8gV4fibfnBoRiFTAeEbaGcyze8WhSK04DwEEEEAAAQQQQMD5AgR/nD9GtBABBBBAAAEEEEAAAQQQQAABWwUIENjKT+UIxCTAC+WY2BJ+Eav+JJyUAhGIW8AJq/2oTvCcjnsoKQABBBBAAAEEEEDgXwGCP0wFBBBAAAEEEEAAAQQQQAABBBAIKcBWFEwQBNwl4JSX2u5Ss6a1xqo/qnRWX7LGmFIRiEbAeD464Z4k+BPNyHEuAggggAACCCCAQCgBgj/MDwQQQAABBBBAAAEEEEAAAQQQCCnAdjVMEATcJUDwx1njZYyH2nJNhX84EEDAPgEnbPGles/freybA9SMAAIIIIAAAgh4UYDgjxdHlT4hgAACCCCAAAIIIIAAAgggkGABtvtKMCjFIWCRgHk1i9zcXItqodhoBYyV0wj/RCvH+QgkToBQZOIsKQkBBBBAAAEEEEDAWQIEf5w1HrQGAQQQQAABBBBAAAEEEEDAZgH1L7CNQ72g5fAJsGIFMwEBdwjwYtuZ48SWX84cF1qVOgKEIlNnrOkpAggggAACCCCQigIEf1Jx1OkzAggggAACCCCAAAIIIIBAUAG2Xgg+OVj1hxsHAWcL8GLbPeOjtvwiXOrs8aJ13hEwB+8yMjIkPT3dO52jJwgggAACCCCAAAII/P8/2CP4wzRAAAEEEEAAAQQQQAABBBBAwCRA8Cf4dMCGWwUBZwsY20nxYtu542QOZxH+ce440TLvCBD68c5Y0hMEEEAAAQQQQACB4AIEf5gdCCCAAAIIIIAAAggggAACCPgJGCvb5ObmYuMnQLCAKYGAMwVY7ceZ4xKoVcZzVH1H+Mc940ZL3SdA6Md9Y0aLEUAAAQQQQAABBGITIPgTmxtXIYAAAggggAACCCCAAAIIeFjAeCnLC9mCg8xLNA9PfLrmWgFWkXHf0BH+cd+Y0WJ3CZj/vqK21VN/p+NAAAEEEEAAAQQQQMCrAgR/vDqy9AsBBBBAAAEEEEAAAQQQQCBmAYI/oekIGcQ8tbgQgYQLEMZLOGnSCjQ/S9meLWnsVJQCAk4P/Rj3Pvd9CkxGuogAAggggAACCCRJgOBPkqCpBgEEEEAAAQQQQAABBBBAwD0C6oWReimTnp4u6l+JcxQUIPzDrEDAfgFCP/aPQbwtIPwTryDXI5BfwLyallODNQR/mLUIIIAAAggggAACiRYg+JNoUcpDAAEEEEAAAQQQQAABBBBAIEUE3PByLUWGgm6moAChH+8Mujn8o3rl1LCCd8TpiRcFjNC2+tXp91GhQoV0G3Nzc704FPQJAQQQQAABBBBAwAYBgj82oFMlAggggAACCCCAAAIIIIAAAl4RYLUKr4wk/XCTAPedm0Yr8rYyrpFbcSYCZgHzvaNWanT6io0Ef5i/CCCAAAIIIIAAAokWIPiTaFHKQwABBBBAAAEEEEAAAQQQQCDFBHhZnWIDTndtFWClLVv5La+c1X8sJ6YCDwmo+0Wt8OOGVX4Mdrb58tAEpCsIIIAAAggggICDBAj+OGgwaAoCCCCAAAIIIIAAAggggAACbhXgZbVbR452u0XA/x7LzMwUtbIFh/cEVIhhzpw5essv42D7L++NMz2KTcB/Sy9VihtW+TF6a7TfaHNsClyFAAIIIIAAAggggEB+AYI/zAgEEEAAAQQQQAABBBBAAAEEEEiYAAGghFFSEAJawP+ectMLboYwPgE19urwDwCpz9RWRhwIpJKA2wM/qTRW9BUBBBBAAAEEEEAg+QIEf5JvTo0IIIAAAggggAACCCCAAAIuETBeMqkXrKysEfmgBVqtQvmp/5o3b45l5JScmYICxv1j3r5GMRD4ScHJYOqyfwDMmBPGzyaCQKk9P7zYe+PvYKpvxlZeRj95HnpxxOkTAggggAACCCCAQDwCBH/i0eNaBBBAAAEEEEAAAQQQQAABTwu0aNFCv2xSL5jUtjoc0QkEWq3C/NJO/Z5AVXSmnO09AfMLbf+X28Y9QvjQe+Mea4/Uc9U/FGYuy/xM5fkaqzLXJVsg3HOQZ2GyR4T6EEAAAQQQQAABBNwmQPDHbSNGexFAAAEEEEAAAQQQQAABBJImoF5EqfAPwZ/4yUOFgOIvnRIQ8I6AeQUXghveGVcrehJsdSgr6qJMBJItwEqByRanPgQQQAABBBBAAAE3CxD8cfPo0XYEEEAAAQQQQAABBBBAAAHLBYxVf9SKP7yETxy38a/758yZk7hCKQkBFwqo7e+Mg2eMCwfQYU02r5zC89Vhg0NzggrwHGRyIIAAAggggAACCCAQnwDBn/j8uBoBBBBAAAEEEEAAAQQQQMDjAmz35fEBpnsIIIAAAggggIDFAsbKh2rrRg4EEEAAAQQQQAABBBItQPAn0aKUhwACCCCAAAIIIIAAAggg4CkBtvvy1HDSGQQQQAABBBBAIOkChQoV0nWygmTS6akQAQQQQAABBBBICQGCPykxzHQSAQQQQAABBBBAAAEEEEAgHgEV/mELnngEuRYBBBBAAAEEEEhNAbXaT0ZGhv67pAr+cCCAAAIIIIAAAgggkGgBgj+JFqU8BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQEBEjOCPCv+w1RdTAgEEEEAAAQQQQMAKAYI/VqhSJgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKS8gLHNV25ubspbAIAAAggggAACCCBgjQDBH2tcKRUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRSWEBtF9uiRQu91Rer/aTwRKDrCCCAAAIIIICAxQIEfywGpngEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIXQEVAEpLS0tdAHqOAAIIIIAAAgggYKkAwR9LeSkcAQQQQAABBBBAAAEEEEDAawLqxY06eHnjtZGlPwgggAACCCCAAAIIIIAAAggggAACCLhPgOCP+8aMFiOAAAIIIIAAAggggAACCNgkYGzXoEI/mZmZNrWCahFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8AwR9mAgIIIIAAAggggAACCCCAAAJRCLRo0UJUAEgFf1j1Jwo4TkUAAQQQQAABBBBAAAEEEEAAAQQQQACBhAsQ/Ek4KQUigAACCCCAAAIIIIAAAgh4WYBVf7w8uvQNAQQQQAABBBBAAAEEEEAAAQQQQAABdwkQ/HHXeNFaBBBAAAEEEEAAAQQQQAABBwiw6o8DBoEmIIAAAggggAACDhQYOnSoblV6eroDW0eTEEAAAQQQQAABBLwoQPDHi6NKnxBAAAEEEEAAAQQQQAABBCwVMFb9ycjI4KWOpdIUjgACCCCAAAIIuEugUKFCusH8PdFd40ZrEUAAAQQQQAABNwsQ/HHz6NF2BBBAAAEEEEAAAQQQQAAB2wRU+CctLc22+qkYAQQQQAABBBBAwFkCarUfFfgh9OOscaE1CCCAAAIIIICA1wUI/nh9hOkfAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIWC7Aaj+WE1MBAggggAACCCCAQAABgj9MCwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgDgFW+4kDj0sRQAABBBBAAAEE4hIg+BMXHxcjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqgsYwZ/c3NxUp6D/CCCAAAIIIIAAAkkWIPiTZHCqQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgEQIEfxKhSBkIIIAAAggggAACCCCAAAIpLZCVlSUtWrSQjIwMSU9PT2kLOo8AAggggAACCCCAAAIIIIAAAggggAACyRMg+JM8a2pCAAEEEEAAAQQQQAABBBDwqIAR/FHdy8zMlLS0NI/2lG4hgAACCCCAAAIIIIAAAggggAACCCCAgJMECP44aTRoCwIIIIAAAggggAACCCCAgGsFhg4dqlf8UaEfFf7hQAABBBBAAAEEEEAAAQQQQAABBBBAAAEErBYg+GO1MOUjgAACCCCAAAIIIIAAAgikjIDa7kut/sOWXykz5HQUAQQQQAABBFJUQIW+mzdvzkqPKTr+dBsBBBBAAAEEEHCSAMEfJ40GbUEAAQQQQAABBBBAAAEEEHC1AFt+uXr4aDwCCCCAAAIIIBCRgLHSozo5Nzc3oms4CQEEEEAAAQQQQAABqwQI/lglS7kIIIAAAggggAACCCCAAAIpKcC//k7JYafTCCCAAAIIIJBCAoUKFdK9ZZXHFBp0uooAAggggAACCDhYgOCPgweHpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIBzBNja1TljQUsQQAABBBBAAAEEfAIEf5gJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAYAbb4YooggAACCCCAAAIIOFGA4I8TR4U2IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAgKMEjOBPZmampKWlOaptNAYBBBBAAAEEEEAgdQUI/qTu2NNzBBBAAAEEEEAAAQQQQACBJAlkZWXpmnhBlCRwqkEAAQQQQAABBBBAAAEEEEAAAQQQQCBFBAj+pMhA000EEEAAAQQQQAABBBBAAAF7BFTop0WLFrpy/nW4PWNArQgggAACCCCAAAIIIIAAAggggAACCHhVgOCPV0eWfiGAAAIIIIAAAggggAACCDhGwNgWQjWI8I9jhoWGIIAAAggggAACCCCAAAIIIIAAAggg4HoBgj+uH0I6gAACCCCAAAIIIIAAAggg4AYBteqPWv1Hbfelwj8cCCCAAAIIIIAAAs4WUOHt9PR0ZzeS1iGAAAIIIIAAAgikvADBn5SfAgAggAACCCCAAAIIIIAAAggkS4DwT7KkqQcBBBBAAAEEEIhPwPh7G6s1xufI1QgggAACCCCAAALWCxD8sd6YGhBAAAEEEEAAAQQQQAABBBDIE1AvkdS/HFcr/3AggAACCCCAAAIIOE+AsLbzxoQWIYAAAggggAACCAQXIPjD7EAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEERITQD9MAAQQQ+L/27gC27uO+D/hRtmnTEZXYVhPVS7GsDZet25puNOau3WKyGJrJTbZCQNpByNoNBaggg4RswrRg2UKq2JpVqLpW6jqYm4cUWYSuQYW18+KlRfqodMCSzcSKLcPQygOypVGUWK5jUTZt2SK3I/mn/3oipff+7+7/3v+9zx8I5JD/+93d5872A97XdwQIECBAoGkCgj9NWzHjJUCAAAECBAgQIECAAAECBAgQIECAAAECBJILCP0kJ1WQAAECBAgQIECgBgHBnxqQdUGAAAECBAgQIECAAAECBAgQIECAAAECBAgMtsDS0lI4efJkaLVagz1QoyNAgAABAgQIECBQEhD8sR0IECBAgAABAgQIECBAgECfBeIXTAsLCxv/m5+f7/NodE+AAAECBAgQIECAAAECBAgQIECAQFMEBH+aslLGSYAAAQIECBAgQIAAAQJDK1AEf+IEhX+GdplNjAABAgQIECBAgAABAgQIECBAgEByAcGf5KQKEiBAgAABAgQIECBAgACB7gWEf7o304IAAQIECBAgUFUgXus1MzNTtbl2BAgQIECAAAECBAZGQPBnYJbCQAgQIECAAAECBAgQIEBg1AXK4Z/4RVSr1Rp1EvMnQIAAAQIECCQViIGf+Jkr/hk/awn/JOVVjAABAgQIECBAoA8Cgj99QNclAQIECBAgQIAAAQIECBDYTSB+CTU7O+vKL1uEAAECBAgQIJBYoPicFcvGwM/8/LzgT2Jj5QgQIECAAAECBOoXEPyp31yPBAgQIECAAAECBAgQIECAAAECBAgQIECAQI0CTlasEVtXBAgQIECAAAECtQoI/tTKrTMCBAgQIECAAAECBAgQIECAAAECBAgQIECgboGxsbGNLhcWFjZO+vEQIECAAAECBAgQGBYBwZ9hWUnzIECAAAECBAgQIECAAIGhF4j/pXp8fFk19EttggQIECBAgEBigXjNV3ziFV8eAgQIECBAgAABAsMkIPgzTKtpLgQIECBAgAABAgQIECAwtALxy6rZ2dnt+fmv1Yd2qU2MAAECBAgQIECAAAECBAgQIECAQMcCgj8dU3mRAAECBAgQIECAAAECBAj0VyCe+BMDQMV/sS7809/10DsBAgQIECAwWALxM9KFCxecjjhYy2I0BAgQIECAAAECmQUEfzIDK0+AAAECBAgQIECAAAECBFILxABQDP3ER/gnta56BAgQIECAQBMFyp+PWq2WK72auIjGTIAAAQIECBAgUElA8KcSm0YECBAgQIAAAQIECBAgQKD/AvELrvn5+f4PxAgIECBAgAABAn0SaL8OdWZmZuPzUfzTQ4AAAQIECBAgQGAUBAR/RmGVzZEAAQIECBAgQIAAAQIECBAgQIAAAQIECAyZQDn0I/AzZItrOgQIECBAgAABAh0LCP50TOVFAgQIECBAgAABAgQIECDQHIGxsTHXgDVnuYyUAAECBAgQqCgQT0B87LHHnPBT0U8zAgQIECBAgACB5gsI/jR/Dc2AAAECBAgQIECAAAECBAjcJBC/AFtYWNj+WfxrV4LZJAQIECBAgEBTBeLJPq7uaurqGTcBAgQIECBAgEBuAcGf3MLqEyBAgAABAgQIECBAgACBPgjE8E98ygGgVqvlS7M+rIUuCRAgQIAAgWoCMfATP9PEP32OqWaoFQECBAgQIECAwPALCP4M/xqbIQECBAgQIECAAAECBAiMsED8ouzChQsbAaD19fURljB1AgQIECBAoAkC5bBPebxOMGzC6hkjAQIECBAgQIBAPwQEf/qhrk8CBAgQIECAAAECBAgQIDBAAvG/pH/sscecBjRAa2IoBAgQIEBgVAVi8Gd2dnZj+vF6r3hdqWu+RnU3mDcBAgQIECBAgEAnAoI/nSh5hwABAgQIECBAgAABAgQIDKlA+cu1OMXiarD4JZuHAAECBAgQIJBDIH7+iM9ugZ4Y/BH4ySGvJgECBAgQIECAwDAKCP4M46qaEwECBAgQIECAAAECBAgQ6EIgnvgTv4ArvoQrvohrtVpdVPEqAQIECBAgQGBngeIzRvGZo3jLNaR2DAECBAgQIECAAIHeBQR/ejdUgQABAgQIECBAgAABAgQIDI1A/EKueHY69af8+/ieK8KGZulNhAABAgQIZBOIJ/iUA8axo3jaj5BxNnKFCRAgQIAAAQIERkhA8GeEFttUCRAgQIAAAQIECBAgQIBArwIx+FNcB1auFX+2U1Aofsl34cKFW7rdLTDk/U0qPpsO9oP9UP6Hh/1gP9gPg/Pv0/LJPeVATwzy7HR9V/F+8Vlhtyu+ev2coj0BAgQIECBAgACBURQQ/BnFVTdnAgQIECBAgAABAgQIECBQUaD9i/fiirDdgj/dBoW8v7kwPDcd7Af7ofyPKvvBfrAfFm75t3e//n2x0wk+cXC7BX8qfuzQjAABAgQIECBAgACBDgQEfzpA8goBAgQIECBAgAABAgQIECBQTcAJHZtuTvDZdLAf7IfyP0nsB/vBfhicE3yq/P1YrJ/Te6p9RtKKAAECBAgQIECAQCoBwZ9UkuoQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqFFA8KdGbF0RIECAAAECBAgQIECAAAECBAgQGFWBeKKIk0FGdfXNmwABAgQIECBAgAABAgRyCQj+5JJVlwABAgQIECBAgAABAgQIECBAgACBDYGTJ09uXPXWarWIECBAgAABAgQIECBAgAABAgkFBH8SYipFgAABAgQIECBAgAABAgQIECBAgMCtAjH4s7CwsBH8ceqPHUKAAAECBAgQIECAAAECBNIJCP6ks1SJAAECBAgQIECAAAECBAgQIECAAIE2gSL0E38cQz9O/bFFCBAgQIAAAQIECBAgQIBAOgHBn3SWKhEgQIAAAQIECBAgQIAAAQIECBAg0CZQDv7EXzn1xxYhQIAAAQIECBAgQIAAAQLpBAR/0lmqRIAAAQIECBAgQIAAAQIECBAgQIBASWBpaSnMzs7eZOLUH1uEAAECBAgQIECAAAECBAikExD8SWepEgECBAgQIECAAAECBAgQIECAAAECJYH2036KXy0sLIT5+XlWBAgQIECAAAECBAgQIECAQI8Cgj89AmpOgAABAgQIECBAgAABAgQIECBAgMDOAmNjY7vSrK+vYyNAgAABAgQIECBAgAABAgR6FBD86RFQcwIECBAgQIAAAQIECBAgQIAAAQIEbhXY7bSf4k2n/tg1BAgQIECAAAECBAgQIECgdwHBn94NVSBAgAABAgQIECBAgAABAgQIECBAoE3gdqf9FK869ce2IUCAAAECBAgQIECAAAECvQkI/vTmpzUBAgQIECBAgAABAgQIECBAgAABAm0Cdzrtp3jdqT+2DgECBAgQIECAAAECBAgQ6E1A8Kc3P60JECBAgAABAgQIECBAgAABAgQIEGgT6OS0n6JJq9UKMzMzDAkQIECAAAECBAgQIECAAIEKAoI/FdA0IUCAAAECBAgQIECAAAECBAgQIEBgZ4FOT/spWsfQTwz/eAgQIECAAr386QAAIABJREFUAAECBAgQIECAAIHuBQR/ujfTggABAgQIECBAgAABAgQIECBAgACBXQS6Oe2nKOHUH9uJAAECBAgQIECAAAECBAhUExD8qeamFQECBAgQIECAAAECBAgQIECAAAECbQLdnvZTNHfqj61EgAABAgQIECBAgAABAgSqCQj+VHPTigABAgQIECBAgAABAgQIECBAgACBNoFOTvuJIZ+lpaVb7Jz6YzsRIECAAAECBAgQIECAAIHuBQR/ujfTggABAgQIECBAgAABAgQIECBAgACBNoH2035iwGd+fj5cuHAhLCwsbL8d/zr+fKf3Y/jHQ4AAAQIECBAgQIAAAQIECHQuIPjTuZU3CRAgQIAAAQIECBAgQIAAAQIECBDYRaA47acI/MQ/49Me8CmCP0WZ8u+d+mN7ESBAgAABAgQIECBAgACB7gQEf7rz8jYBAgQIECBAgAABAgQIECBAgAABAm0CMbwTr++KJ/kUgZ/ilfjz2dnZ7Rbx9zud7FPUcOqP7UWAAAECBAgQIECAAAECBDoXEPzp3MqbBAgQIECAAAECBAgQIECAAAECBAh0KdBp8KfLsl4nQIAAAQIECBAgQIAAAQIE/v9Ju4I/tgEBAgQIECBAgAABAgQIECBAgAABAtkEBH+y0SpMgAABAgQIECBAgAABAgQEf+wBAgQIECBAgAABAgQIECBAgAABAgTyCQj+5LNVmQABAgQIECBAgAABAgQIOPHHHiBAgAABAgQIECBAgAABAgQIECBAIJuA4E82WoUJECBAgAABAgQIECBAgIATf+wBAgQIECBAgAABAgQIECBAgAABAgTyCQj+5LNVmQABAgQIECBAgAABAgQIOPHHHiBAgAABAgQIECBAgAABAgQIECBAIJuA4E82WoUJECBAgAABAgQIECBAgIATf+wBAgQIECBAgAABAgQIECBAgAABAgTyCQj+5LNVmQABAgQIECBAgAABAgQIOPHHHiBAgAABAgQIECBAgAABAgQIECBAIJuA4E82WoUJECBAgAABAgQIECBAgIATf+wBAgQIECBAgAABAgQIECBAgAABAgTyCQj+5LNVmQABAgQIECBAgAABAgQIOPHHHiBAgAABAgQIECBAgAABAgQIECBAIJuA4E82WoUJECBAgAABAgQIECBAgIATf+wBAgQIECBAgAABAgQIECBAgAABAgTyCoyNjd3Uwfr6et4OVSdAgAABAgQIECBAgAABAiMi4MSfEVlo0yRAgAABAgQIECBAgAABAgQIECDQLwHBn37J65cAAQIECBAgQIAAAQIEhl1A8GfYV9j8CBAgQIAAAQIECBAgQIAAAQIECPRZQPCnzwugewIECBAgQIAAAQIECBAYWgHBn6FdWhMjQIAAAQIECBAgQIAAAQIECBAgMBgCgj+DsQ5GQYAAAQIECBAgQIAAAQLDJyD4M3xrakYECBAgQIAAAQIECBAgQIAAAQIEBkpA8GeglsNgCBAgQIAAAQIECBAgQGCIBAR/hmgxTYUAAQIECBAgQIAAAQIECBAgQIDAIAoI/gziqhgTAQIECBAgQIAAAQIECAyDgODPMKyiORAgQIAAAQIECBAgQIAAAQIECBAYYAHBnwFeHEMjQIAAAQIECBAgQIAAgUYLCP40evkMngABAgQIECBAgAABAgQIECBAgMDgCwj+DP4aGSEBAgQIECBAgAABAgQINFNA8KeZ62bUBAgQIECAAAECBAgQIECAAAECBBojIPjTmKUyUAIECBAgQIAAAQIECBBomIDgT8MWzHAJECBAgAABAgQIECBAgAABAgQINE1A8KdpK2a8BAgQIECAAAECBAgQINAUAcGfpqyUcRIgQIAAAQIECBAgQIAAAQIECBBoqIDgT0MXzrAJECBAgAABAgQIECBAYOAFBH8GfokMkAABAgQIECBAgAABAgQIECBAgECzBWZnZ8PS0tL2JFqtVpiZmWn2pIyeAAECBAgQIECAAAECBAgMgIDgzwAsgiEQIECAAAECBAgQIECAAAECBAgQGGYBwZ9hXl1zI0CAAAECBAgQIECAAIF+Cgj+9FNf3wQIECBAgAABAgQIECBAgAABAgRGQEDwZwQW2RQJECBAgAABAgQIECBAoC8Cgj99YdcpAQIECBAgQIAAAQIECBAgQIAAgdEREPwZnbU2UwIECBAgQIAAAQIECBCoV0Dwp15vvREgQIAAAQIECBAgQIAAAQIECBAYOQHBn5FbchMmQIAAAQIECBAgQIAAgZoEBH9qgtYNAQIECBAgQIAAAQIECBAgQIAAgVEVEPwZ1ZU3bwIECBAgQIAAAQIECBDILSD4k1tYfQIECBAgQIAAAQIECBAgQIAAAQIjLiD4M+IbwPQJECBAgAABAgQIECBAIJuA4E82WoUJECBAgAABAgQIECBAgAABAgQIEIgCgj/2AQECBAgQIECAAAECBAgQyCMg+JPHVVUCBAgQIECAAAECBAgQIECAAAECBLYEBH9sBQIECBAgQIAAAQIECBAgkEdA8CePq6oECBAgQIAAAQIECBAgQIAAAQIECGwJCP7YCgQIECBAgAABAgQIECBAII+A4E8eV1UJECBAgAABAgQIECBAgAABAgQIENgSEPyxFQgQIECAAAECBAgQIECAQB4BwZ88rqoSIECAAAECBAgQIECAAAECBAgQILAlIPhjKxAgQIAAAQIECBAgQIAAgTwCgj95XFUlQIAAAQIECBAgQIAAAQIECBAgQGBLQPDHViBAgAABAgQIECBAgAABAnkEBH/yuKpKgAABAgQIECBAgAABAgQIECBAgMCWgOCPrUCAAAECBAgQIECAAAECBPIICP7kcVWVAAECBAgQIECAAAECBAgQIECAAIEtAcEfW4EAAQIECBAgQIAAAQIECOQREPzJ46oqAQIECBAgQIAAAQIECBAgQIAAAQJbAoI/tgIBAgQIECBAgAABAgQIEMgjIPiTx1VVAgQIECBAgAABAgQIECBAgAABAgS2BAR/bAUCBAgQIECAAAECBAgQIJBHQPAnj6uqBAgQIECAAAECBAgQIECAAAECBAhsCQj+2AoECBAgQIAAAQIECBAgQCCPgOBPHldVCRAgQIAAAQIECBAgQIAAAQIECBDYEhD8sRUIECBAgAABAgQIECBAgEAeAcGfPK6qEiBAgAABAgQIECBAgAABAgQIECCwJSD4YysQIECAAAECBAgQIECAAIE8AoI/eVxVJUCAAAECBAgQIECAAAECBAgQIEBgS0Dwx1YgQIAAAQIECBAgQIAAAQJ5BAR/8riqSoAAAQIECBAgQIAAAQIECBAgQIDAloDgj61AgAABAgQIECBAgAABAgTyCAj+5HFVlQABAgQIECBAgAABAgQIECBAgACBLQHBH1uBAAECBAgQIECAAAECBAjkERD8yeOqKgECBAgQIECAAAECBAgQIECAAAECWwKCP7YCAQIECBAgQIAAAQIECBDIIyD4k8dVVQIECBAgQIAAAQIECBAgQIAAAQIEtgQEf2wFAgQIECBAgAABAgQIECCQR0DwJ4+rqgQIECBAgAABAgQIECBAgAABAgQIbAkI/tgKBAgQIECAAAECBAgQIEAgj4DgTx5XVQkQIECAAAECBAgQIECAAAECBAgQ2BIQ/LEVCBAgQIAAAQIECBAgQIBAHgHBnzyuqhIgQIAAAQIECBAgQIAAAQIECBAgsCUg+GMrECBAgAABAgQIECBAgACBPAKCP3lcVSVAgAABAgQIECBAgAABAgQIECBAYEtA8MdWIECAAAECBAgQIECAAAECeQQEf/K4qkqAAAECBAgQIECAAAECBAgQIEBgpARiuGdmZibMz8/fMu9Ogj9LS0vh5MmTodVqjZSbyRIgQIAAAQIECBAgQIAAgV4EBH960dOWAAECBAgQIECAAAECBAgQIECAAIENgRjciQGf+CwsLNwUALpd8KcI/MQ/29uhJUCAAAECBAgQIECAAAECBG4vIPhjhxAgQIAAAQIECBAgQIAAAQIECBAgkESgPeBTBHl2Cv7EDuMJPzHwUzzr6+tJxqEIAQIECBAgQIAAAQIECBAYFQHBn1FZafMkQIAAAQIECBAgQIAAAQIECBAgkFmgfOrP7bqKV4KVAz/xXaf9ZF4c5QkQIECAAAECBAgQIEBgKAUEf4ZyWU2KAAECBAgQIECAAAECBAgQIECAQH8E2k/36XQUTvvpVMp7BAgQIECAAAECBAgQIEDgDQHBH7uBAAECBAgQIECAAAECBAgQIECAAIFkAp2e+lPu0Gk/yfgVIkCAAAECBAgQIECAAIERExD8GbEFN10CBAgQIECAAAECBAgQIECAAAECuQW6PfXHaT+5V0R9AgQIECBAgAABAgQIEBhWAcGfYV1Z8yJAgAABAgQIECBAgAABAgQIECDQJ4FuTv1x2k+fFkm3BAgQIECAAAECBAgQIDAUAoI/Q7GMJkGAAAECBAgQIECAAAECBAgQIEBgsAQ6PfXHaT+DtW5GQ4AAAQIECBAgQIAAAQLNEhD8adZ6GS0BAgQIECBAgAABAgQIECBAgACBRgh0cuqP034asZQGSYAAAQIECBAgQIAAAQIDLCD4M8CLY2gECBAgQIAAAQIECBAgQIAAAQIEmixwp1N/nPbT5NU1dgIECBAgQIAAAQIECBAYBAHBn0FYBWMgQIAAAQIECBAgQIAAAQIECBAgMIQCtzv1x2k/Q7jgpkSAAAECBAgQIECAAAECtQsI/tROrkMCBAgQIECAAAECBAgQIECAAAECoyOw26k/TvsZnT1gpgQIECBAgAABAgQIECCQT0DwJ5+tygQIECBAgAABAgQIECBAgAABAgRGXmCnU3+c9jPy2wIAAQIECBAgQIAAAQIECCQSEPxJBKkMAQIECBAgQIAAAQIECBAgQIAAAQI7C7Sf+uO0HzuFAAECBAgQIECAAAECBAikERD8SeOoCgECBAgQIECAAAECBAgQIECAAAECuwiUT/1x2o9tQoAAAQIECBAgQIAAAQIE0gkI/qSzVIkAAQIECBAgQIAAAQIECBAgQIAAgV0EilN/nPZjixAgQIAAAQIECBAgQIAAgXQCgj/pLFUiQIAAAQIECBAgQIAAAQIECBAgQGAXgXjqz4ULF8L8/DwjAgQIECBAgAABAgQIECBAIJGA4E8iSGUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1Ckg+FOntr4IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJBIQ/EkEqQwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBOgUEf+rU1hcBAgQIECBAgAABAgQIECBAgACBERJYvnh9Y7ZzZ65s/Hl4du/m/z+4N0xO7BkhCVMlQIAAAQIECBAgQIAAAQJ5BAR/8riqSoAAAQIECBAgQIAAAQIECBAgQGBkBWLgpwj73A4hBoGEgEZ2m5g4AQIECBAgQIAAAQIECCQQEPxJgKgEAQIECBAgQIAAAQIECBAgQIAAAQIhdBr4abcSALJ7CBAgQIAAAQIECBAgQIBANQHBn2puWhEgQIAAAQIECBAgQIAAAQIECBAgsCVQNfDTDigAZEsRIECAAAECBAgQIECAAIHuBAR/uvPyNgECBAgQIECAAAECBAgQIECAAAECWwKpAj/toAJAthgBAgQIECBAgAABAgQIEOhMQPCnMydvESBAgAABAgQIECBAgAABAgQIECCwJZAr8NMOLABkyxEgQIAAAQIECBAgQIAAgdsLCP7YIQQIECBAgAABAgQIECBAgAABAgQIdCRQV+CnfTACQB0tj5cIECBAgAABAgQIECBAYAQFBH9GcNFNmQABAgQIECBAgAABAgQIECBAgECnAjHsE5+5M1c6bZLtPQGgbLQKEyBAgAABAgQIECBAgEBDBQR/Grpwhk2AAAECBAgQIECAAAECBAgQIEAgp8AgBX7a5ykAlHPl1SZAgAABAgQIECBAgACBJgkI/jRptYyVAAECBAgQIECAAAECBAgQIECAQGaBQQ78tE9dACjzZlCeAAECBAgQIECAAAECBAZeQPBn4JfIAAkQIECAAAECBAgQIECAAAECBAjkF4iBn0G4zqvqTBeP7Q/TU+NVm2tHgAABAgQIECBAgAABAgQaKSD408hlM2gCBAgQIECAAAECBAgQIECAAAECaQSaHvhpVxAASrMvVCFAgAABAgQIECBAgACBZggI/jRjnYySAAECBAgQIECAAAECBAgQIECAQFKBYQv8tOO4BizpdlGMAAECBAgQIECAAAECBAZUQPBnQBfGsAgQIECAAAECBAgQIECAAAECBAjkEBj2wE+7mQBQjl2kJgECBAgQIECAAAECBAgMioDgz6CshHEQIECAAAECBAgQIECAAAECBAgQyCgwaoGfdkoBoIybS2kCBAgQIECAAAECBAgQ6JuA4E/f6HVMgAABAgQIECBAgAABAgQIECBAIL/AqAd+2oUFgPLvOT0QIECAAAECBAgQIECAQH0Cgj/1WeuJAAECBAgQIECAAAECBAgQIECAQG0CAj+3pxYAqm0r6ogAAQIECBAgQIAAAQIEMgoI/mTEVZoAAQIECBAgQIAAAQIECBAgQIBA3QICP92JCwB15+VtAgQIECBAgAABAgQIEBgsAcGfwVoPoyFAgAABAgQIECBAgAABAgQIECBQSUDgpxLbdiMBoN78tCZAgAABAgQIECBAgACB/ggI/vTHXa8ECBAgQIAAAQIECBAgQIAAAQIEkgisrK6FmROXk9RSJITFY/vD9NQ4CgIECBAgQIAAAQIECBAg0AgBwZ9GLJNBEiBAgAABAgQIECBAgAABAgQIELhVQOgnz64Q/snjqioBAgQIECBAgAABAgQIpBcQ/ElvqiIBAgQIECBAgAABAgQIECBAgACBWgROn78azrWu1dLXqHWyfPbhUZuy+RIgQIAAAQIECBAgQIBAAwUEfxq4aIZMgAABAgQIECBAgAABAgQIECBAwGk/efeAU3/y+qpOgAABAgQIECBAgAABAmkEBH/SOKpCgAABAgQIECBAgAABAgQIECBAoFaB5YvXw9yZK7X2OUqdHZ7dG44f2jdKUzZXAgQIECBAgAABAgQIEGiggOBPAxfNkAkQIECAAAECBAgQIECAAAECBAi45iv/HnDdV35jPRAgQIAAAQIECBAgQIBAbwKCP735aU2AAAECBAgQIECAAAECBAgQIECgLwLTRy/1pd9R6nTp1IEwObFnlKZsrgQIECBAgAABAgQIECDQMAHBn4YtmOESIECAAAECBAgQIECAAAECBAgQWFldCzMnLoPILLB4bH+YnhrP3IvyBAgQIECAAAECBAgQIECguoDgT3U7LQkQIECAAAECBAgQIECAAAECBAj0RUDwpx52wZ96nPVCgAABAgQIECBAgAABAtUFBH+q22lJgAABAgQIECBAgAABAgQIECBAoC8Cp89fDeda1/rS96h1unz24VGbsvkSIECAAAECBAgQIECAQIMEBH8atFiGSoAAAQIECBAgQIAAAQIECBAgQCAKCP7Utw8Ef+qz1hMBAgQIECBAgAABAgQIdC8g+NO9mRYECBAgQIAAAQIECBAgQIAAAQIE+ibgmq966V33Va+33ggQIECAAAECBAgQIECgOwHBn+68vE2AAAECBAgQIECAAAECBAgQIECgrwKDGPyZnrp3R5NHpsZ3tXrm4vWwfPHVjd+X2xc/6ytyqXPBn0FZCeMgQIAAAQIECBAgQIAAgZ0EBH/sCwIECBAgQIAAAQIECBAgQIAAAQINEujHNV9FMCcGeabfeW+YO3NlW+zI45Nh7uBk14LTRy/dscbyxesb7yw/uxkQKoeFuu6wYoPDs3vD8UP7KrbWjAABAgQIECBAgAABAgQI5BUQ/MnrqzoBAgQIECBAgAABAgQIECBAgACBpAJ1BH9i0OfIVphneodTe+bOPH/TaT2Lxx7qeo6dBH92KxoDQTEM9MRnV7rut0qD5bMPV2mmDQECBAgQIECAAAECBAgQyC4g+JOdWAcECBAgQIAAAQIECBAgQIAAAQIE0gmUAzPpqm5etxXDPjsFfdr76Sb4U5zac2uN3k4NWnx65abgTzx5KFcQyHVfKXeaWgQIECBAgAABAgQIECCQUkDwJ6WmWgQIECBAgAABAgQIECBAgAABAgQyCqysroWZE5eT9tBNqKUI8Tzx9Mr2iT9xMMVVYMsXN6/kqvqUrxQr14jXi7UHksrBn/J1Y/Hn8UkZAurGqOrctSNAgAABAgQIECBAgAABAlUEBH+qqGlDgAABAgQIECBAgAABAgQIECBAoA8CMXgzd+aNk3JSDGG3UEs55BP76TXUk2KsMRj0yNbVY+VgTzn4U/TTfiJQL/0fnt0bjh/a10sJbQkQIECAAAECBAgQIECAQBYBwZ8srIoSIECAAAECBAgQIECAAAECBAgQSC9w+vzVcK51LWnhGKZZPPbQRs0Y9omn+Wz+dW+n9yQd5B2K7RT8KZqUryXrZUzLZx/upbm2BAgQIECAAAECBAgQIEAgi4DgTxZWRQkQIECAAAECBAgQIECAAAECBAikF5g+eqnnojtdy5Xqqq6eB9djgZ0CQKlOSVo6dSBMTuzpcYSaEyBAgAABAgQIECBAgACBtAKCP2k9VSNAgAABAgQIECBAgAABAgQIECCQRWBldS3MnLjcc+3iaq+UV2H1PKjEBdoDQCkCU7tdiZZ46MoRIECAAAECBAgQIECAAIGuBAR/uuLyMgECBAgQIECAAAECBAgQIECAAIH+CKQK/pSvrEp1Gk5/RHbvtT34k+K6L8GfQVtl4yFAgAABAgQIECBAgACBKCD4Yx8QIECAAAECBAgQIECAAAECBAgQaIDA6fNXw7nWtZ5HWg7+xGIx/LP87Kvhic+u9Fy73wXilWVHDk6G6anxm4aSIvizYXX24X5PUf8ECBAgQIAAAQIECBAgQOAmAcEfG4IAAQIECBAgQIAAAQIECBAgQIBAAwRyBX+KqTc5ALRb4KeYm+BPAza4IRIgQIAAAQIECBAgQIBAJQHBn0psGhEgQIAAAQIECBAgQIAAAQIECBCoTyDVNV9xxJ2cWlOEgOL7g3gSUAz6PDI1Hqbfee8tp/vstCqpgj+u+6pvz+uJAAECBAgQIECAAAECBDoTEPzpzMlbBAgQIECAAAECBAgQIECAAAECBPomkCv4EwM+7dditU9y+uil7R8VgZtnLl7f+NnyxVezmcS+iqfcTyfhm8WnV8Lcwcnt9oI/2ZZJYQIECBAgQIAAAQIECBDos4DgT58XQPcECBAgQIAAAQIECBAgQIAAAQIE7iSQ6pqv2E/5xJ8iEHPk8c2QTDkss/Huxeth7syV7eHtdlpQfK/8LD/7RiAohoTKwZ2ir/h+PLGn/dkpiFQOH+0W/IljeOLple2+4nvFU/75naxv9/vDs3vD8UP7eimhLQECBAgQIECAAAECBAgQSCog+JOUUzECBAgQIECAAAECBAgQIECAAAEC6QVyB3/KIy6HgOLJOeWrvjq5Jqx99uXTduIpPovHHuoaaLcaRdgnFsx5+lB5wFUMup6wBgQIECBAgAABAgQIECBAoEMBwZ8OobxGgAABAgQIECBAgAABAgQIECBAoF8C5RNveh3DTif+dFIzhnaOHJy849Vg7bVSB39i/TiWuoI+7fPp5KqxTjy9Q4AAAQIECBAgQIAAAQIEUggI/qRQVIMAAQIECBAgQIAAAQIECBAgQIBAJoGV1bUwc+Jysurlq7bKp/l020EM38TnkanxW5qWr/AqX7NVhIfaG7RfDVb8vl/hnttZCP50u1O8T4AAAQIECBAgQIAAAQI5BQR/cuqqTYAAAQIECBAgQIAAAQIECBAgQKBHgXid1dyZKz1WGb3mVU82upPU4dm94fihfXd6ze8JECBAgAABAgQIECBAgEAtAoI/tTDrhAABAgQIECBAgAABAgQIECBAgEA1gdPnr4ZzrWvVGo9wq1zBn0harj3CxKZOgAABAgQIECBAgAABAgMgIPgzAItgCAQIECBAgAABAgQIECBAgAABAgR2E5g+eikpTnFFVyw6iFdppZpszuDP0qkDYXJiT6qhqkOAAAECBAgQIECAAAECBCoLCP5UptOQAAECBAgQIECAAAECBAgQIECAQF6BldW1MHPictJOcgZikg60x2I557l4bH+YnhrvcYSaEyBAgAABAgQIECBAgACB3gUEf3o3VIEAAQIECBAgQIAAAQIECBAgQIBAFgHBn+qsgj/V7bQkQIAAAQIECBAgQIAAgeYICP40Z62MlAABAgQIECBAgAABAgQIECBAYMQETp+/Gs61riWddc5ATNKB9lgs9zzL9XscquYECBAgQIAAAQIECBAgQKCygOBPZToNCRAgQIAAAQIECBAgQIAAAQIECOQVEPyp7iv4U91OSwIECBAgQIAAAQIECBBojoDgT3PWykgJECBAgAABAgQIECBAgAABAgRGTGD66KXkM84diEk+4IoFc89z8dj+MD01XnF0mhEgQIAAAQIECBAgQIAAgTQCgj9pHFUhQIAAAQIECBAgQIAAAQIECBAgkFRgZXUtzJy4nLRmLJY7EJN8wBUL5p6n4E/FhdGMAAECBAgQIECAAAECBJIKCP4k5VSMAAECBAgQIECAAAECBAgQIECAQBqBHNd8xZHlDsSkmX3vVXLP8/Ds3nD80L7eB6oCAQIECBAgQIAAAQIECBDoQUDwpwc8TQkQIECAAAECBAgQIECAAAECBAjkEsgV/CmfVLP49Ep44rMruabQt7pHHp8Mcwcnt/vPcWVaLF4OF/VtsjomQIAAAQIECBAgQIAAgZEWEPwZ6eU3eQKuLfReAAAPzklEQVQECBAgQIAAAQIECBAgQIAAgUEVyBVWab+iKoZ/4jNMAaDyHJcvXg9zZ65kWealUwfC5MSeLLUVJUCAAAECBAgQIECAAAECnQgI/nSi5B0CBAgQIECAAAECBAgQIECAAAECNQqsrK6FmROXs/Q4PXVvWDz20C215848H5Yvvpqlz9xF45ziU4y/PMecpxq1h6hyz1N9AgQIECBAgAABAgQIECDQLiD4Y08QIECAAAECBAgQIECAAAECBAgQGDCBnKfUFFNtD62UTxiKV2UVzyCeBFQEfY4cnAzTU+MbQ203K+aQc/yHZ/eG44f2DdjuMRwCBAgQIECAAAECBAgQGCUBwZ9RWm1zJUCAAAECBAgQIECAAAECBAgQaIRAHcGfCBHDMXMHJ0P7qTjLZx++xam4Eiz+4pmL1zd+n/uEoCLg88jUeJh+5+apPkXQZ6eFrPvUIsGfRvztZJAECBAgQIAAAQIECBAYagHBn6FeXpMjQIAAAQIECBAgQIAAAQIECBBookBdwZ+dbHa7Cux2ju3jjTViWOdOTxHmie8tP/tqKE7nqTqGJ55eyR5GKs9J8OdOK+z3BAgQIECAAAECBAgQIJBbQPAnt7D6BAgQIECAAAECBAgQIECAAAECBLoU6Hfwpzhh53an67RPqXxVWPs1Yp1Mv33OO5061F4ntolhn/jkPn1opzkI/nSyst4hQIAAAQIECBAgQIAAgZwCgj85ddUmQIAAAQIECBAgQIAAAQIECBAgUEGgn8Gf9uGWT++JJ/TsFgbKGfyJHvGJpwLVdc1YJ8sm+NOJkncIECBAgAABAgQIECBAIKeA4E9OXbUJECBAgAABAgQIECBAgAABAgQIVBQoB2kqlsjaLAaC4hNPB4phnPKJO0cenwzla7w6GUj5qq/4fqzfj1N8Ohlr8c7SqQNhcmJPN028S4AAAQIECBAgQIAAAQIEkgoI/iTlVIwAAQIECBAgQIAAAQIECBAgQIBAGoFBOvUnzYyGq4rTfoZrPc2GAAECBAgQIECAAAECTRUQ/Gnqyhk3AQIECBAgQIAAAQIECBAgQIDA0AsI/wzuEi+ffXhwB2dkBAgQIECAAAECBAgQIDAyAoI/I7PUJkqAAAECBAgQIECAAAECBAgQINBEgUG/8quJpr2O2RVfvQpqT4AAAQIECBAgQIAAAQKpBAR/UkmqQ4AAAQIECBAgQIAAAQIECBAgQCCDwMrqWpg5cTlDZSWrCCwe2x+mp8arNNWGAAECBAgQIECAAAECBAgkFxD8SU6qIAECBAgQIECAAAECBAgQIECAAIG0Aq78SutZtZrQT1U57QgQIECAAAECBAgQIEAgl4DgTy5ZdQkQIECAAAECBAgQIECAAAECBAgkFBD+SYhZodTh2b3h+KF9FVpqQoAAAQIECBAgQIAAAQIE8gkI/uSzVZkAAQIECBAgQIAAAQIECBAgQIBAUgHhn6ScXRVbPvtwV+97mQABAgQIECBAgAABAgQI1CEg+FOHsj4IECBAgAABAgQIECBAgAABAgQIJBI4ff5qONe6lqiaMp0ILJ06ECYn9nTyqncIECBAgAABAgQIECBAgECtAoI/tXLrjAABAgQIECBAgAABAgQIECBAgEBvAiura2HmxOXeimjdscDisf1hemq84/e9SIAAAQIECBAgQIAAAQIE6hQQ/KlTW18ECBAgQIAAAQIECBAgQIAAAQIEEgi48isBYgclhH46QPIKAQIECBAgQIAAAQIECPRVQPCnr/w6J0CAAAECBAgQIECAAAECBAgQIFBNQPinmlunrQ7P7g3HD+3r9HXvESBAgAABAgQIECBAgACBvggI/vSFXacECBAgQIAAAQIECBAgQIAAAQIEehcQ/undcKcKQj95XFUlQIAAAQIECBAgQIAAgfQCgj/pTVUkQIAAAQIECBAgQIAAAQIECBAgUJvA6fNXw7nWtdr6G4WOlk4dCJMTe0ZhquZIgAABAgQIECBAgAABAg0XEPxp+AIaPgECBAgQIECAAAECBAgQIECAwGgLrKyuhZkTl0cbIeHsF4/tD9NT4wkrKkWAAAECBAgQIECAAAECBPIJCP7ks1WZAAECBAgQIECAAAECBAgQIECAQC0CrvxKwyz0k8ZRFQIECBAgQIAAAQIECBCoT0Dwpz5rPREgQIAAAQIECBAgQIAAAQIECBDIJiD80xvt4dm94fihfb0V0ZoAAQIECBAgQIAAAQIECNQsIPhTM7juCBAgQIAAAQIECBAgQIAAAQIECOQSEP6pJiv0U81NKwIECBAgQIAAAQIECBDov4DgT//XwAgIECBAgAABAgQIECBAgAABAgQIJBM4ff5qONe6lqzeToWm3zkevv+77wuf+u1r4f2P3h8efde94dlLr4XP/M5L4WvP39ho8kN/biK86+33hH//pZfDV77x+k1lfvK9k2F9fT3869/cHOd942PhL//ZifCD774vfPNbN8KnWy+Frz53c5ucE1o6dSBMTuzJ2YXaBAgQIECAAAECBAgQIEAgi4DgTxZWRQkQIECAAAECBAgQIECAAAECBAj0T2D66KWsnf/jn3ggHHxkIqxeXw8T42NhfT2EsbHNLn/mMy+GX/3CS+HEB94cfuw9bwpf+r1Xw4d/8fnt8Xzvd42HJz+yPzx/dS380Mcuh/377gq/Pv/WjfBP+fmvv/9q+NDZN9rlmtDisf1hemo8V3l1CRAgQIAAAQIECBAgQIBAVgHBn6y8ihMgQIAAAQIECBAgQIAAAQIECBCoXyD3lV9F8CfO7InProTFp1c2Tuz5xN96IMT4zo994pvh+ZW18PlPHAiv31gPf+HvfD2srW86/PO//VD4vj9xb3jycyvhl55aCb/10wfCg5N7whe+/EqY/9S3wp/8jnvC6bkHNwJFc79wJSw/ez0boNBPNlqFCRAgQIAAAQIECBAgQKAmAcGfmqB1Q4AAAQIECBAgQIAAAQIECBAgQKBOgZzhnyL48+WvXA8/cfrK9rR+6m88EH74z09sXPn1T3/1xfCZj701fOeBu8PHP/VC+A//ZTXsGQvhP/+zbw937RkL7/l7Xw8P7N0TfmPhbeHFl9bCD3708nadv/Z994cPv38y/Np/enkjVJTjOTy7Nxw/tC9HaTUJECBAgAABAgQIECBAgEBtAoI/tVHriAABAgQIECBAgAABAgQIECBAgEC9ArnCP0Xw5+fOXw2fbl3bntRf/FP3hV/40IPhf/6f18KP/+xz4f2P3h8WPviW8Ht/8Fo4/DPPhfc9en84+cG3hP/11dfCB089t3EVWLwS7He+/Er4yBN/WBuO0E9t1DoiQIAAAQIECBAgQIAAgcwCgj+ZgZUnQIAAAQIECBAgQIAAAQIECBAg0E+B0+evhnOlcE6KsRTBn4/98gvhPz6zul3yT79jPPzy8f3ha1duhL968hsbP//iz397uHvPWPj+418Pn/y7+8O73n5POPHkH4bP/+4r4aM/+ubwgb/0pvDUl14O8//mWymG1lGNpVMHwuTEno7e9RIBAgQIECBAgAABAgQIEBhkAcGfQV4dYyNAgAABAgQIECBAgAABAgQIECCQQGD66KUEVd4oUQR//sVTK+Fffe6Nq7gO/cD94WN//S1h6b+/Eo7/y80TfH5u7sHw2J+5L8R3P/TDk+HV19bDDxz/+sbvfvQ9bwp//wNvDs9cfDUcOfP8dgcPTu4J8dqw+PNP/tYbJwqlmITQTwpFNQgQIECAAAECBAgQIEBgUAQEfwZlJYyDAAECBAgQIECAAAECBAgQIECAQCaB1Fd+FcGfb37rRjj4jzZP9onPv/v4W8N3fNvd4dRnXgz/9gsvbfxs6o/cE37lo98WbqyFcNeeED63vBr+wSdf2PjdO952d/i1f/jW8PqN9fDYicvhlevrGz//6b/5QHjv9ET4jS++HE5+Ot1JQIvH9ofpqfFMysoSIECAAAECBAgQIECAAIH6BQR/6jfXIwECBAgQIECAAAECBAgQIECAAIHaBVKGf4rgT5zE/33u9fDbv/tKmPme+zaCPF97/kb4kZPfCGubGZ6N5zf/yYHw0L7Nq7V+5Ke+Gb763Ovbv3vyI/vD937XeFhZXQtPfWk1fPcfvSd8zzvGw421m8NAvYIdnt0bjh/a12sZ7QkQIECAAAECBAgQIECAwEAJCP4M1HIYDAECBAgQIECAAAECBAgQIECAAIF8AqnCP0Xw5/ILN8Lb3nJXGBsLYX19MwT04z97JVxbXbtpEh9+32T4yfdOhm+8cCM8/vE3TgiKL43fMxZ+/siD4dF33bvd5rUb6+ETv/Ji+PUvvpwEQ+gnCaMiBAgQIECAAAECBAgQIDCAAoI/A7gohkSAAAECBAgQIECAAAECBAgQIEAgl8Dp81fDuda1nsoXwZ9femolfOrz18K7v3M8/I+vXN++qqtK8bvvGgvv/mP3hGuvrIeLX3vtphODqtQrt1k6dSBMTmyeOOQhQIAAAQIECBAgQIAAAQLDJCD4M0yraS4ECBAgQIAAAQIECBAgQIAAAQIEOhCYPnqpg7d2f6Uc/Hnycys91crdWOgnt7D6BAgQIECAAAECBAgQINBPAcGffurrmwABAgQIECBAgAABAgQIECBAgEAfBFZW18LMicuVe25K8Gfx2P4wPTVeeZ4aEiBAgAABAgQIECBAgACBQRcQ/Bn0FTI+AgQIECBAgAABAgQIECBAgAABAhkEli9eD3NnrlSq/FemJ8L7Hr0/xNN+/tv/vl6pRu5Gh2f3huOH9uXuRn0CBAgQIECAAAECBAgQINBXAcGfvvLrnAABAgQIECBAgAABAgQIECBAgED/BHoJ//Rv1HfuWejnzkbeIECAAAECBAgQIECAAIHhEBD8GY51NAsCBAgQIECAAAECBAgQIECAAAEClQROn78azrWuVWo7qI2WTh0IkxN7BnV4xkWAAAECBAgQIECAAAECBJIJCP4ko1SIAAECBAgQIECAAAECBAgQIECAQDMFhuXkn3jSz9zBvUI/zdyGRk2AAAECBAgQIECAAAECFQQEfyqgaUKAAAECBAgQIECAAAECBAgQIEBg2ASaHv5ZPLY/TE+ND9uymA8BAgQIECBAgAABAgQIELitgOCPDUKAAAECBAgQIECAAAECBAgQIECAwLbAyuraxl///h+83giVP/72u53w04iVMkgCBAgQIECAAAECBAgQyCEg+JNDVU0CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECmQUEfzIDK0+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgh4DgTw5VNQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhkFvh/rfgVWMaVfmYAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use Train API to Fine-Tune BERT LLM\n", + "\n", + "Kubeflow Training Operator SDK implements a `train` API to effectively fine-tune LLMs on multiple PyTorchJob workers with required configuration. It uses storage initializer to download pre-trained model and dataset, and distribute it across PyTorchJob workers using shared PVCs. After initialization step, pre-created HuggingFace LLM trainer will be executed on each PyTorchJob worker to fine-tune BERT model.\n", + "\n", + "This feature is in **Development Phase**, please provide your feedback by creating [the GitHub issues](https://github.com/kubeflow/training-operator/issues/new) or by using [the Kubeflow Slack channel #kubeflow-training-operator](https://kubeflow.slack.com/archives/C985VJN9F).\n", + "\n", + "To learn more about it check [this proposal](https://github.com/kubeflow/training-operator/blob/master/docs/proposals/train_api_proposal.md).\n", + "\n", + "**TODO (andreyvelich)**: Add docs link when they are ready.\n", + "\n", + "![train-api.png](attachment:348c13f1-f7df-4148-9c2e-268c05dc1d16.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Install Training Operator SDK to use `train` API\n", + "\n", + "You have to install `kubeflow-training` SDK with the HuggingFace dependencies to use `train` API.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install \"kubeflow-training[huggingface] @ git+https://github.com/kubeflow/training-operator.git#subdirectory=sdk/python\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create PyTorchJob using train API\n", + "\n", + "If your Kubernetes environment [supports `ReadOnlyMany` and `ReadWriteOnce` access modes](https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes) for PersistentVolumeClaims (PVCs), you can use more than 1 PyTorchJob worker in `train` API." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from kubeflow.training import TrainingClient\n", + "from kubeflow.storage_initializer.hugging_face import (\n", + " HuggingFaceModelParams,\n", + " HuggingFaceTrainParams,\n", + " HfDatasetParams,\n", + ")\n", + "\n", + "import transformers\n", + "from peft import LoraConfig\n", + "\n", + "job_name_train_api = \"fine-tune-bert-train-api\"\n", + "\n", + "# Set TOKENIZERS_PARALLELISM = false to avoid warnings from Transformers.\n", + "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# In this example we will use 1 worker and 1 GPU to fine-tune BERT with `train` API.\n", + "TrainingClient().train(\n", + " name=job_name_train_api,\n", + " num_workers=1, # nnodes parameter for torchrun command.\n", + " num_procs_per_worker=1, # nproc-per-node parameter for torchrun command.\n", + " # BERT model URI and type of Transformer to train it.\n", + " model_provider_parameters=HuggingFaceModelParams(\n", + " model_uri=\"hf://google-bert/bert-base-cased\",\n", + " transformer_type=transformers.AutoModelForSequenceClassification,\n", + " ),\n", + " storage_config={\n", + " \"access_modes\": [\"ReadWriteOnce\"] # Since we use 1 Worker, PVC access mode is ReadWriteOnce.\n", + " },\n", + " # Use 3000 samples from Yelp dataset.\n", + " dataset_provider_parameters=HfDatasetParams(\n", + " repo_id=\"yelp_review_full\",\n", + " split=\"train[:3000]\",\n", + " ),\n", + " # Specify HuggingFace Trainer parameters. In this example, we will skip evaluation and model checkpoints.\n", + " train_parameters=HuggingFaceTrainParams(\n", + " training_parameters=transformers.TrainingArguments(\n", + " output_dir=\"test_trainer\",\n", + " save_strategy=\"no\",\n", + " evaluation_strategy=\"no\",\n", + " do_eval=False,\n", + " disable_tqdm=True,\n", + " log_level=\"info\",\n", + " ),\n", + " # Set LoRA config to reduce number of trainable model parameters. \n", + " lora_config=LoraConfig(\n", + " r=8,\n", + " lora_alpha=8,\n", + " lora_dropout=0.1,\n", + " bias=\"none\",\n", + " ),\n", + " ),\n", + " resources_per_worker={\n", + " \"gpu\": 1,\n", + " \"cpu\": 5,\n", + " \"memory\": \"10G\",\n", + " },\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the PyTorchJob containers\n", + "\n", + "When using `train` API, every PyTorchJob worker (Kubernetes Pod) should have `storage-initialize` initContainer and volume.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorchJob Init Containers\n", + "storage-initializer\n", + "----------------------------------------\n", + "PyTorchJob Volumes\n", + "storage-initializer\n" + ] + } + ], + "source": [ + "pytorchjob = TrainingClient().get_job(job_name_train_api)\n", + "\n", + "print(\"PyTorchJob Init Containers\")\n", + "for c in pytorchjob.spec.pytorch_replica_specs[\"Master\"].template.spec.init_containers:\n", + " print(c.name)\n", + "\n", + "print(\"-\" * 40)\n", + "\n", + "print(\"PyTorchJob Volumes\")\n", + "for v in pytorchjob.spec.pytorch_replica_specs[\"Master\"].template.spec.volumes:\n", + " print(v.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the PyTorchJob training logs\n", + "\n", + "Use the same API to get created PyTorchJob logs.\n", + "\n", + "Since we used LoRA config, number of trainable parameters is smaller: **294 912**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:47Z INFO Starting HuggingFace LLM Trainer\n", + "[Pod fine-tune-bert-train-api-master-0]: /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.\n", + "[Pod fine-tune-bert-train-api-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:47Z INFO Setup model and tokenizer\n", + "[Pod fine-tune-bert-train-api-master-0]: Some weights of BertForSequenceClassification were not initialized from the model checkpoint at google-bert/bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "[Pod fine-tune-bert-train-api-master-0]: You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Preprocess dataset\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Load and preprocess dataset\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Dataset specification: Dataset({\n", + "[Pod fine-tune-bert-train-api-master-0]: features: ['label', 'text'],\n", + "[Pod fine-tune-bert-train-api-master-0]: num_rows: 3000\n", + "[Pod fine-tune-bert-train-api-master-0]: })\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO ----------------------------------------\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Tokenize dataset\n", + "Map: 100%|██████████| 3000/3000 [00:01<00:00, 2759.84 examples/s]\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Evaluation dataset is not found\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Distributed dataset across PyTorchJob workers. WORLD_SIZE: 1, RANK: 0\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Setup LoRA config for model\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Start model training\n", + "[Pod fine-tune-bert-train-api-master-0]: /usr/local/lib/python3.10/dist-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n", + "[Pod fine-tune-bert-train-api-master-0]: dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False)\n", + "[Pod fine-tune-bert-train-api-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-train-api-master-0]: The following columns in the training set don't have a corresponding argument in `PeftModel.forward` and have been ignored: text. If text are not expected by `PeftModel.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-train-api-master-0]: ***** Running training *****\n", + "[Pod fine-tune-bert-train-api-master-0]: Num examples = 3,000\n", + "[Pod fine-tune-bert-train-api-master-0]: Num Epochs = 3\n", + "[Pod fine-tune-bert-train-api-master-0]: Instantaneous batch size per device = 8\n", + "[Pod fine-tune-bert-train-api-master-0]: Total train batch size (w. parallel, distributed & accumulation) = 8\n", + "[Pod fine-tune-bert-train-api-master-0]: Gradient Accumulation steps = 1\n", + "[Pod fine-tune-bert-train-api-master-0]: Total optimization steps = 1,125\n", + "[Pod fine-tune-bert-train-api-master-0]: Number of trainable parameters = 294,912\n", + "[Pod fine-tune-bert-train-api-master-0]: [W reducer.cpp:1346] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:47Z INFO Starting HuggingFace LLM Trainer\n", + "[Pod fine-tune-bert-train-api-master-0]: /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.\n", + "[Pod fine-tune-bert-train-api-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:47Z INFO Setup model and tokenizer\n", + "[Pod fine-tune-bert-train-api-master-0]: Some weights of BertForSequenceClassification were not initialized from the model checkpoint at google-bert/bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "[Pod fine-tune-bert-train-api-master-0]: You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Preprocess dataset\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Load and preprocess dataset\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Dataset specification: Dataset({\n", + "[Pod fine-tune-bert-train-api-master-0]: features: ['label', 'text'],\n", + "[Pod fine-tune-bert-train-api-master-0]: num_rows: 3000\n", + "[Pod fine-tune-bert-train-api-master-0]: })\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO ----------------------------------------\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:48Z INFO Tokenize dataset\n", + "Map: 100%|██████████| 3000/3000 [00:01<00:00, 2759.84 examples/s]\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Evaluation dataset is not found\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Distributed dataset across PyTorchJob workers. WORLD_SIZE: 1, RANK: 0\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Setup LoRA config for model\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:45:51Z INFO Start model training\n", + "[Pod fine-tune-bert-train-api-master-0]: /usr/local/lib/python3.10/dist-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n", + "[Pod fine-tune-bert-train-api-master-0]: dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False)\n", + "[Pod fine-tune-bert-train-api-master-0]: warnings.warn(\n", + "[Pod fine-tune-bert-train-api-master-0]: The following columns in the training set don't have a corresponding argument in `PeftModel.forward` and have been ignored: text. If text are not expected by `PeftModel.forward`, you can safely ignore this message.\n", + "[Pod fine-tune-bert-train-api-master-0]: ***** Running training *****\n", + "[Pod fine-tune-bert-train-api-master-0]: Num examples = 3,000\n", + "[Pod fine-tune-bert-train-api-master-0]: Num Epochs = 3\n", + "[Pod fine-tune-bert-train-api-master-0]: Instantaneous batch size per device = 8\n", + "[Pod fine-tune-bert-train-api-master-0]: Total train batch size (w. parallel, distributed & accumulation) = 8\n", + "[Pod fine-tune-bert-train-api-master-0]: Gradient Accumulation steps = 1\n", + "[Pod fine-tune-bert-train-api-master-0]: Total optimization steps = 1,125\n", + "[Pod fine-tune-bert-train-api-master-0]: Number of trainable parameters = 294,912\n", + "[Pod fine-tune-bert-train-api-master-0]: [W reducer.cpp:1346] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())\n", + "[Pod fine-tune-bert-train-api-master-0]: {'loss': 0.7481, 'learning_rate': 2.777777777777778e-05, 'epoch': 1.33}\n", + "[Pod fine-tune-bert-train-api-master-0]: {'loss': 0.9313, 'learning_rate': 5.555555555555556e-06, 'epoch': 2.67}\n", + "[Pod fine-tune-bert-train-api-master-0]: Training completed. Do not forget to share your model on huggingface.co/models =)\n", + "[Pod fine-tune-bert-train-api-master-0]: {'train_runtime': 234.849, 'train_samples_per_second': 38.322, 'train_steps_per_second': 4.79, 'train_loss': 0.8460628526475694, 'epoch': 3.0}\n", + "[Pod fine-tune-bert-train-api-master-0]: 2024-03-15T16:49:47Z INFO Training is complete\n" + ] + } + ], + "source": [ + "logs, _ = TrainingClient().get_job_logs(job_name_train_api, follow=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": { + "iopub.execute_input": "2024-03-01T23:44:15.511173Z", + "iopub.status.busy": "2024-03-01T23:44:15.510932Z", + "iopub.status.idle": "2024-03-01T23:44:15.539921Z", + "shell.execute_reply": "2024-03-01T23:44:15.539352Z", + "shell.execute_reply.started": "2024-03-01T23:44:15.511155Z" + }, + "tags": [] + }, + "source": [ + "## Delete the PyTorchJobs\n", + "\n", + "You can delete the created PyTorchJobs." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "TrainingClient().delete_job(name=job_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "TrainingClient().delete_job(name=job_name_train_api)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/sdk/python/kubeflow/storage_initializer/Dockerfile b/sdk/python/kubeflow/storage_initializer/Dockerfile index 558e3553da..75bd667c87 100644 --- a/sdk/python/kubeflow/storage_initializer/Dockerfile +++ b/sdk/python/kubeflow/storage_initializer/Dockerfile @@ -4,14 +4,14 @@ FROM python:3.11 # Set the working directory in the container WORKDIR /app -# Copy the Python package and its source code into the container -COPY . /app/storage_initializer - # Copy the requirements.txt file into the container COPY requirements.txt /app/requirements.txt # Install any needed packages specified in requirements.txt RUN pip install --no-cache-dir -r requirements.txt +# Copy the Python package and its source code into the container +COPY . /app/storage_initializer + # Run storage.py when the container launches ENTRYPOINT ["python", "-m", "storage_initializer.storage"] diff --git a/sdk/python/kubeflow/storage_initializer/hugging_face.py b/sdk/python/kubeflow/storage_initializer/hugging_face.py index 06fb3f5b50..0d4d344aab 100644 --- a/sdk/python/kubeflow/storage_initializer/hugging_face.py +++ b/sdk/python/kubeflow/storage_initializer/hugging_face.py @@ -1,9 +1,12 @@ +import logging +import json +from typing import Union, Optional from dataclasses import dataclass, field +from urllib.parse import urlparse + import transformers from peft import LoraConfig -from urllib.parse import urlparse -import json, os -from typing import Union + from .constants import VOLUME_PATH_DATASET, VOLUME_PATH_MODEL from .abstract_model_provider import modelProvider from .abstract_dataset_provider import datasetProvider @@ -19,6 +22,17 @@ ] +# Configure logger. +log_formatter = logging.Formatter( + "%(asctime)s %(levelname)-8s %(message)s", "%Y-%m-%dT%H:%M:%SZ" +) +logger = logging.getLogger(__file__) +console_handler = logging.StreamHandler() +console_handler.setFormatter(log_formatter) +logger.addHandler(console_handler) +logger.setLevel(logging.INFO) + + @dataclass class HuggingFaceModelParams: model_uri: str @@ -46,7 +60,8 @@ def load_config(self, serialised_args): def download_model_and_tokenizer(self): # implementation for downloading the model - print("downloading model") + logger.info("Downloading model") + logger.info("-" * 40) transformer_type_class = getattr(transformers, self.config.transformer_type) parsed_uri = urlparse(self.config.model_uri) self.model = parsed_uri.netloc + parsed_uri.path @@ -64,7 +79,9 @@ def download_model_and_tokenizer(self): @dataclass class HfDatasetParams: repo_id: str - access_token: str = None + access_token: Optional[str] = None + # TODO (andreyvelich): Discuss where we should specify dataset preprocess parameters. + split: Optional[str] = None def __post_init__(self): # Custom checks or validations can be added here @@ -77,11 +94,14 @@ def load_config(self, serialised_args): self.config = HfDatasetParams(**json.loads(serialised_args)) def download_dataset(self): - print("downloading dataset") + logger.info("Downloading dataset") + logger.info("-" * 40) import huggingface_hub from datasets import load_dataset if self.config.access_token: huggingface_hub.login(self.config.access_token) - load_dataset(self.config.repo_id, cache_dir=VOLUME_PATH_DATASET) + # Load dataset and save to disk. + dataset = load_dataset(self.config.repo_id, split=self.config.split) + dataset.save_to_disk(VOLUME_PATH_DATASET) diff --git a/sdk/python/kubeflow/storage_initializer/requirements.txt b/sdk/python/kubeflow/storage_initializer/requirements.txt index 7edab476e8..dd896ecae7 100644 --- a/sdk/python/kubeflow/storage_initializer/requirements.txt +++ b/sdk/python/kubeflow/storage_initializer/requirements.txt @@ -1,8 +1,5 @@ -einops>=0.6.1 -transformers_stream_generator==0.0.4 -boto3==1.33.9 -transformers>=4.20.0 peft==0.3.0 -huggingface_hub==0.16.4 -datasets>=2.13.2 - +datasets==2.15.0 +transformers==4.37.2 +boto3==1.33.9 +huggingface_hub==0.19.3 diff --git a/sdk/python/kubeflow/storage_initializer/s3.py b/sdk/python/kubeflow/storage_initializer/s3.py index 89a3647b4a..506817750e 100644 --- a/sdk/python/kubeflow/storage_initializer/s3.py +++ b/sdk/python/kubeflow/storage_initializer/s3.py @@ -1,6 +1,6 @@ from dataclasses import dataclass, field -import json, os -import boto3 +import json +import os from urllib.parse import urlparse from .abstract_dataset_provider import datasetProvider from .constants import VOLUME_PATH_DATASET @@ -39,6 +39,8 @@ def load_config(self, serialised_args): self.config = S3DatasetParams(**json.loads(serialised_args)) def download_dataset(self): + import boto3 + # Create an S3 client for Nutanix Object Store/S3 s3_client = boto3.client( "s3", diff --git a/sdk/python/kubeflow/storage_initializer/storage.py b/sdk/python/kubeflow/storage_initializer/storage.py index 73937ad822..f65d9d324c 100644 --- a/sdk/python/kubeflow/storage_initializer/storage.py +++ b/sdk/python/kubeflow/storage_initializer/storage.py @@ -42,7 +42,7 @@ def dataset_factory(dataset_provider, dataset_provider_parameters): parser.add_argument( "--dataset_provider_parameters", type=str, - help="dataset provider serialised arguments", + help="dataset provider serialized arguments", ) args = parser.parse_args() diff --git a/sdk/python/kubeflow/trainer/Dockerfile b/sdk/python/kubeflow/trainer/Dockerfile index d82b715552..d0ebee4aa3 100644 --- a/sdk/python/kubeflow/trainer/Dockerfile +++ b/sdk/python/kubeflow/trainer/Dockerfile @@ -4,15 +4,14 @@ FROM nvcr.io/nvidia/pytorch:23.10-py3 # Set the working directory in the container WORKDIR /app -# Copy the Python package and its source code into the container -COPY . /app - # Copy the requirements.txt file into the container - COPY requirements.txt /app/requirements.txt +COPY requirements.txt /app/requirements.txt # Install any needed packages specified in requirements.txt RUN pip install --no-cache-dir -r requirements.txt +# Copy the Python package and its source code into the container +COPY . /app + # Run storage.py when the container launches ENTRYPOINT ["torchrun", "hf_llm_training.py"] - \ No newline at end of file diff --git a/sdk/python/kubeflow/trainer/hf_llm_training.py b/sdk/python/kubeflow/trainer/hf_llm_training.py index c39c547c83..26dd4fbe0e 100644 --- a/sdk/python/kubeflow/trainer/hf_llm_training.py +++ b/sdk/python/kubeflow/trainer/hf_llm_training.py @@ -1,45 +1,52 @@ import argparse +import logging +from urllib.parse import urlparse +import json +import os + +from datasets import load_from_disk, Dataset +from datasets.distributed import split_dataset_by_node +from peft import LoraConfig, get_peft_model import transformers from transformers import ( AutoModelForCausalLM, AutoTokenizer, - AutoConfig, + AutoModelForImageClassification, TrainingArguments, DataCollatorForLanguageModeling, Trainer, ) -import torch -from datasets import load_dataset -from peft import LoraConfig, get_peft_model -from urllib.parse import urlparse -import os -import json + + +# Configure logger. +log_formatter = logging.Formatter( + "%(asctime)s %(levelname)-8s %(message)s", "%Y-%m-%dT%H:%M:%SZ" +) +logger = logging.getLogger(__file__) +console_handler = logging.StreamHandler() +console_handler.setFormatter(log_formatter) +logger.addHandler(console_handler) +logger.setLevel(logging.INFO) def setup_model_and_tokenizer(model_uri, transformer_type, model_dir): # Set up the model and tokenizer parsed_uri = urlparse(model_uri) model_name = parsed_uri.netloc + parsed_uri.path - transformer_type_class = getattr(transformers, transformer_type) - model = transformer_type_class.from_pretrained( + model = transformer_type.from_pretrained( pretrained_model_name_or_path=model_name, cache_dir=model_dir, local_files_only=True, - device_map="auto", trust_remote_code=True, ) - tokenizer = transformers.AutoTokenizer.from_pretrained( + tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path=model_name, cache_dir=model_dir, local_files_only=True, - device_map="auto", ) - tokenizer.pad_token = tokenizer.eos_token - tokenizer.add_pad_token = True - # Freeze model parameters for param in model.parameters(): param.requires_grad = False @@ -47,24 +54,55 @@ def setup_model_and_tokenizer(model_uri, transformer_type, model_dir): return model, tokenizer -def load_and_preprocess_data(dataset_name, dataset_dir, transformer_type, tokenizer): +def load_and_preprocess_data(dataset_dir, transformer_type, tokenizer): # Load and preprocess the dataset - print("loading dataset") - transformer_type_class = getattr(transformers, transformer_type) - if transformer_type_class != transformers.AutoModelForImageClassification: - dataset = load_dataset(dataset_name, cache_dir=dataset_dir).map( - lambda x: tokenizer(x["text"]), batched=True + logger.info("Load and preprocess dataset") + + if transformer_type != AutoModelForImageClassification: + dataset = load_from_disk(dataset_dir) + + logger.info(f"Dataset specification: {dataset}") + logger.info("-" * 40) + + logger.info("Tokenize dataset") + # TODO (andreyvelich): Discuss how user should set the tokenizer function. + dataset = dataset.map( + lambda x: tokenizer(x["text"], padding="max_length", truncation=True), + batched=True, ) else: - dataset = load_dataset(dataset_name, cache_dir=dataset_dir) + dataset = load_from_disk(dataset_dir) - train_data = dataset["train"] + # Check if dataset contains `train` key. Otherwise, load full dataset to train_data. + if "train" in dataset: + train_data = dataset["train"] + else: + train_data = dataset try: eval_data = dataset["eval"] - except Exception as err: + except Exception: eval_data = None - print("Evaluation dataset is not found") + logger.info("Evaluation dataset is not found") + + # Distribute dataset across PyTorchJob workers. + RANK = int(os.environ["RANK"]) + WORLD_SIZE = int(os.environ["WORLD_SIZE"]) + logger.info( + f"Distributed dataset across PyTorchJob workers. WORLD_SIZE: {WORLD_SIZE}, RANK: {RANK}" + ) + if isinstance(train_data, Dataset): + train_data = split_dataset_by_node( + train_data, + rank=RANK, + world_size=WORLD_SIZE, + ) + if isinstance(eval_data, Dataset): + eval_data = split_dataset_by_node( + eval_data, + rank=RANK, + world_size=WORLD_SIZE, + ) return train_data, eval_data @@ -77,20 +115,27 @@ def setup_peft_model(model, lora_config): return model -def train_model(model, train_data, eval_data, tokenizer, train_args): - # Train the model +def train_model(model, transformer_type, train_data, eval_data, tokenizer, train_args): + # Setup the Trainer. trainer = Trainer( model=model, train_dataset=train_data, eval_dataset=eval_data, - tokenizer=tokenizer, args=train_args, - data_collator=DataCollatorForLanguageModeling( - tokenizer, pad_to_multiple_of=8, mlm=False - ), ) + + # TODO (andreyvelich): Currently, data collator is supported only for casual LM Transformer. + if transformer_type == AutoModelForCausalLM: + logger.info("Add data collector for language modeling") + logger.info("-" * 40) + trainer.data_collator = DataCollatorForLanguageModeling( + tokenizer, + pad_to_multiple_of=8, + mlm=False, + ) + + # Train the model. trainer.train() - print("training done") def parse_arguments(): @@ -101,8 +146,7 @@ def parse_arguments(): parser.add_argument("--model_uri", help="model uri") parser.add_argument("--transformer_type", help="model transformer type") parser.add_argument("--model_dir", help="directory containing model") - parser.add_argument("--dataset_dir", help="directory contaning dataset") - parser.add_argument("--dataset_name", help="dataset name") + parser.add_argument("--dataset_dir", help="directory containing dataset") parser.add_argument("--lora_config", help="lora_config") parser.add_argument( "--training_parameters", help="hugging face training parameters" @@ -112,13 +156,25 @@ def parse_arguments(): if __name__ == "__main__": + logger.info("Starting HuggingFace LLM Trainer") args = parse_arguments() train_args = TrainingArguments(**json.loads(args.training_parameters)) + transformer_type = getattr(transformers, args.transformer_type) + + logger.info("Setup model and tokenizer") model, tokenizer = setup_model_and_tokenizer( - args.model_uri, args.transformer_type, args.model_dir + args.model_uri, transformer_type, args.model_dir ) + + logger.info("Preprocess dataset") train_data, eval_data = load_and_preprocess_data( - args.dataset_name, args.dataset_dir, args.transformer_type, tokenizer + args.dataset_dir, transformer_type, tokenizer ) + + logger.info("Setup LoRA config for model") model = setup_peft_model(model, args.lora_config) - train_model(model, train_data, eval_data, tokenizer, train_args) + + logger.info("Start model training") + train_model(model, transformer_type, train_data, eval_data, tokenizer, train_args) + + logger.info("Training is complete") diff --git a/sdk/python/kubeflow/trainer/requirements.txt b/sdk/python/kubeflow/trainer/requirements.txt index 17a594c75d..57d11e30b7 100644 --- a/sdk/python/kubeflow/trainer/requirements.txt +++ b/sdk/python/kubeflow/trainer/requirements.txt @@ -1,5 +1,3 @@ peft==0.3.0 datasets==2.15.0 -transformers>=4.20.0 -bitsandbytes>=0.42.0 -einops>=0.6.1 +transformers==4.37.2 diff --git a/sdk/python/kubeflow/training/api/training_client.py b/sdk/python/kubeflow/training/api/training_client.py index 573dd2d162..0541f9fa4a 100644 --- a/sdk/python/kubeflow/training/api/training_client.py +++ b/sdk/python/kubeflow/training/api/training_client.py @@ -99,9 +99,10 @@ def train( namespace: Optional[str] = None, num_workers: int = 1, num_procs_per_worker: int = 1, - storage_config: Dict[str, Optional[str]] = { - "size": "10Gi", + storage_config: Dict[str, Optional[Union[str, List[str]]]] = { + "size": constants.PVC_DEFAULT_SIZE, "storage_class": None, + "access_modes": constants.PVC_DEFAULT_ACCESS_MODES, }, model_provider_parameters=None, dataset_provider_parameters=None, @@ -125,7 +126,6 @@ def train( from kubeflow.storage_initializer.s3 import S3DatasetParams from kubeflow.storage_initializer.hugging_face import ( HuggingFaceModelParams, - HuggingFaceTrainParams, HfDatasetParams, ) @@ -161,7 +161,7 @@ def train( ) break else: - raise RuntimeError("failed to create pvc") + raise RuntimeError(f"failed to create PVC. Error: {e}") if isinstance(model_provider_parameters, HuggingFaceModelParams): mp = "hf" @@ -211,8 +211,6 @@ def train( VOLUME_PATH_MODEL, "--dataset_dir", VOLUME_PATH_DATASET, - "--dataset_name", - dataset_name, "--lora_config", json.dumps(train_parameters.lora_config.__dict__, cls=utils.SetEncoder), "--training_parameters", @@ -225,7 +223,6 @@ def train( # create worker pod spec worker_pod_template_spec = utils.get_pod_template_spec( containers=[container_spec], - init_containers=[init_container_spec], volumes=[constants.STORAGE_INITIALIZER_VOLUME], ) diff --git a/sdk/python/kubeflow/training/constants/constants.py b/sdk/python/kubeflow/training/constants/constants.py index a2c59fcbc6..0513c3e31e 100644 --- a/sdk/python/kubeflow/training/constants/constants.py +++ b/sdk/python/kubeflow/training/constants/constants.py @@ -71,6 +71,13 @@ # Constants for Train API. STORAGE_INITIALIZER = "storage-initializer" +# The default value for dataset and model storage PVC. +PVC_DEFAULT_SIZE = "10Gi" +# The default value for PVC access modes. +PVC_DEFAULT_ACCESS_MODES = ["ReadWriteOnce", "ReadOnlyMany"] + + +# TODO (andreyvelich): We should add image tag for Storage Initializer and Trainer. STORAGE_INITIALIZER_IMAGE = "docker.io/kubeflow/storage-initializer" STORAGE_INITIALIZER_VOLUME_MOUNT = models.V1VolumeMount( diff --git a/sdk/python/kubeflow/training/utils/utils.py b/sdk/python/kubeflow/training/utils/utils.py index 5480044fa9..06f76b2164 100644 --- a/sdk/python/kubeflow/training/utils/utils.py +++ b/sdk/python/kubeflow/training/utils/utils.py @@ -284,27 +284,27 @@ def get_tfjob_template( # Add Chief, PS, and Worker replicas to the TFJob. if num_chief_replicas is not None: - tfjob.spec.tf_replica_specs[ - constants.REPLICA_TYPE_CHIEF - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=num_chief_replicas, - template=pod_template_spec, + tfjob.spec.tf_replica_specs[constants.REPLICA_TYPE_CHIEF] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=num_chief_replicas, + template=pod_template_spec, + ) ) if num_ps_replicas is not None: - tfjob.spec.tf_replica_specs[ - constants.REPLICA_TYPE_PS - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=num_ps_replicas, - template=pod_template_spec, + tfjob.spec.tf_replica_specs[constants.REPLICA_TYPE_PS] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=num_ps_replicas, + template=pod_template_spec, + ) ) if num_workers is not None: - tfjob.spec.tf_replica_specs[ - constants.REPLICA_TYPE_WORKER - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=num_workers, - template=pod_template_spec, + tfjob.spec.tf_replica_specs[constants.REPLICA_TYPE_WORKER] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=num_workers, + template=pod_template_spec, + ) ) return tfjob @@ -343,19 +343,19 @@ def get_pytorchjob_template( # Create Master replica if that is set. if master_pod_template_spec: - pytorchjob.spec.pytorch_replica_specs[ - constants.REPLICA_TYPE_MASTER - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=1, - template=master_pod_template_spec, + pytorchjob.spec.pytorch_replica_specs[constants.REPLICA_TYPE_MASTER] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=1, + template=master_pod_template_spec, + ) ) # If we don't define Master template, use the Worker template. else: - pytorchjob.spec.pytorch_replica_specs[ - constants.REPLICA_TYPE_MASTER - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=1, - template=worker_pod_template_spec, + pytorchjob.spec.pytorch_replica_specs[constants.REPLICA_TYPE_MASTER] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=1, + template=worker_pod_template_spec, + ) ) # Create Worker with num_workers - 1 replicas. @@ -364,11 +364,11 @@ def get_pytorchjob_template( # doesn't set RANK and WORLD_SIZE for PyTorchJob. # Ref issue: https://github.com/kubeflow/training-operator/issues/1991 if num_workers > 1: - pytorchjob.spec.pytorch_replica_specs[ - constants.REPLICA_TYPE_WORKER - ] = models.KubeflowOrgV1ReplicaSpec( - replicas=num_workers - 1, - template=worker_pod_template_spec, + pytorchjob.spec.pytorch_replica_specs[constants.REPLICA_TYPE_WORKER] = ( + models.KubeflowOrgV1ReplicaSpec( + replicas=num_workers - 1, + template=worker_pod_template_spec, + ) ) return pytorchjob @@ -377,17 +377,23 @@ def get_pytorchjob_template( def get_pvc_spec( pvc_name: str, namespace: str, - storage_config: Dict[str, Optional[str]], + storage_config: Dict[str, Optional[Union[str, List[str]]]], ): - if pvc_name is None or namespace is None or "size" not in storage_config: - raise ValueError("One of the arguments is None") + if pvc_name is None or namespace is None: + raise ValueError("One of the required storage config argument is None") + + if "size" not in storage_config: + storage_config["size"] = constants.PVC_DEFAULT_SIZE + + if "access_modes" not in storage_config: + storage_config["access_modes"] = constants.PVC_DEFAULT_ACCESS_MODES pvc_spec = models.V1PersistentVolumeClaim( api_version="v1", kind="PersistentVolumeClaim", metadata={"name": pvc_name, "namepsace": namespace}, spec=models.V1PersistentVolumeClaimSpec( - access_modes=["ReadWriteOnce", "ReadOnlyMany"], + access_modes=storage_config["access_modes"], resources=models.V1ResourceRequirements( requests={"storage": storage_config["size"]} ), diff --git a/sdk/python/setup.py b/sdk/python/setup.py index 2e29c22f2d..536a81483c 100644 --- a/sdk/python/setup.py +++ b/sdk/python/setup.py @@ -64,6 +64,6 @@ tests_require=TESTS_REQUIRES, extras_require={ "test": TESTS_REQUIRES, - "huggingface": ["transformers>=4.20.0", "peft==0.3.0"], + "huggingface": ["transformers==4.37.2", "peft==0.3.0"], }, )