-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathcolumn.py
160 lines (137 loc) · 5.11 KB
/
column.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from dataclasses import dataclass
import re
from typing import Dict, ClassVar, Any, Optional
from dbt.exceptions import DbtRuntimeError
@dataclass
class Column:
TYPE_LABELS: ClassVar[Dict[str, str]] = {
"STRING": "TEXT",
"TIMESTAMP": "TIMESTAMP",
"FLOAT": "FLOAT",
"INTEGER": "INT",
"BOOLEAN": "BOOLEAN",
}
column: str
dtype: str
char_size: Optional[int] = None
numeric_precision: Optional[Any] = None
numeric_scale: Optional[Any] = None
@classmethod
def translate_type(cls, dtype: str) -> str:
return cls.TYPE_LABELS.get(dtype.upper(), dtype)
@classmethod
def create(cls, name, label_or_dtype: str) -> "Column":
column_type = cls.translate_type(label_or_dtype)
return cls(name, column_type)
@property
def name(self) -> str:
return self.column
@property
def quoted(self) -> str:
return '"{}"'.format(self.column)
@property
def data_type(self) -> str:
if self.is_string():
return self.string_type(self.string_size())
elif self.is_numeric():
return self.numeric_type(self.dtype, self.numeric_precision, self.numeric_scale)
else:
return self.dtype
def is_string(self) -> bool:
return self.dtype.lower() in ["text", "character varying", "character", "varchar"]
def is_number(self):
return any([self.is_integer(), self.is_numeric(), self.is_float()])
def is_float(self):
return self.dtype.lower() in [
# floats
"real",
"float4",
"float",
"double precision",
"float8",
]
def is_integer(self) -> bool:
return self.dtype.lower() in [
# real types
"smallint",
"integer",
"bigint",
"smallserial",
"serial",
"bigserial",
# aliases
"int2",
"int4",
"int8",
"serial2",
"serial4",
"serial8",
]
def is_numeric(self) -> bool:
return self.dtype.lower() in ["numeric", "decimal"]
def string_size(self) -> int:
if not self.is_string():
raise DbtRuntimeError("Called string_size() on non-string field!")
if self.dtype == "text" or self.char_size is None:
# char_size should never be None. Handle it reasonably just in case
return 256
else:
return int(self.char_size)
def can_expand_to(self, other_column: "Column") -> bool:
"""returns True if this column can be expanded to the size of the
other column"""
if not self.is_string() or not other_column.is_string():
return False
return other_column.string_size() > self.string_size()
def literal(self, value: Any) -> str:
return "{}::{}".format(value, self.data_type)
@classmethod
def string_type(cls, size: int) -> str:
return "character varying({})".format(size)
@classmethod
def numeric_type(cls, dtype: str, precision: Any, scale: Any) -> str:
# This could be decimal(...), numeric(...), number(...)
# Just use whatever was fed in here -- don't try to get too clever
if precision is None or scale is None:
return dtype
else:
return "{}({},{})".format(dtype, precision, scale)
def __repr__(self) -> str:
return "<Column {} ({})>".format(self.name, self.data_type)
@classmethod
def from_description(cls, name: str, raw_data_type: str) -> "Column":
match = re.match(r"([^(]+)(\([^)]+\))?", raw_data_type)
if match is None:
raise DbtRuntimeError(f'Could not interpret data type "{raw_data_type}"')
data_type, size_info = match.groups()
char_size = None
numeric_precision = None
numeric_scale = None
if size_info is not None:
# strip out the parentheses
size_info = size_info[1:-1]
parts = size_info.split(",")
if len(parts) == 1:
try:
char_size = int(parts[0])
except ValueError:
raise DbtRuntimeError(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[0]}" to an integer'
)
elif len(parts) == 2:
try:
numeric_precision = int(parts[0])
except ValueError:
raise DbtRuntimeError(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[0]}" to an integer'
)
try:
numeric_scale = int(parts[1])
except ValueError:
raise DbtRuntimeError(
f'Could not interpret data_type "{raw_data_type}": '
f'could not convert "{parts[1]}" to an integer'
)
return cls(name, data_type, char_size, numeric_precision, numeric_scale)