-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdecimal_sqrt.go
142 lines (124 loc) · 3.54 KB
/
decimal_sqrt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Copyright 2020 Denis Bernard <[email protected]>. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package decimal
import (
"fmt"
"math"
)
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
var (
oneHalf = NewDecimal(5, -1)
three = NewDecimal(3, 0)
)
// Sqrt sets z to the rounded square root of x, and returns z.
//
// If z's precision is 0, it is changed to x's precision before the
// operation. Rounding is performed according to z's precision and
// rounding mode.
//
// The function panics if z < 0. The value of z is undefined in that
// case.
func (z *Decimal) Sqrt(x *Decimal) *Decimal {
if debugDecimal {
x.validate()
}
if z.prec == 0 {
z.prec = x.prec
}
if x.Sign() == -1 {
// following IEEE754-2008 (section 7.2)
panic(ErrNaN{"square root of negative operand"})
}
// handle ±0 and +∞
if x.form != finite {
z.acc = Exact
z.form = x.form
z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
return z
}
// MantExp sets the argument's precision to the receiver's, and
// when z.prec > x.prec this will lower z.prec. Restore it after
// the MantExp call.
prec := z.prec
b := x.MantExp(z)
z.prec = prec
// Compute √(z·10**b) as
// √( z)·10**(½b) if b is even
// √(10z)·10**(⌊½b⌋) if b > 0 is odd
// √(z/10)·10**(⌈½b⌉) if b < 0 is odd
switch b % 2 {
case 0:
// nothing to do
case 1:
z.exp++
case -1:
z.exp--
}
// 0.01 <= z < 10.0
// Unlike with big.Float, solving x² - z = 0 directly is faster only for
// very small precisions (<_DW/2).
//
// Solve 1/x² - z = 0 instead.
z.sqrtInverse(z)
// restore precision and re-attach halved exponent
return z.SetMantExp(z, b/2)
}
// Compute √x (to z.prec precision) by solving
// 1/t² - x = 0
// for t (using Newton's method), and then inverting.
func (z *Decimal) sqrtInverse(x *Decimal) {
if debugDecimal {
if oneHalf.acc != Exact {
panic(fmt.Sprintf("oneHalf is inexact (%v): %g", oneHalf.acc, oneHalf))
}
if three.acc != Exact {
panic(fmt.Sprintf("three is inexact (%v): %g", three.acc, three))
}
}
// Compute √x (to z.prec precision) by solving
// 1/t² - x = 0
// for t (using Newton's method), and then inverting.
// Compute initial guess for 1/√x
// xf needs only be "close enough", use a fast Decimal->Float64 conversion
xf := float64(x.mant[len(x.mant)-1]/10) / float64(pow10(uint(_DW-1-x.exp)))
t := newDecimal(z.prec).SetFloat64(1 / math.Sqrt(xf))
// t.prec = min(_DW, 17)
if _W == 32 {
t.prec = _DW
}
// t = initial guess for 1/√x
// let
// f(t) = 1/t² - x
// then
// g(t) = f(t)/f'(t) = -½t(1 - xt²)
// and the next guess is given by
// t2 = t - g(t) = ½t(3 - xt²)
u := newDecimal(z.prec)
v := newDecimal(z.prec)
for prec := z.prec + 2; t.prec < prec; {
// be more conservative than big.Float in precision increase
// |√z - t| < 10**(-2*t.prec + 2) <= 10**-prec
t.prec = t.prec*2 - 2
u.prec = t.prec
v.prec = t.prec
u.Mul(t, t) // u = t²
u.Mul(x, u) // = x.t²
v.Sub(three, u) // v = 3 - x.t²
u.Mul(t, v) // u = t(3 - x.t²)
t.Mul(u, oneHalf) // t = ½t(3 - x.t²)
}
// t = 1/√x
// x/√x = √x
z.Mul(z, t)
}
// newDecimal returns a new *Decimal with space for twice the given
// precision.
func newDecimal(prec2 uint32) *Decimal {
z := new(Decimal)
// dec.make ensures the slice length is > 0
z.mant = z.mant.make(int(prec2/_DW) * 2)
return z
}