-
Notifications
You must be signed in to change notification settings - Fork 12
/
mlib.lua
1427 lines (1218 loc) · 45.8 KB
/
mlib.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
--[[ License
A math library made in Lua
Copyright (c) 2015 Davis Claiborne
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
]]
-- Local Utility Functions ---------------------- {{{
local unpack = table.unpack or unpack
-- Used to handle variable-argument functions and whether they are passed as func{ table } or func( unpack( table ) )
local function checkInput( ... )
local input = {}
if type( ... ) ~= 'table' then input = { ... } else input = ... end
return input
end
-- Deals with floats / verify false false values. This can happen because of significant figures.
local function checkFuzzy( number1, number2 )
return ( number1 - .00001 <= number2 ) and ( number2 <= number1 + .00001 )
end
-- Remove multiple occurrences from a table.
local function removeDuplicatePairs( tab )
for index1 = #tab, 1, -1 do
local first = tab[index1]
for index2 = #tab, 1, -1 do
local second = tab[index2]
if index1 ~= index2 then
if type( first[1] ) == 'number' and type( second[1] ) == 'number' and type( first[2] ) == 'number' and type( second[2] ) == 'number' then
if checkFuzzy( first[1], second[1] ) and checkFuzzy( first[2], second[2] ) then
table.remove( tab, index1 )
end
elseif first[1] == second[1] and first[2] == second[2] then
table.remove( tab, index1 )
end
end
end
end
return tab
end
local function removeDuplicates4Points( tab )
for index1 = #tab, 1, -1 do
local first = tab[index1]
for index2 = #tab, 1, -1 do
local second = tab[index2]
if index1 ~= index2 then
if first[1] ~= second[1] then return tab end
if type( first[2] ) == 'number' and type( second[2] ) == 'number' and type( first[3] ) == 'number' and type( second[3] ) == 'number' then
if checkFuzzy( first[2], second[2] ) and checkFuzzy( first[3], second[3] ) then
table.remove( tab, index1 )
end
elseif type( first[2] ) == 'number' and type( second[2] ) == 'number' and type( first[3] ) == 'number' and type( second[3] ) == 'number' and type( second[4] ) == 'number' and type( second[5] ) == 'number' then
if checkFuzzy( first[2], second[2] ) and checkFuzzy( first[3], second[3] ) and checkFuzzy( first[4], second[4] ) and checkFuzzy( first[5], second[5] ) then
table.remove( tab, index1 )
end
end
end
end
end
return tab
end
-- Add points to the table.
local function addPoints( tab, x, y )
tab[#tab + 1] = x
tab[#tab + 1] = y
end
-- Like removeDuplicatePairs but specifically for numbers in a flat table
local function removeDuplicatePointsFlat( tab )
for i = #tab - 3, 1, -2 do
for ii = #tab - 1, 1, -2 do
if i ~= ii then
local x1, y1 = tab[i], tab[i + 1]
local x2, y2 = tab[ii], tab[ii + 1]
if checkFuzzy( x1, x2 ) and checkFuzzy( y1, y2 ) then
table.remove( tab, ii + 1 )
table.remove( tab, ii )
end
end
end
end
return tab
end
-- Check if input is actually a number
local function validateNumber( n )
if type( n ) ~= 'number' then return false
elseif n ~= n then return false -- nan
elseif math.abs( n ) == math.huge then return false
else return true end
end
local function cycle( tab, index ) return tab[( index - 1 ) % #tab + 1] end
local function getGreatestPoint( points, offset )
offset = offset or 1
local start = 2 - offset
local greatest = points[start]
local least = points[start]
for i = 2, #points / 2 do
i = i * 2 - offset
if points[i] > greatest then
greatest = points[i]
end
if points[i] < least then
least = points[i]
end
end
return greatest, least
end
local function isWithinBounds( min, num, max )
return num >= min and num <= max
end
local function distance2( x1, y1, x2, y2 ) -- Faster since it does not use math.sqrt
local dx, dy = x1 - x2, y1 - y2
return dx * dx + dy * dy
end -- }}}
-- Points -------------------------------------- {{{
local function rotatePoint( x, y, rotation, ox, oy )
ox, oy = ox or 0, oy or 0
return ( x - ox ) * math.cos( rotation ) + ox - ( y - oy ) * math.sin( rotation ), ( x - ox ) * math.sin( rotation ) + ( y - oy ) * math.cos( rotation ) + oy
end
local function scalePoint( x, y, scale, ox, oy )
ox, oy = ox or 0, oy or 0
return ( x - ox ) * scale + ox, ( y - oy ) * scale + oy
end
local function polarToCartesian( radius, theta, offsetRadius, offsetTheta )
local ox, oy = 0, 0
if offsetRadius and offsetTheta then
ox, oy = polarToCartesian( offsetRadius, offsetTheta )
end
local x = radius * math.cos( theta )
local y = radius * math.sin( theta )
return x + ox, y + oy
end
local function cartesianToPolar( x, y, ox, oy )
x, y = x - ( ox or 0 ), y - ( oy or 0 )
local theta = math.atan2( y, x )
-- Convert to absolute angle
theta = theta > 0 and theta or theta + 2 * math.pi
local radius = math.sqrt( x ^ 2 + y ^ 2 )
return radius, theta
end
-- }}}
-- Lines --------------------------------------- {{{
-- Returns the length of a line.
local function getLength( x1, y1, x2, y2 )
local dx, dy = x1 - x2, y1 - y2
return math.sqrt( dx * dx + dy * dy )
end
-- Gives the midpoint of a line.
local function getMidpoint( x1, y1, x2, y2 )
return ( x1 + x2 ) / 2, ( y1 + y2 ) / 2
end
-- Gives the slope of a line.
local function getSlope( x1, y1, x2, y2 )
if checkFuzzy( x1, x2 ) then return false end -- Technically it's undefined, but this is easier to program.
return ( y1 - y2 ) / ( x1 - x2 )
end
-- Gives the perpendicular slope of a line.
-- x1, y1, x2, y2
-- slope
local function getPerpendicularSlope( ... )
local input = checkInput( ... )
local slope
if #input ~= 1 then
slope = getSlope( unpack( input ) )
else
slope = unpack( input )
end
if not slope then return 0 -- Vertical lines become horizontal.
elseif checkFuzzy( slope, 0 ) then return false -- Horizontal lines become vertical.
else return -1 / slope end
end
-- Gives the y-intercept of a line.
-- x1, y1, x2, y2
-- x1, y1, slope
local function getYIntercept( x, y, ... )
local input = checkInput( ... )
local slope
if #input == 1 then
slope = input[1]
else
slope = getSlope( x, y, unpack( input ) )
end
if not slope then return x, true end -- This way we have some information on the line.
return y - slope * x, false
end
-- Gives the intersection of two lines.
-- slope1, slope2, x1, y1, x2, y2
-- slope1, intercept1, slope2, intercept2
-- x1, y1, x2, y2, x3, y3, x4, y4
local function getLineLineIntersection( ... )
local input = checkInput( ... )
local x1, y1, x2, y2, x3, y3, x4, y4
local slope1, intercept1
local slope2, intercept2
local x, y
if #input == 4 then -- Given slope1, intercept1, slope2, intercept2.
slope1, intercept1, slope2, intercept2 = unpack( input )
-- Since these are lines, not segments, we can use arbitrary points, such as ( 1, y ), ( 2, y )
y1 = slope1 and slope1 * 1 + intercept1 or 1
y2 = slope1 and slope1 * 2 + intercept1 or 2
y3 = slope2 and slope2 * 1 + intercept2 or 1
y4 = slope2 and slope2 * 2 + intercept2 or 2
x1 = slope1 and ( y1 - intercept1 ) / slope1 or intercept1
x2 = slope1 and ( y2 - intercept1 ) / slope1 or intercept1
x3 = slope2 and ( y3 - intercept2 ) / slope2 or intercept2
x4 = slope2 and ( y4 - intercept2 ) / slope2 or intercept2
elseif #input == 6 then -- Given slope1, intercept1, and 2 points on the other line.
slope1, intercept1 = input[1], input[2]
slope2 = getSlope( input[3], input[4], input[5], input[6] )
intercept2 = getYIntercept( input[3], input[4], input[5], input[6] )
y1 = slope1 and slope1 * 1 + intercept1 or 1
y2 = slope1 and slope1 * 2 + intercept1 or 2
y3 = input[4]
y4 = input[6]
x1 = slope1 and ( y1 - intercept1 ) / slope1 or intercept1
x2 = slope1 and ( y2 - intercept1 ) / slope1 or intercept1
x3 = input[3]
x4 = input[5]
elseif #input == 8 then -- Given 2 points on line 1 and 2 points on line 2.
slope1 = getSlope( input[1], input[2], input[3], input[4] )
intercept1 = getYIntercept( input[1], input[2], input[3], input[4] )
slope2 = getSlope( input[5], input[6], input[7], input[8] )
intercept2 = getYIntercept( input[5], input[6], input[7], input[8] )
x1, y1, x2, y2, x3, y3, x4, y4 = unpack( input )
end
if not slope1 and not slope2 then -- Both are vertical lines
if x1 == x3 then -- Have to have the same x positions to intersect
return true
else
return false
end
elseif not slope1 then -- First is vertical
x = x1 -- They have to meet at this x, since it is this line's only x
y = slope2 and slope2 * x + intercept2 or 1
elseif not slope2 then -- Second is vertical
x = x3 -- Vice-Versa
y = slope1 * x + intercept1
elseif checkFuzzy( slope1, slope2 ) then -- Parallel (not vertical)
if checkFuzzy( intercept1, intercept2 ) then -- Same intercept
return true
else
return false
end
else -- Regular lines
x = ( -intercept1 + intercept2 ) / ( slope1 - slope2 )
y = slope1 * x + intercept1
end
return x, y
end
-- Gives the closest point on a line to a point.
-- perpendicularX, perpendicularY, x1, y1, x2, y2
-- perpendicularX, perpendicularY, slope, intercept
local function getClosestPoint( perpendicularX, perpendicularY, ... )
local input = checkInput( ... )
local x, y, x1, y1, x2, y2, slope, intercept
if #input == 4 then -- Given perpendicularX, perpendicularY, x1, y1, x2, y2
x1, y1, x2, y2 = unpack( input )
slope = getSlope( x1, y1, x2, y2 )
intercept = getYIntercept( x1, y1, x2, y2 )
elseif #input == 2 then -- Given perpendicularX, perpendicularY, slope, intercept
slope, intercept = unpack( input )
x1, y1 = 1, slope and slope * 1 + intercept or 1 -- Need x1 and y1 in case of vertical/horizontal lines.
end
if not slope then -- Vertical line
x, y = x1, perpendicularY -- Closest point is always perpendicular.
elseif checkFuzzy( slope, 0 ) then -- Horizontal line
x, y = perpendicularX, y1
else
local perpendicularSlope = getPerpendicularSlope( slope )
local perpendicularIntercept = getYIntercept( perpendicularX, perpendicularY, perpendicularSlope )
x, y = getLineLineIntersection( slope, intercept, perpendicularSlope, perpendicularIntercept )
end
return x, y
end
-- Gives the intersection of a line and a line segment.
-- x1, y1, x2, y2, x3, y3, x4, y4
-- x1, y1, x2, y2, slope, intercept
local function getLineSegmentIntersection( x1, y1, x2, y2, ... )
local input = checkInput( ... )
local slope1, intercept1, x, y, lineX1, lineY1, lineX2, lineY2
local slope2, intercept2 = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
if #input == 2 then -- Given slope, intercept
slope1, intercept1 = input[1], input[2]
lineX1, lineY1 = 1, slope1 and slope1 + intercept1
lineX2, lineY2 = 2, slope1 and slope1 * 2 + intercept1
else -- Given x3, y3, x4, y4
lineX1, lineY1, lineX2, lineY2 = unpack( input )
slope1 = getSlope( unpack( input ) )
intercept1 = getYIntercept( unpack( input ) )
end
if not slope1 and not slope2 then -- Vertical lines
if checkFuzzy( x1, lineX1 ) then
return x1, y1, x2, y2
else
return false
end
elseif not slope1 then -- slope1 is vertical
x, y = input[1], slope2 * input[1] + intercept2
elseif not slope2 then -- slope2 is vertical
x, y = x1, slope1 * x1 + intercept1
else
x, y = getLineLineIntersection( slope1, intercept1, slope2, intercept2 )
end
local length1, length2, distance
if x == true then -- Lines are collinear.
return x1, y1, x2, y2
elseif x then -- There is an intersection
length1, length2 = getLength( x1, y1, x, y ), getLength( x2, y2, x, y )
distance = getLength( x1, y1, x2, y2 )
else -- Lines are parallel but not collinear.
if checkFuzzy( intercept1, intercept2 ) then
return x1, y1, x2, y2
else
return false
end
end
if length1 <= distance and length2 <= distance then return x, y else return false end
end
-- Checks if a point is on a line.
-- Does not support the format using slope because vertical lines would be impossible to check.
local function checkLinePoint( x, y, x1, y1, x2, y2 )
local m = getSlope( x1, y1, x2, y2 )
local b = getYIntercept( x1, y1, m )
if not m then -- Vertical
return checkFuzzy( x, x1 )
end
return checkFuzzy( y, m * x + b )
end -- }}}
-- Segment -------------------------------------- {{{
-- Gives the perpendicular bisector of a line.
local function getPerpendicularBisector( x1, y1, x2, y2 )
local slope = getSlope( x1, y1, x2, y2 )
local midpointX, midpointY = getMidpoint( x1, y1, x2, y2 )
return midpointX, midpointY, getPerpendicularSlope( slope )
end
-- Gives whether or not a point lies on a line segment.
local function checkSegmentPoint( px, py, x1, y1, x2, y2 )
-- Explanation around 5:20: https://www.youtube.com/watch?v=A86COO8KC58
local x = checkLinePoint( px, py, x1, y1, x2, y2 )
if not x then return false end
local lengthX = x2 - x1
local lengthY = y2 - y1
if checkFuzzy( lengthX, 0 ) then -- Vertical line
if checkFuzzy( px, x1 ) then
local low, high
if y1 > y2 then low = y2; high = y1
else low = y1; high = y2 end
if py >= low and py <= high then return true
else return false end
else
return false
end
elseif checkFuzzy( lengthY, 0 ) then -- Horizontal line
if checkFuzzy( py, y1 ) then
local low, high
if x1 > x2 then low = x2; high = x1
else low = x1; high = x2 end
if px >= low and px <= high then return true
else return false end
else
return false
end
end
local distanceToPointX = ( px - x1 )
local distanceToPointY = ( py - y1 )
local scaleX = distanceToPointX / lengthX
local scaleY = distanceToPointY / lengthY
if ( scaleX >= 0 and scaleX <= 1 ) and ( scaleY >= 0 and scaleY <= 1 ) then -- Intersection
return true
end
return false
end
-- Gives the point of intersection between two line segments.
local function getSegmentSegmentIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )
local slope1, intercept1 = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
local slope2, intercept2 = getSlope( x3, y3, x4, y4 ), getYIntercept( x3, y3, x4, y4 )
if ( ( slope1 and slope2 ) and checkFuzzy( slope1, slope2 ) ) or ( not slope1 and not slope2 ) then -- Parallel lines
if checkFuzzy( intercept1, intercept2 ) then -- The same lines, possibly in different points.
local points = {}
if checkSegmentPoint( x1, y1, x3, y3, x4, y4 ) then addPoints( points, x1, y1 ) end
if checkSegmentPoint( x2, y2, x3, y3, x4, y4 ) then addPoints( points, x2, y2 ) end
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then addPoints( points, x3, y3 ) end
if checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then addPoints( points, x4, y4 ) end
points = removeDuplicatePointsFlat( points )
if #points == 0 then return false end
return unpack( points )
else
return false
end
end
local x, y = getLineLineIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )
if x and checkSegmentPoint( x, y, x1, y1, x2, y2 ) and checkSegmentPoint( x, y, x3, y3, x4, y4 ) then
return x, y
end
return false
end -- }}}
-- Math ----------------------------------------- {{{
-- Get the root of a number (i.e. the 2nd (square) root of 4 is 2)
local function getRoot( number, root )
return number ^ ( 1 / root )
end
-- Checks if a number is prime.
local function isPrime( number )
if number < 2 then return false end
for i = 2, math.sqrt( number ) do
if number % i == 0 then
return false
end
end
return true
end
-- Rounds a number to the xth decimal place (round( 3.14159265359, 4 ) --> 3.1416)
local function round( number, place )
local pow = 10 ^ ( place or 0 )
return math.floor( number * pow + .5 ) / pow
end
-- Gives the summation given a local function
local function getSummation( start, stop, func )
local returnValues = {}
local sum = 0
for i = start, stop do
local value = func( i, returnValues )
returnValues[i] = value
sum = sum + value
end
return sum
end
-- Gives the percent of change.
local function getPercentOfChange( old, new )
if old == 0 and new == 0 then
return 0
else
return ( new - old ) / math.abs( old )
end
end
-- Gives the percentage of a number.
local function getPercentage( percent, number )
return percent * number
end
-- Returns the quadratic roots of an equation.
local function getQuadraticRoots( a, b, c )
local discriminant = b ^ 2 - ( 4 * a * c )
if discriminant < 0 then return false end
discriminant = math.sqrt( discriminant )
local denominator = ( 2 * a )
return ( -b - discriminant ) / denominator, ( -b + discriminant ) / denominator
end
-- Gives the angle between three points.
local function getAngle( x1, y1, x2, y2, x3, y3 )
local a = getLength( x3, y3, x2, y2 )
local b = getLength( x1, y1, x2, y2 )
local c = getLength( x1, y1, x3, y3 )
return math.acos( ( a * a + b * b - c * c ) / ( 2 * a * b ) )
end -- }}}
-- Circle --------------------------------------- {{{
-- Gives the area of the circle.
local function getCircleArea( radius )
return math.pi * ( radius * radius )
end
-- Checks if a point is within the radius of a circle.
local function checkCirclePoint( x, y, circleX, circleY, radius )
return getLength( circleX, circleY, x, y ) <= radius
end
-- Checks if a point is on a circle.
local function isPointOnCircle( x, y, circleX, circleY, radius )
return checkFuzzy( getLength( circleX, circleY, x, y ), radius )
end
-- Gives the circumference of a circle.
local function getCircumference( radius )
return 2 * math.pi * radius
end
-- Gives the intersection of a line and a circle.
local function getCircleLineIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
local slope = getSlope( x1, y1, x2, y2 )
local intercept = getYIntercept( x1, y1, slope )
if slope then
local a = ( 1 + slope ^ 2 )
local b = ( -2 * ( circleX ) + ( 2 * slope * intercept ) - ( 2 * circleY * slope ) )
local c = ( circleX ^ 2 + intercept ^ 2 - 2 * ( circleY ) * ( intercept ) + circleY ^ 2 - radius ^ 2 )
x1, x2 = getQuadraticRoots( a, b, c )
if not x1 then return false end
y1 = slope * x1 + intercept
y2 = slope * x2 + intercept
if checkFuzzy( x1, x2 ) and checkFuzzy( y1, y2 ) then
return 'tangent', x1, y1
else
return 'secant', x1, y1, x2, y2
end
else -- Vertical Lines
local lengthToPoint1 = circleX - x1
local remainingDistance = lengthToPoint1 - radius
local intercept = math.sqrt( -( lengthToPoint1 ^ 2 - radius ^ 2 ) )
if -( lengthToPoint1 ^ 2 - radius ^ 2 ) < 0 then return false end
local bottomX, bottomY = x1, circleY - intercept
local topX, topY = x1, circleY + intercept
if topY ~= bottomY then
return 'secant', topX, topY, bottomX, bottomY
else
return 'tangent', topX, topY
end
end
end
-- Gives the type of intersection of a line segment.
local function getCircleSegmentIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
local Type, x3, y3, x4, y4 = getCircleLineIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
if not Type then return false end
local slope, intercept = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
if isPointOnCircle( x1, y1, circleX, circleY, radius ) and isPointOnCircle( x2, y2, circleX, circleY, radius ) then -- Both points are on line-segment.
return 'chord', x1, y1, x2, y2
end
if slope then
if checkCirclePoint( x1, y1, circleX, circleY, radius ) and checkCirclePoint( x2, y2, circleX, circleY, radius ) then -- Line-segment is fully in circle.
return 'enclosed', x1, y1, x2, y2
elseif x3 and x4 then
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) and not checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then -- Only the first of the points is on the line-segment.
return 'tangent', x3, y3
elseif checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) and not checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then -- Only the second of the points is on the line-segment.
return 'tangent', x4, y4
else -- Neither of the points are on the circle (means that the segment is not on the circle, but "encasing" the circle)
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) and checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then
return 'secant', x3, y3, x4, y4
else
return false
end
end
elseif not x4 then -- Is a tangent.
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then
return 'tangent', x3, y3
else -- Neither of the points are on the line-segment (means that the segment is not on the circle or "encasing" the circle).
local length = getLength( x1, y1, x2, y2 )
local distance1 = getLength( x1, y1, x3, y3 )
local distance2 = getLength( x2, y2, x3, y3 )
if length > distance1 or length > distance2 then
return false
elseif length < distance1 and length < distance2 then
return false
else
return 'tangent', x3, y3
end
end
end
else
local lengthToPoint1 = circleX - x1
local remainingDistance = lengthToPoint1 - radius
local intercept = math.sqrt( -( lengthToPoint1 ^ 2 - radius ^ 2 ) )
if -( lengthToPoint1 ^ 2 - radius ^ 2 ) < 0 then return false end
local topX, topY = x1, circleY - intercept
local bottomX, bottomY = x1, circleY + intercept
local length = getLength( x1, y1, x2, y2 )
local distance1 = getLength( x1, y1, topX, topY )
local distance2 = getLength( x2, y2, topX, topY )
if bottomY ~= topY then -- Not a tangent
if checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) and checkSegmentPoint( bottomX, bottomY, x1, y1, x2, y2 ) then
return 'chord', topX, topY, bottomX, bottomY
elseif checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) then
return 'tangent', topX, topY
elseif checkSegmentPoint( bottomX, bottomY, x1, y1, x2, y2 ) then
return 'tangent', bottomX, bottomY
else
return false
end
else -- Tangent
if checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) then
return 'tangent', topX, topY
else
return false
end
end
end
end
-- Checks if one circle intersects another circle.
local function getCircleCircleIntersection( circle1x, circle1y, radius1, circle2x, circle2y, radius2 )
local length = getLength( circle1x, circle1y, circle2x, circle2y )
if length > radius1 + radius2 then return false end -- If the distance is greater than the two radii, they can't intersect.
if checkFuzzy( length, 0 ) and checkFuzzy( radius1, radius2 ) then return 'equal' end
if checkFuzzy( circle1x, circle2x ) and checkFuzzy( circle1y, circle2y ) then return 'collinear' end
local a = ( radius1 * radius1 - radius2 * radius2 + length * length ) / ( 2 * length )
local h = math.sqrt( radius1 * radius1 - a * a )
local p2x = circle1x + a * ( circle2x - circle1x ) / length
local p2y = circle1y + a * ( circle2y - circle1y ) / length
local p3x = p2x + h * ( circle2y - circle1y ) / length
local p3y = p2y - h * ( circle2x - circle1x ) / length
local p4x = p2x - h * ( circle2y - circle1y ) / length
local p4y = p2y + h * ( circle2x - circle1x ) / length
if not validateNumber( p3x ) or not validateNumber( p3y ) or not validateNumber( p4x ) or not validateNumber( p4y ) then
return 'inside'
end
if checkFuzzy( length, radius1 + radius2 ) or checkFuzzy( length, math.abs( radius1 - radius2 ) ) then return 'tangent', p3x, p3y end
return 'intersection', p3x, p3y, p4x, p4y
end
-- Checks if circle1 is entirely inside of circle2.
local function isCircleCompletelyInsideCircle( circle1x, circle1y, circle1radius, circle2x, circle2y, circle2radius )
if not checkCirclePoint( circle1x, circle1y, circle2x, circle2y, circle2radius ) then return false end
local Type = getCircleCircleIntersection( circle2x, circle2y, circle2radius, circle1x, circle1y, circle1radius )
if ( Type ~= 'tangent' and Type ~= 'collinear' and Type ~= 'inside' ) then return false end
return true
end
-- Checks if a line-segment is entirely within a circle.
local function isSegmentCompletelyInsideCircle( circleX, circleY, circleRadius, x1, y1, x2, y2 )
local Type = getCircleSegmentIntersection( circleX, circleY, circleRadius, x1, y1, x2, y2 )
return Type == 'enclosed'
end -- }}}
-- Polygon -------------------------------------- {{{
-- Gives the signed area.
-- If the points are clockwise the number is negative, otherwise, it's positive.
local function getSignedPolygonArea( ... )
local points = checkInput( ... )
-- Shoelace formula (https://en.wikipedia.org/wiki/Shoelace_formula).
points[#points + 1] = points[1]
points[#points + 1] = points[2]
return ( .5 * getSummation( 1, #points / 2,
function( index )
index = index * 2 - 1 -- Convert it to work properly.
return ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) )
end
) )
end
-- Simply returns the area of the polygon.
local function getPolygonArea( ... )
return math.abs( getSignedPolygonArea( ... ) )
end
-- Gives the height of a triangle, given the base.
-- base, x1, y1, x2, y2, x3, y3, x4, y4
-- base, area
local function getTriangleHeight( base, ... )
local input = checkInput( ... )
local area
if #input == 1 then area = input[1] -- Given area.
else area = getPolygonArea( input ) end -- Given coordinates.
return ( 2 * area ) / base, area
end
-- Gives the centroid of the polygon.
local function getCentroid( ... )
local points = checkInput( ... )
points[#points + 1] = points[1]
points[#points + 1] = points[2]
local area = getSignedPolygonArea( points ) -- Needs to be signed here in case points are counter-clockwise.
-- This formula: https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
local centroidX = ( 1 / ( 6 * area ) ) * ( getSummation( 1, #points / 2,
function( index )
index = index * 2 - 1 -- Convert it to work properly.
return ( ( points[index] + cycle( points, index + 2 ) ) * ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) ) )
end
) )
local centroidY = ( 1 / ( 6 * area ) ) * ( getSummation( 1, #points / 2,
function( index )
index = index * 2 - 1 -- Convert it to work properly.
return ( ( points[index + 1] + cycle( points, index + 3 ) ) * ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) ) )
end
) )
return centroidX, centroidY
end
-- Returns whether or not a line intersects a polygon.
-- x1, y1, x2, y2, polygonPoints
local function getPolygonLineIntersection( x1, y1, x2, y2, ... )
local input = checkInput( ... )
local choices = {}
local slope = getSlope( x1, y1, x2, y2 )
local intercept = getYIntercept( x1, y1, slope )
local x3, y3, x4, y4
if slope then
x3, x4 = 1, 2
y3, y4 = slope * x3 + intercept, slope * x4 + intercept
else
x3, x4 = x1, x1
y3, y4 = y1, y2
end
for i = 1, #input, 2 do
local x1, y1, x2, y2 = getLineSegmentIntersection( input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ), x3, y3, x4, y4 )
if x1 and not x2 then choices[#choices + 1] = { x1, y1 }
elseif x1 and x2 then choices[#choices + 1] = { x1, y1, x2, y2 } end
-- No need to check 2-point sets since they only intersect each poly line once.
end
local final = removeDuplicatePairs( choices )
return #final > 0 and final or false
end
-- Returns if the line segment intersects the polygon.
-- x1, y1, x2, y2, polygonPoints
local function getPolygonSegmentIntersection( x1, y1, x2, y2, ... )
local input = checkInput( ... )
local choices = {}
for i = 1, #input, 2 do
local x1, y1, x2, y2 = getSegmentSegmentIntersection( input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ), x1, y1, x2, y2 )
if x1 and not x2 then choices[#choices + 1] = { x1, y1 }
elseif x2 then choices[#choices + 1] = { x1, y1, x2, y2 } end
end
local final = removeDuplicatePairs( choices )
return #final > 0 and final or false
end
-- Checks if the point lies INSIDE the polygon not on the polygon.
local function checkPolygonPoint( px, py, ... )
local points = { unpack( checkInput( ... ) ) } -- Make a new table, as to not edit values of previous.
local greatest, least = getGreatestPoint( points, 0 )
if not isWithinBounds( least, py, greatest ) then return false end
greatest, least = getGreatestPoint( points )
if not isWithinBounds( least, px, greatest ) then return false end
local count = 0
for i = 1, #points, 2 do
if checkFuzzy( points[i + 1], py ) then
points[i + 1] = py + .001 -- Handles vertices that lie on the point.
-- Not exactly mathematically correct, but a lot easier.
end
if points[i + 3] and checkFuzzy( points[i + 3], py ) then
points[i + 3] = py + .001 -- Do not need to worry about alternate case, since points[2] has already been done.
end
local x1, y1 = points[i], points[i + 1]
local x2, y2 = points[i + 2] or points[1], points[i + 3] or points[2]
if getSegmentSegmentIntersection( px, py, greatest, py, x1, y1, x2, y2 ) then
count = count + 1
end
end
return count and count % 2 ~= 0
end
-- Returns if the line segment is fully or partially inside.
-- x1, y1, x2, y2, polygonPoints
local function isSegmentInsidePolygon( x1, y1, x2, y2, ... )
local input = checkInput( ... )
local choices = getPolygonSegmentIntersection( x1, y1, x2, y2, input ) -- If it's partially enclosed that's all we need.
if choices then return true end
if checkPolygonPoint( x1, y1, input ) or checkPolygonPoint( x2, y2, input ) then return true end
return false
end
-- Returns whether two polygons intersect.
local function getPolygonPolygonIntersection( polygon1, polygon2 )
local choices = {}
for index1 = 1, #polygon1, 2 do
local intersections = getPolygonSegmentIntersection( polygon1[index1], polygon1[index1 + 1], cycle( polygon1, index1 + 2 ), cycle( polygon1, index1 + 3 ), polygon2 )
if intersections then
for index2 = 1, #intersections do
choices[#choices + 1] = intersections[index2]
end
end
end
for index1 = 1, #polygon2, 2 do
local intersections = getPolygonSegmentIntersection( polygon2[index1], polygon2[index1 + 1], cycle( polygon2, index1 + 2 ), cycle( polygon2, index1 + 3 ), polygon1 )
if intersections then
for index2 = 1, #intersections do
choices[#choices + 1] = intersections[index2]
end
end
end
choices = removeDuplicatePairs( choices )
for i = #choices, 1, -1 do
if type( choices[i][1] ) == 'table' then -- Remove co-linear pairs.
table.remove( choices, i )
end
end
return #choices > 0 and choices
end
-- Returns whether the circle intersects the polygon.
-- x, y, radius, polygonPoints
local function getPolygonCircleIntersection( x, y, radius, ... )
local input = checkInput( ... )
local choices = {}
for i = 1, #input, 2 do
local Type, x1, y1, x2, y2 = getCircleSegmentIntersection( x, y, radius, input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ) )
if x2 then
choices[#choices + 1] = { Type, x1, y1, x2, y2 }
elseif x1 then choices[#choices + 1] = { Type, x1, y1 } end
end
local final = removeDuplicates4Points( choices )
return #final > 0 and final
end
-- Returns whether the circle is inside the polygon.
-- x, y, radius, polygonPoints
local function isCircleInsidePolygon( x, y, radius, ... )
local input = checkInput( ... )
return checkPolygonPoint( x, y, input )
end
-- Returns whether the polygon is inside the polygon.
local function isPolygonInsidePolygon( polygon1, polygon2 )
local bool = false
for i = 1, #polygon2, 2 do
local result = false
result = isSegmentInsidePolygon( polygon2[i], polygon2[i + 1], cycle( polygon2, i + 2 ), cycle( polygon2, i + 3 ), polygon1 )
if result then bool = true; break end
end
return bool
end
-- Checks if a segment is completely inside a polygon
local function isSegmentCompletelyInsidePolygon( x1, y1, x2, y2, ... )
local polygon = checkInput( ... )
if not checkPolygonPoint( x1, y1, polygon )
or not checkPolygonPoint( x2, y2, polygon )
or getPolygonSegmentIntersection( x1, y1, x2, y2, polygon ) then
return false
end
return true
end
-- Checks if a polygon is completely inside another polygon
local function isPolygonCompletelyInsidePolygon( polygon1, polygon2 )
for i = 1, #polygon1, 2 do
local x1, y1 = polygon1[i], polygon1[i + 1]
local x2, y2 = polygon1[i + 2] or polygon1[1], polygon1[i + 3] or polygon1[2]
if not isSegmentCompletelyInsidePolygon( x1, y1, x2, y2, polygon2 ) then
return false
end
end
return true
end
-------------- Circle w/ Polygons --------------
-- Gets if a polygon is completely within a circle
-- circleX, circleY, circleRadius, polygonPoints
local function isPolygonCompletelyInsideCircle( circleX, circleY, circleRadius, ... )
local input = checkInput( ... )
local function isDistanceLess( px, py, x, y, circleRadius ) -- Faster, does not use math.sqrt
local distanceX, distanceY = px - x, py - y
return distanceX * distanceX + distanceY * distanceY < circleRadius * circleRadius -- Faster. For comparing distances only.
end
for i = 1, #input, 2 do
if not checkCirclePoint( input[i], input[i + 1], circleX, circleY, circleRadius ) then return false end
end
return true
end
-- Checks if a circle is completely within a polygon
-- circleX, circleY, circleRadius, polygonPoints
local function isCircleCompletelyInsidePolygon( circleX, circleY, circleRadius, ... )
local input = checkInput( ... )
if not checkPolygonPoint( circleX, circleY, ... ) then return false end
local rad2 = circleRadius * circleRadius
for i = 1, #input, 2 do
local x1, y1 = input[i], input[i + 1]
local x2, y2 = input[i + 2] or input[1], input[i + 3] or input[2]
if distance2( x1, y1, circleX, circleY ) <= rad2 then return false end
if getCircleSegmentIntersection( circleX, circleY, circleRadius, x1, y1, x2, y2 ) then return false end
end
return true
end -- }}}
-- Statistics ----------------------------------- {{{
-- Gets the average of a list of points
-- points
local function getMean( ... )
local input = checkInput( ... )
local mean = getSummation( 1, #input,
function( i, t )
return input[i]
end
) / #input
return mean
end