This repository has been archived by the owner on May 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpredict_single_image.py
222 lines (154 loc) · 9.39 KB
/
predict_single_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
from utils import *
import argparse
from networks import build_net, build_UNETR
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.data import NiftiSaver, create_test_image_3d, list_data_collate, decollate_batch
from monai.transforms import (EnsureType, Compose, LoadImaged, AddChanneld, Transpose,Activations,AsDiscrete, RandGaussianSmoothd, CropForegroundd, SpatialPadd,
ScaleIntensityd, ToTensord, RandSpatialCropd, Rand3DElasticd, RandAffined, RandZoomd,
Spacingd, Orientationd, Resized, ThresholdIntensityd, RandShiftIntensityd, BorderPadd, RandGaussianNoised, RandAdjustContrastd,NormalizeIntensityd,RandFlipd)
def segment(image, label, result, weights, resolution, patch_size, network, gpu_ids):
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
if label is not None:
uniform_img_dimensions_internal(image, label, True)
files = [{"image": image, "label": label}]
else:
files = [{"image": image}]
# original size, size after crop_background, cropped roi coordinates, cropped resampled roi size
original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution = statistics_crop(image, resolution)
# -------------------------------
if label is not None:
if resolution is not None:
val_transforms = Compose([
LoadImaged(keys=['image', 'label']),
AddChanneld(keys=['image', 'label']),
# ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135), # Threshold CT
# ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
CropForegroundd(keys=['image', 'label'], source_key='image'), # crop CropForeground
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
Spacingd(keys=['image', 'label'], pixdim=resolution, mode=('bilinear', 'nearest')), # resolution
SpatialPadd(keys=['image', 'label'], spatial_size=patch_size, method= 'end'),
ToTensord(keys=['image', 'label'])])
else:
val_transforms = Compose([
LoadImaged(keys=['image', 'label']),
AddChanneld(keys=['image', 'label']),
# ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135), # Threshold CT
# ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
CropForegroundd(keys=['image', 'label'], source_key='image'), # crop CropForeground
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
SpatialPadd(keys=['image', 'label'], spatial_size=patch_size, method='end'), # pad if the image is smaller than patch
ToTensord(keys=['image', 'label'])])
else:
if resolution is not None:
val_transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
# ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135), # Threshold CT
# ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
Spacingd(keys=['image'], pixdim=resolution, mode=('bilinear')), # resolution
SpatialPadd(keys=['image'], spatial_size=patch_size, method= 'end'), # pad if the image is smaller than patch
ToTensord(keys=['image'])])
else:
val_transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
# ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135), # Threshold CT
# ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
CropForegroundd(keys=['image'], source_key='image'), # crop CropForeground
NormalizeIntensityd(keys=['image']), # intensity
ScaleIntensityd(keys=['image']),
SpatialPadd(keys=['image'], spatial_size=patch_size, method='end'), # pad if the image is smaller than patch
ToTensord(keys=['image'])])
val_ds = monai.data.Dataset(data=files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=0, collate_fn=list_data_collate, pin_memory=False)
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold_values=True)])
if gpu_ids != '-1':
# try to use all the available GPUs
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
# build the network
if network == 'nnunet':
net = build_net() # nn build_net
elif network == 'unetr':
net = build_UNETR() # UneTR
net = net.to(device)
if gpu_ids == '-1':
net.load_state_dict(new_state_dict_cpu(weights))
else:
net.load_state_dict(new_state_dict(weights))
# define sliding window size and batch size for windows inference
roi_size = patch_size
sw_batch_size = 4
net.eval()
with torch.no_grad():
if label is None:
for val_data in val_loader:
val_images = val_data["image"].to(device)
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, net)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
else:
for val_data in val_loader:
val_images, val_labels = val_data["image"].to(device), val_data["label"].to(device)
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, net)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
dice_metric(y_pred=val_outputs, y=val_labels)
metric = dice_metric.aggregate().item()
print("Evaluation Metric (Dice):", metric)
result_array = val_outputs[0].squeeze().data.cpu().numpy()
# Remove the pad if the image was smaller than the patch in some directions
result_array = result_array[0:resampled_size[0],0:resampled_size[1],0:resampled_size[2]]
# resample back to the original resolution
if resolution is not None:
result_array_np = np.transpose(result_array, (2, 1, 0))
result_array_temp = sitk.GetImageFromArray(result_array_np)
result_array_temp.SetSpacing(resolution)
# save temporary label
writer = sitk.ImageFileWriter()
writer.SetFileName('temp_seg.nii')
writer.Execute(result_array_temp)
files = [{"image": 'temp_seg.nii'}]
files_transforms = Compose([
LoadImaged(keys=['image']),
AddChanneld(keys=['image']),
Spacingd(keys=['image'], pixdim=original_resolution, mode=('nearest')),
Resized(keys=['image'], spatial_size=crop_shape, mode=('nearest')),
])
files_ds = Dataset(data=files, transform=files_transforms)
files_loader = DataLoader(files_ds, batch_size=1, num_workers=0)
for files_data in files_loader:
files_images = files_data["image"]
res = files_images.squeeze().data.numpy()
result_array = np.rint(res)
os.remove('./temp_seg.nii')
# recover the cropped background before saving the image
empty_array = np.zeros(original_shape)
empty_array[coord1[0]:coord2[0],coord1[1]:coord2[1],coord1[2]:coord2[2]] = result_array
result_seg = from_numpy_to_itk(empty_array, image)
# save label
writer = sitk.ImageFileWriter()
writer.SetFileName(result)
writer.Execute(result_seg)
print("Saved Result at:", str(result))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image", type=str, default='./Data_folder/T2/3.nii', help='source image' )
parser.add_argument("--label", type=str, default='./Data_folder/T2_labels/3.nii', help='source label, if you want to compute dice. None for new case')
parser.add_argument("--result", type=str, default='./Data_folder/test_0.nii', help='path to the .nii result to save')
parser.add_argument("--weights", type=str, default='./best_metric_model.pth', help='network weights to load')
parser.add_argument("--resolution", default=[0.7, 0.7, 3], help='Resolution used in training phase')
parser.add_argument("--patch_size", type=int, nargs=3, default=(256, 256, 16), help="Input dimension for the generator, same of training")
parser.add_argument('--network', default='unetr', help='nnunet, unetr')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
args = parser.parse_args()
segment(args.image, args.label, args.result, args.weights, args.resolution, args.patch_size, args.network, args.gpu_ids)