-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
327 lines (300 loc) · 11.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import argparse
import os
import torch
import numpy as np
import pandas as pd
from .data_provider.DS import DS
from .models.DAN_M import DAN
from .models.Inference import DAN_I
import zipfile
class Options:
def __init__(self):
self.parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
self.parser.add_argument(
"--train_seed",
type=int,
default=1010,
help="random seed for train sampling",
)
self.parser.add_argument(
"--val_seed", type=int, default=2007, help="random seed for val sampling"
)
self.parser.add_argument(
"--stream_sensor", type=str, default="SFC_S_fixed", help="stream dataset"
)
self.parser.add_argument(
"--rain_sensor", type=str, default="SFC_R_fixed", help="rain dataset"
)
self.parser.add_argument(
"--batchsize", type=int, default=48, help="batch size of train data"
)
self.parser.add_argument("--epochs", type=int, default=50, help="train epochs")
self.parser.add_argument(
"--learning_rate", type=float, default=0.001, help="learning rate"
)
self.parser.add_argument(
"--lradj", type=str, default="type4", help="learning rate adjustment policy"
)
self.parser.add_argument(
"--train_volume", type=int, default=20000, help="train set size"
)
self.parser.add_argument(
"--hidden_dim", type=int, default=512, help="hidden dim of basic layers"
)
self.parser.add_argument(
"--cnn_dim", type=int, default=256, help="hidden dim of cnn layers"
)
self.parser.add_argument(
"--layer", type=int, default=1, help="number of layers"
)
self.parser.add_argument(
"--stack_types",
type=str,
default='"encoder","decoder","residue"',
help="model stacks specified for this sensor.",
)
self.parser.add_argument(
"--input_dim", type=int, default=1, help="input dimension"
)
self.parser.add_argument(
"--output_dim", type=int, default=1, help="output dimension"
)
self.parser.add_argument(
"--input_len", type=int, default=15 * 24 * 4, help="length of input vector"
)
self.parser.add_argument(
"--output_len", type=int, default=24 * 4 * 3, help="length of output vector"
)
self.parser.add_argument(
"--oversampling", type=str, default=80, help="kruskal statistics threshold"
)
self.parser.add_argument(
"--event_focus_level",
type=int,
default=18,
help="percent sampled without satisfying the KW threshold. 100 means no Kruskal-Wallis oversampling was applied, according to parameter p=1",
)
self.parser.add_argument(
"--val_size", type=int, default=120, help="validation set size"
)
self.parser.add_argument(
"--start_point",
type=str,
default="1988-01-01 14:30:00",
help="start time of the train set",
)
self.parser.add_argument(
"--train_point",
type=str,
default="2021-08-31 23:30:00",
help="end time of the train set",
)
self.parser.add_argument(
"--test_start",
type=str,
default="2021-09-01 00:30:00",
help="start time of the test set",
)
self.parser.add_argument(
"--test_end",
type=str,
default="2022-05-31 23:30:00",
help="end time of the test set",
)
self.parser.add_argument(
"--watershed",
type=int,
default=1,
help="1 if trained with rain info, else 0",
)
self.parser.add_argument(
"--gpu_id", type=int, default=0, help="gpu ids: e.g. 0. use -1 for CPU"
)
self.parser.add_argument(
"--model", type=str, default="SFC_withRain", help="model label"
)
self.parser.add_argument(
"--mode",
type=str,
default="train",
help="set it to train or inference with an existing pt_file",
)
self.parser.add_argument(
"--pt_file",
type=str,
default="",
help="if set, the model will be loaded from this pt file, otherwise check the file according to the assigned parameters",
)
self.parser.add_argument(
"--arg_file",
type=str,
default="",
help=".txt file. If set, reset the default parameters defined in this file.",
)
self.parser.add_argument(
"--save",
type=int,
default=0,
help="1 if save the predicted file of testset, else 0",
)
self.parser.add_argument("--outf", default="./output", help="output folder")
self.opt = None
def parse(self):
self.opt = self.parser.parse_known_args()[0]
# import model parameters
if self.opt.arg_file != "":
if not os.path.exists(self.opt.arg_file):
print("File not exists: ", self.opt.arg_file)
else:
self.load_parameters(self.opt.arg_file)
torch.cuda.set_device(self.opt.gpu_id)
args = vars(self.opt)
self.opt.name = "%s" % (self.opt.model)
expr_dir = os.path.join(self.opt.outf, self.opt.name, "train")
val_dir = os.path.join(self.opt.outf, self.opt.name, "val")
test_dir = os.path.join(self.opt.outf, self.opt.name, "test")
if not os.path.isdir(expr_dir):
os.makedirs(expr_dir)
if not os.path.isdir(val_dir):
os.makedirs(val_dir)
if not os.path.isdir(test_dir):
os.makedirs(test_dir)
file_name = os.path.join(expr_dir, "opt.txt")
with open(file_name, "wt") as opt_file:
for k, v in sorted(args.items()):
if k != "arg_file":
opt_file.write("%s|%s\n" % (str(k), str(v)))
return self.opt
def get_model(self, pt):
pt_file = os.path.basename(pt)
pt_dir = os.path.dirname(pt)
self.opt = self.parser.parse_known_args()[0]
self.opt.model = str(pt_file[:-4])
c_dir = os.getcwd()
print("current dir: ", c_dir)
os.chdir(pt_dir)
with zipfile.ZipFile(pt_file, "r") as file:
file.extract("opt.txt")
self.load_parameters("opt.txt")
self.opt.mode = "inference"
os.remove("opt.txt")
# Load model
model = DAN_I(self.opt)
model.model_load(pt_file)
os.chdir(c_dir)
return model
def load_parameters(self, arg_file):
file_name = arg_file
print("Importing parameters from: ", arg_file, "............")
opt_dic = {}
with open(file_name, "r") as opt_file:
for line in opt_file:
value = line.strip().split("|")
opt_dic[value[0]] = value[1]
opt_dic["arg_file"] = ""
opt_file.close()
# print(opt_dic)
args = vars(self.opt)
for k, v in sorted(args.items()):
n = "self.opt." + str(k)
val = eval(n)
val = opt_dic[str(k)]
if n == "self.opt.stack_types":
self.opt.stack_types = str(val)
elif n == "self.opt.hidden_dim":
self.opt.hidden_dim = int(val)
elif n == "self.opt.stream_sensor":
self.opt.stream_sensor = str(val)
elif n == "self.opt.rain_sensor":
self.opt.rain_sensor = str(val)
elif n == "self.opt.cnn_dim":
self.opt.cnn_dim = int(val)
elif n == "self.opt.layer":
self.opt.layer = int(val)
elif n == "self.opt.watershed":
self.opt.watershed = int(val)
elif n == "self.opt.train_seed":
self.opt.train_seed = int(val)
elif n == "self.opt.batchsize":
self.opt.batchsize = int(val)
elif n == "self.opt.epochs":
self.opt.epochs = int(val)
elif n == "self.opt.learning_rate":
self.opt.learning_rate = float(val)
elif n == "self.opt.train_volume":
self.opt.train_volume = int(val)
elif n == "self.opt.input_len":
self.opt.input_len = int(val)
elif n == "self.opt.output_len":
self.opt.output_len = int(val)
elif n == "self.opt.oversampling":
self.opt.oversampling = int(val)
elif n == "self.opt.event_focus_level":
self.opt.event_focus_level = int(val)
elif n == "self.opt.val_size":
self.opt.val_size = int(val)
elif n == "self.opt.start_point":
self.opt.start_point = str(val)
elif n == "self.opt.train_point":
self.opt.train_point = str(val)
elif n == "self.opt.test_start":
self.opt.test_start = str(val)
elif n == "self.opt.test_end":
self.opt.test_end = str(val)
elif n == "self.opt.gpu_id":
self.opt.gpu_id = int(val)
elif n == "self.opt.model":
self.opt.model = str(val)
elif n == "self.opt.mode":
self.opt.mode = str(val)
elif n == "self.opt.pt_file":
self.opt.pt_file = str(val)
elif n == "self.opt.save":
self.opt.save = int(val)
elif n == "self.opt.out_f":
self.opt.out_f = str(val)
elif n == "self.opt.val_seed":
self.opt.val_seed = int(val)
self.opt.name = self.opt.model
if __name__ == "__main__":
opt = Options().parse()
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu_id)
# data prepare
trainX = pd.read_csv(
"./data_provider/datasets/" + opt.stream_sensor + ".csv", sep="\t"
)
trainX.columns = ["id", "datetime", "value"]
trainX.sort_values("datetime", inplace=True)
R_X = pd.read_csv("./data_provider/datasets/" + opt.rain_sensor + ".csv", sep="\t")
R_X.columns = ["id", "datetime", "value"]
R_X.sort_values("datetime", inplace=True)
ds = DS(opt, trainX, R_X)
# model training
model = DAN(opt, ds)
model.train()
# Inferencing, saving the result to Inference_dir
ds.refresh_dataset(trainX, R_X)
model.model_load()
Inference_result = model.inference()
# Computing RMSE and MAPE
metrics = model.compute_metrics(Inference_result)
print("RMSE: ", np.array(metrics[0][0]))
print("MAPE: ", np.array(metrics[1][0]))
# Save the model
expr_dir = os.path.join(opt.outf, opt.name, "train")
c_dir = os.getcwd()
os.chdir(expr_dir)
with zipfile.ZipFile(opt.name + ".zip", "a") as zipped_f:
zipped_f.write("opt.txt")
zipped_f.write("GMM.pt")
zipped_f.write("Norm.txt")
print("Model saved in: ", expr_dir + "/" + opt.name + ".zip")
os.remove("opt.txt")
os.remove("GMM.pt")
os.remove("Norm.txt")
os.chdir(c_dir)