-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMinibatcherFromFile.lua
123 lines (102 loc) · 3.84 KB
/
MinibatcherFromFile.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
require 'LabeledDataFromFile'
require 'SparseMinibatcherFromFile'
local MinibatcherFromFile = torch.class('MinibatcherFromFile')
function MinibatcherFromFile:__init(file,batchSize,cuda,shuffle)
self.batchSize = batchSize
self.doShuffle = shuffle
print('reading from '..file)
local loadedData = torch.load(file)
if(loadedData.isSparse) then
self.isSparse = true
self.sparseBatcher = SparseMinibatcherFromFile(loadedData,batchSize,cuda,shuffle)
else
local pad = true
local loaded = LabeledDataFromFile(self:putIntoSchema(loadedData),pad,batchSize)
self.unpadded_len = loaded.unpadded_len
assert(self.unpadded_len ~= nil)
if(cuda) then
self.labels = Util:deep_apply(loaded.labels_pad, function(t) return t:cuda() end)
self.data = Util:deep_apply(loaded.inputs_pad, function(t) return t:cuda() end)
else
self.labels = loaded.labels_pad
self.data = loaded.inputs_pad
end
self.useLabels = Util:find_first_tensor(self.labels):dim() > 0
if(self.useLabels) then assert(Util:find_first_tensor(self.labels):size(1) == Util:find_first_tensor(self.data):size(1)) end
self.numRowsValue = Util:find_first_tensor(self.data):size(1)
self.curStart = 1
self.curStartSequential = 1
end
end
function MinibatcherFromFile:putIntoSchema(loaded)
if(loaded.data) then
return loaded
else
local toReturn = {
labels = loaded[1],
data = loaded[2]
}
return toReturn
end
end
function MinibatcherFromFile:numRows()
if(self.isSparse) then return self.sparseBatcher.numRows end
return self.numRowsValue
end
function MinibatcherFromFile:shuffle()
if(self.isSparse) then return self.sparseBatcher:shuffle() end
if(self.doShuffle) then
local inds = torch.randperm(self.numRowsValue):long()
if(self.useLabels) then self.labels = Util:deep_apply(self.labels,function(t) return t:index(1,inds) end) end
self.data = Util:deep_apply(self.data,function(t) return t:index(1,inds) end)
self.curStart = 1
self.curStartSequential = 1
end
end
function MinibatcherFromFile:narrow(data,dim,start,len)
return Util:deep_apply(data,function(t) return t:narrow(dim,start,len) end)
end
function MinibatcherFromFile:getBatch()
if(self.isSparse) then return self.sparseBatcher:getBatch() end
local startIdx = self.curStart
local endIdx = startIdx + self.batchSize-1
endIdx = math.min(endIdx,self.numRowsValue)
self.curStart = endIdx +1
if(self.curStart > self.unpadded_len) then
self.curStart = 1
self:shuffle()
end
local batch_labels = self.useLabels and self:narrow(self.labels,1,startIdx,endIdx-startIdx+1) or nil
local batch_data = self:narrow(self.data,1,startIdx,endIdx-startIdx+1)
local num_actual_data = self.batchSize
if(endIdx > self.unpadded_len) then
num_actual_data = self.unpadded_len - startIdx +1
end
return batch_labels,batch_data, num_actual_data
end
function MinibatcherFromFile:reset()
if(self.isSparse) then return self.sparseBatcher:reset() end
self.curStartSequential = 1
self.curStart = 1
end
function MinibatcherFromFile:getBatchSequential()
if(self.isSparse) then return self.sparseBatcher:getBatchSequential() end
local startIdx = self.curStartSequential
local endIdx = startIdx + self.batchSize-1
endIdx = math.min(endIdx,self.numRowsValue)
self.curStartSequential = endIdx +1
if(startIdx > self.unpadded_len) then
return nil
end
local num_actual_data = self.batchSize
if(false and endIdx > self.unpadded_len) then
endIdx = self.unpadded_len - (self.unpadded_len % 32)
if(endIdx < self.unpadded_len) then endIdx = endIdx + 32 end
self:shuffle()
end
num_actual_data = math.min(self.unpadded_len - startIdx,endIdx - startIdx) + 1
local batch_labels = self.useLabels and self:narrow(self.labels,1,startIdx,endIdx-startIdx+1) or nil
local batch_data = self:narrow(self.data,1,startIdx,endIdx-startIdx+1)
assert(num_actual_data <= batch_data:size(1))
return batch_labels,batch_data, num_actual_data
end