forked from adafruit/Adafruit_NeoPixel_ZeroDMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdafruit_NeoPixel_ZeroDMA.cpp
442 lines (401 loc) · 16.7 KB
/
Adafruit_NeoPixel_ZeroDMA.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
DMA NeoPixel library for M0-based boards (Feather M0, Arduino Zero, etc.).
Doesn't require stopping interrupts, so millis()/micros() don't lose time,
soft PWM (for servos, etc.) still operate normally, etc.
THIS IS A WORK-IN-PROGRESS AND NOT 100% THERE YET.
THIS ONLY WORKS ON CERTAIN PINS. THIS IS NORMAL. Library uses SERCOM
peripherals for SPI output, and the hardware only supports this on
specific pins (plus, some SERCOMs are in use for Serial, I2C, etc.).
See example sketch for explanation.
0/1 bit timing does not precisely match NeoPixel/WS2812/SK6812 datasheet
specs, but it seems to work well enough. Use at your own peril.
Currently this only supports strip declaration with length & pin known at
compile time, so it's not a 100% drop-in replacement for all NeoPixel code
right now. But probably 99%+ of all sketches are written that way, so it's
perfectly usable for most. The stock NeoPixel library has the option of
setting the length & pin number at run-time (so these can be stored in a
config file or in EEPROM)...this is entirely possible here, just hasn't
been written yet. In that regard, TO DO:
setPin(uint8_t p)
updateLength(uint16_t n)
updateType(neoPixelType t)
UPDATE: no, don't. Please just use the C++ 'new' operator to allocate a
strip (passing length & type) if needed that way. It's been added to the
NeoPixel library roadmap that these functions are deprecated.
Have not tested this yet with multiple instances (DMA-driven NeoPixels on
multiple pins), but in theory it should work. Should also be OK mixing
DMA and non-DMA NeoPixels in same sketch (just use different constructor
and pins for each).
*/
#include "Adafruit_NeoPixel_ZeroDMA.h"
#include "bittable.h" // Optional, see comments in show()
#include "pins.h" // SPI DMA capable pin tables (per device)
#include "wiring_private.h" // pinPeripheral() function
/** @brief Initialize a NeoPixel strand
@param n Number of pixels
@param p Pin to use (we will figure out what Sercom to use
@param t The color order / type of pixels
*/
Adafruit_NeoPixel_ZeroDMA::Adafruit_NeoPixel_ZeroDMA(uint16_t n, uint8_t p,
neoPixelType t)
: Adafruit_NeoPixel(n, p, t), brightness(256), dmaBuf(NULL), spi(NULL) {}
/** @brief Create a NOT FINISHED onject -- need setPin(), updateLength(),
updateType() for this.
Will require stopping DMA, reallocating, restarting DMA. Fun times.
*/
Adafruit_NeoPixel_ZeroDMA::Adafruit_NeoPixel_ZeroDMA(void)
: Adafruit_NeoPixel(), brightness(256), dmaBuf(NULL), spi(NULL) {}
Adafruit_NeoPixel_ZeroDMA::~Adafruit_NeoPixel_ZeroDMA() {
dma.abort();
if (spi) {
spi->endTransaction();
#ifdef SPI
if (spi != &SPI)
delete spi;
#endif
}
if (dmaBuf)
free(dmaBuf);
}
/** @brief Initialize the underlying SPI SERCOM for DMA transfers
@param sercom Pointer to the underlying SERCOM from the Arduino core
@param sercomBase the 'raw' Sercom register base address
@param dmacID the DMAC id that matches the TX for the sercom (check DS)
@param mosi The MOSI pin (where we send data to the neopixel)
@param padTX the pinmux set up for SPI SERCOM pin config
@param pinFunc The pinmux setup for which 'type' of pinmux we use
@returns True or false on success
*/
boolean Adafruit_NeoPixel_ZeroDMA::_begin(SERCOM *sercom, Sercom *sercomBase,
uint8_t dmacID, uint8_t mosi,
SercomSpiTXPad padTX,
EPioType pinFunc) {
if (mosi != pin)
return false; // Invalid pin
Adafruit_NeoPixel::begin(); // Call base class begin() function 1st
// TO DO: Check for successful malloc in base class here
// DMA buffer is 3X the NeoPixel buffer size. Each bit is expanded
// 3:1 to allow use of SPI peripheral to generate NeoPixel-like timing
// (0b100 for a zero bit, 0b110 for a one bit). SPI is clocked at
// 2.4 MHz, the 3:1 sizing then creates NeoPixel-like 800 KHz bitrate.
// The extra 90 bytes is the low-level latch at the end of the NeoPixel
// data stream. When idle, SPI logic level is normally HIGH, we need
// LOW for latch. There is no invert option. Various tricks like
// switching the pin to a normal LOW output at end of data don't quite
// work, there's still small glitches. So, solution here is to keep
// the SPI DMA transfer in an endless loop...it actually issues the
// NeoPixel data over and over again forever (this doesn't cost us
// anything, since it's 100% DMA, no CPU use)...and those 90 zero
// bytes at the end provide the 300 microsecond EOD latch. Hack!
uint8_t bytesPerPixel = (wOffset == rOffset) ? 3 : 4;
uint32_t bytesTotal = (numLEDs * bytesPerPixel * 8 * 3 + 7) / 8 + 90;
if ((dmaBuf = (uint8_t *)malloc(bytesTotal))) {
spi = NULL; // No SPIClass assigned yet,
// check MOSI pin against existing defined SPI SERCOMs...
#if SPI_INTERFACES_COUNT > 0
if (pin == PIN_SPI_MOSI) { // If NeoPixel pin is main SPI MOSI...
spi = &SPI; // Use the existing SPIClass object
padTX = PAD_SPI_TX;
}
#endif
#if SPI_INTERFACES_COUNT > 1
else if (pin == PIN_SPI1_MOSI) { // If NeoPixel pin = secondary SPI MOSI...
spi = &SPI1; // Use the SPI1 SPIClass object
padTX = PAD_SPI1_TX;
}
#endif
#if SPI_INTERFACES_COUNT > 2
else if (pin == PIN_SPI2_MOSI) { // Ditto, tertiary SPI
spi = &SPI2;
padTX = PAD_SPI2_TX;
}
#endif
#if SPI_INTERFACES_COUNT > 3
else if (pin == PIN_SPI3_MOSI) {
spi = &SPI3;
padTX = PAD_SPI3_TX;
}
#endif
#if SPI_INTERFACES_COUNT > 4
else if (pin == PIN_SPI4_MOSI) {
spi = &SPI4;
padTX = PAD_SPI4_TX;
}
#endif
#if SPI_INTERFACES_COUNT > 5
else if (pin == PIN_SPI5_MOSI) {
spi = &SPI5;
padTX = PAD_SPI5_TX;
}
#endif
// If NeoPixel pin is not an existing SPI SERCOM, allocate a new one.
if (spi == NULL) {
// DIRTY POOL! The SPIClass constructor expects MISO, SCK and MOSI
// pins, in that order. Our library only intends to ever use the MOSI
// output, the others are never even set to SERCOM periph functions.
// We just give the SPI constructor THE SAME PIN NUMBER for all three.
// The SPI lib never checks if they're distinct and valid for each of
// the three. It does set pinPeripheral for each (or in this case,
// the same for the MOSI pin three times)...but no matter, we set our
// own pinPeripheral below. The SPI RX PAD also doesn't matter...we
// always claim it's PAD 1 here, because (by hardware design) the TX
// pad will always be 0, 2 or 3...this might collide with the SCK PAD
// value, but we don't care, neither SCK nor MISO is actually used.
// (This is tested across many SAMD devices and works, but it's
// conceivable that this could fail spectacularly on some unforseen
// future device, if the SERCOM pad assignment becomes hardwarily
// strict.)
spi = new SPIClass(sercom, mosi, mosi, mosi, padTX, SERCOM_RX_PAD_1);
}
if ((spi)) {
spi->begin();
pinPeripheral(mosi, pinFunc);
dma.setTrigger(dmacID);
dma.setAction(DMA_TRIGGER_ACTON_BEAT);
if (DMA_STATUS_OK == dma.allocate()) {
if (dma.addDescriptor(dmaBuf, // move data from here
(void *)(&sercomBase->SPI.DATA.reg), // to here
bytesTotal, // this many...
DMA_BEAT_SIZE_BYTE, // bytes/hword/words
true, // increment source addr?
false)) { // increment dest addr?
dma.loop(true); // DMA transaction loops forever! Latch is built in.
memset(dmaBuf, 0, bytesTotal); // IMPORTANT - clears latch data @ end
// SPI transaction is started BUT NEVER ENDS. This is important.
// 800 khz * 3 = 2.4MHz
spi->beginTransaction(SPISettings(2400000, MSBFIRST, SPI_MODE0));
if (DMA_STATUS_OK == dma.startJob())
return true; // SUCCESS
// Else various errors, clean up partially-initialized stuff:
spi->endTransaction();
}
dma.free();
}
// Delete SPIClass object, UNLESS it's an existing (Arduino-defined) one
#if SPI_INTERFACES_COUNT > 0
if (spi == &SPI) {
spi = NULL;
}
#endif
#if SPI_INTERFACES_COUNT > 1
else if (spi == &SPI1) {
spi = NULL;
}
#endif
#if SPI_INTERFACES_COUNT > 2
else if (spi == &SPI2) {
spi = NULL;
}
#endif
#if SPI_INTERFACES_COUNT > 3
else if (spi == &SPI3) {
spi = NULL;
}
#endif
#if SPI_INTERFACES_COUNT > 4
else if (spi == &SPI4) {
spi = NULL;
}
#endif
#if SPI_INTERFACES_COUNT > 5
else if (spi == &SPI5) {
spi = NULL;
}
#endif
#ifdef SPI
if (spi != NULL) {
delete spi;
spi = NULL;
}
#endif
}
free(dmaBuf);
dmaBuf = NULL;
}
return false;
}
#ifdef __SAMD51__
// See notes below about M4 tomfoolery
#define EXTRASTARTBYTES 24 // Empty bytes issued until DMA timing solidifies
#define LATCHTIME 300 // Time, in microseconds, for end-of-data latch
static volatile uint32_t lastBitTime; // micros() when last bit issued
// Called at end of DMA transfer. Notes
// start-of-NeoPixel-latch time.
static void dmaCallback(Adafruit_ZeroDMA *dma) { lastBitTime = micros(); }
#endif
/** @brief Initialize SPI sercom and DMA
@returns True
*/
boolean Adafruit_NeoPixel_ZeroDMA::begin(void) {
uint8_t i;
for (i = 0; (i < N_SERCOMS) && (sercomTable[i].mosi != pin); i++)
;
if (i >= N_SERCOMS) {
#ifndef __SAMD51__
return false; // Invalid pin
#else
// Super-hacky thing specifically for the Trellis M4 lets us DMA to a
// non-SERCOM pin. Please don't rely on this as a general approach,
// it's not RAM-efficient and is only practical here because the matrix
// size on that board is 32 pixels, not too bad (eats ~3K).
// TO DO: Check for successful malloc in base class here
Adafruit_NeoPixel::begin(); // Call base class begin() function 1st
uint8_t bytesPerPixel = (wOffset == rOffset) ? 3 : 4;
uint32_t bytesTotal = (numLEDs * bytesPerPixel * 32 + EXTRASTARTBYTES);
if ((dmaBuf = (uint8_t *)malloc(bytesTotal))) {
int i;
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
dma.setTrigger(TCC0_DMAC_ID_OVF);
dma.setAction(DMA_TRIGGER_ACTON_BEAT);
EPortType port = g_APinDescription[pin].ulPort;
uint8_t bit = g_APinDescription[pin].ulPin; // 0-31
uint8_t byteOffset = bit / 8; // 0-3
volatile uint8_t *dst =
(volatile uint8_t *)&(PORT->Group[port].OUTTGL.reg) + byteOffset;
toggleMask = digitalPinToBitMask(pin) >> (byteOffset * 8);
dma.allocate();
dma.setPriority(
DMA_PRIORITY_3); // highest priority since latency is critical
dma.addDescriptor(dmaBuf, // source
(void *)dst, // destination
bytesTotal, // count
DMA_BEAT_SIZE_BYTE, // size per
true, // increment source
false); // don't increment destination
dma.setCallback(dmaCallback);
// Set up generic clock gen 5 as source for TCC0
// Datasheet recommends setting GENCTRL register in a single write,
// so a temp value is used here to more easily construct a value.
GCLK_GENCTRL_Type genctrl;
genctrl.bit.SRC = GCLK_GENCTRL_SRC_DFLL_Val; // 48 MHz source
genctrl.bit.GENEN = 1; // Enable
genctrl.bit.OE = 1;
genctrl.bit.DIVSEL = 0; // Do not divide clock source
genctrl.bit.DIV = 0;
GCLK->GENCTRL[5].reg = genctrl.reg;
while (GCLK->SYNCBUSY.bit.GENCTRL1 == 1)
;
GCLK->PCHCTRL[TCC0_GCLK_ID].bit.CHEN = 0;
while (GCLK->PCHCTRL[TCC0_GCLK_ID].bit.CHEN)
; // Wait for disable
GCLK_PCHCTRL_Type pchctrl;
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK5_Val;
pchctrl.bit.CHEN = 1;
GCLK->PCHCTRL[TCC0_GCLK_ID].reg = pchctrl.reg;
while (!GCLK->PCHCTRL[TCC0_GCLK_ID].bit.CHEN)
; // Wait for enable
// Disable TCC before configuring it
TCC0->CTRLA.bit.ENABLE = 0;
while (TCC0->SYNCBUSY.bit.ENABLE)
;
TCC0->CTRLA.bit.PRESCALER = TCC_CTRLA_PRESCALER_DIV1_Val; // 1:1 Prescale
TCC0->WAVE.bit.WAVEGEN = TCC_WAVE_WAVEGEN_NPWM_Val; // Normal PWM mode
while (TCC0->SYNCBUSY.bit.WAVE)
;
TCC0->CC[0].reg = 0; // No PWM out
while (TCC0->SYNCBUSY.bit.CC0)
;
// 3.2 MHz clock: 4 DMA xfers per NeoPixel bit = 800 KHz
TCC0->PER.reg = ((48000000 + 1600000) / 3200000) - 1;
while (TCC0->SYNCBUSY.bit.PER)
;
TCC0->CTRLA.bit.ENABLE = 1;
while (TCC0->SYNCBUSY.bit.ENABLE)
;
memset(dmaBuf, 0, EXTRASTARTBYTES); // Initialize buf start with zeros
return true;
}
#endif
}
#ifdef __SAMD51__
toggleMask = 0; // Using library's normal SERCOM DMA technique
#endif
return _begin(sercomTable[i].sercom, sercomTable[i].sercomBase,
sercomTable[i].dmacID, sercomTable[i].mosi,
sercomTable[i].padTX, sercomTable[i].pinFunc);
}
/** @brief Convert the NeoPixel buffer to larger DMA buffer and start xfer
*/
void Adafruit_NeoPixel_ZeroDMA::show(void) {
#ifdef __SAMD51__
if (!toggleMask) { // Using normal SERCOM DMA technique?
#endif
// Expand 8 bits 'abcdefgh' to 24 bits '1a01b01c01d01e01f01g01h0'
#ifdef _BITTABLE_H_
// If bittable.h is included, 3:1 bit expansion is handled using a table
// lookup -- each byte of input (from NeoPixel buffer) is replaced with
// three bytes output (from table to DMA buffer). This is about twice
// as quick as math below but the table requires about 1KB of code space.
uint8_t *in = pixels, *out = dmaBuf;
uint32_t expanded;
for (uint16_t p = numBytes; p--;) {
expanded = bitExpand[(*in++ * brightness) >> 8];
*out++ = expanded >> 16; // Shifting 32-bit table entry is
*out++ = expanded >> 8; // about 11% faster than copying
*out++ = expanded; // three values from a uint8_t table.
}
#else
// If bittable.h is NOT included, 3:1 bit expansion is done on the fly.
// More complex, but smaller executable.
uint8_t *in = pixels, *out = dmaBuf, i, abef, cdgh;
uint32_t expanded;
for (uint16_t p = numBytes; p--;) {
cdgh = (*in++ * brightness) >> 8;
abef = cdgh & 0b11001100; // ab00ef00
cdgh &= 0b00110011; // 00cd00gh
expanded = ((abef * 0b1010000010100000) & 0b010010000000010010000000) |
((cdgh * 0b0000101000001010) & 0b000000010010000000010010) |
0b100100100100100100100100;
*out++ = expanded >> 16;
*out++ = expanded >> 8;
*out++ = expanded;
}
#endif // !_BITTABLE_H_
#ifdef __SAMD51__
} else { // NOT using SERCOM DMA technique, expansion is different...
uint8_t *src = pixels; // Pixel buffer base address from NeoPixel lib
uint8_t *dst = dmaBuf + EXTRASTARTBYTES;
uint32_t count = numLEDs * ((wOffset == rOffset) ? 3 : 4); // Bytes/pixel
while (dma.isActive())
; // Wait for DMA callback, so pixel data isn't corrupted
while (count--) {
uint8_t byte = (*src++ * brightness) >> 8;
for (uint8_t bit = 0x80; bit; bit >>= 1) {
*dst++ = toggleMask; // Initial toggle high
if (byte & bit) {
*dst++ = 0; // Hold high at 1/4
*dst++ = 0; // Hold high at 2/4
*dst++ = toggleMask; // Toggle low at 3/4
} else {
*dst++ = toggleMask; // Toggle low at 1/4
*dst++ = 0; // Hold low at 2/4
*dst++ = 0; // Hold low at 3/4
}
}
}
dma.startJob();
// Wait for latch, factor out EXTRASTARTBYTES transmission time too!
while ((micros() - lastBitTime) <= (LATCHTIME - (EXTRASTARTBYTES * 5 / 4)))
;
dma.trigger();
}
#endif
}
/** @brief
Brightness is stored differently here than in normal NeoPixel library.
In either case it's *specified* the same: 0 (off) to 255 (brightest).
Classic NeoPixel rearranges this internally so 0 is max, 1 is off and
255 is just below max...it's a decision based on how fixed-point math
is handled in that code. Here it's stored internally as 1 (off) to
256 (brightest), requiring a 16-bit value.
@param b 0 - 255 brightness value
*/
void Adafruit_NeoPixel_ZeroDMA::setBrightness(uint8_t b) {
brightness = (uint16_t)b + 1; // 0-255 in, 1-256 out
}
/** @brief The brightness, back adjusted to 0-255 standard expectation
@returns 0 for off, 255 for max brightness */
uint8_t Adafruit_NeoPixel_ZeroDMA::getBrightness(void) const {
return brightness - 1; // 1-256 in, 0-255 out
}