-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path2_predict.py
132 lines (105 loc) · 4.06 KB
/
2_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
import os, sys, glob, argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
import time, datetime
import pdb, traceback
import cv2
# import imagehash
from PIL import Image
from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
# from efficientnet_pytorch import EfficientNet
# model = EfficientNet.from_pretrained('efficientnet-b4')
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
class QRDataset(Dataset):
def __init__(self, train_jpg, transform=None):
self.train_jpg = train_jpg
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
start_time = time.time()
img = Image.open(self.train_jpg[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img,torch.from_numpy(np.array(int('AD' in self.train_jpg[index])))
def __len__(self):
return len(self.train_jpg)
class VisitNet(nn.Module):
def __init__(self):
super(VisitNet, self).__init__()
model = models.resnet34(True)
model.avgpool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(512, 2)
self.resnet = model
# model = EfficientNet.from_pretrained('efficientnet-b4')
# model._fc = nn.Linear(1792, 2)
# self.resnet = model
def forward(self, img):
out = self.resnet(img)
return out
def predict(test_loader, model, tta=10):
# switch to evaluate mode
model.eval()
test_pred_tta = None
for _ in range(tta):
test_pred = []
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(test_loader):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
output = output.data.cpu().numpy()
test_pred.append(output)
test_pred = np.vstack(test_pred)
if test_pred_tta is None:
test_pred_tta = test_pred
else:
test_pred_tta += test_pred
return test_pred_tta
test_jpg = ['../初赛数据/test/AD&CN/{0}.png'.format(x) for x in range(1, 1001)]
test_jpg = np.array(test_jpg)
test_pred = None
for model_path in ['resnet18_fold0.pt', 'resnet18_fold1.pt', 'resnet18_fold2.pt',
'resnet18_fold3.pt', 'resnet18_fold4.pt', 'resnet18_fold5.pt',
'resnet18_fold6.pt', 'resnet18_fold7.pt', 'resnet18_fold8.pt',
'resnet18_fold9.pt'][:1]:
test_loader = torch.utils.data.DataLoader(
QRDataset(test_jpg,
transforms.Compose([
transforms.Resize((512, 512)),
# transforms.CenterCrop((450, 450)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
), batch_size=10, shuffle=False, num_workers=10, pin_memory=True
)
model = VisitNet().cuda()
model.load_state_dict(torch.load(model_path))
# model = nn.DataParallel(model).cuda()
if test_pred is None:
test_pred = predict(test_loader, model, 5)
else:
test_pred += predict(test_loader, model, 5)
test_csv = pd.DataFrame()
test_csv['uuid'] = list(range(1, 1001))
test_csv['label'] = np.argmax(test_pred, 1)
test_csv['label'] = test_csv['label'].map({1: 'AD', 0: 'CN'})
test_csv.to_csv('tmp.csv', index=None)