You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/home/tony/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names
warnings.warn(
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In [90], line 2
1 from sklearn.metrics import precision_score
----> 2 preds = model.predict(test[predictors])
3 preds = pd.Series(preds, index=test.index)
4 precision_score(test["Target"], preds)
File ~/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:832, in ForestClassifier.predict(self, X)
811 def predict(self, X):
812 """
813 Predict class for X.
814
(...)
830 The predicted classes.
831 """
--> 832 proba = self.predict_proba(X)
834 if self.n_outputs_ == 1:
835 return self.classes_.take(np.argmax(proba, axis=1), axis=0)
File ~/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:874, in ForestClassifier.predict_proba(self, X)
872 check_is_fitted(self)
873 # Check data
--> 874 X = self._validate_X_predict(X)
876 # Assign chunk of trees to jobs
877 n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)
File ~/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:605, in BaseForest._validate_X_predict(self, X)
602 """
603 Validate X whenever one tries to predict, apply, predict_proba."""
604 check_is_fitted(self)
--> 605 X = self._validate_data(X, dtype=DTYPE, accept_sparse="csr", reset=False)
606 if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc):
607 raise ValueError("No support for np.int64 index based sparse matrices")
File ~/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/base.py:577, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, **check_params)
575 raise ValueError("Validation should be done on X, y or both.")
576 elif not no_val_X and no_val_y:
--> 577 X = check_array(X, input_name="X", **check_params)
578 out = X
579 elif no_val_X and not no_val_y:
File ~/anaconda3/envs/prophet/lib/python3.9/site-packages/sklearn/utils/validation.py:879, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
877 # If input is 1D raise error
878 if array.ndim == 1:
--> 879 raise ValueError(
880 "Expected 2D array, got 1D array instead:\narray={}.\n"
881 "Reshape your data either using array.reshape(-1, 1) if "
882 "your data has a single feature or array.reshape(1, -1) "
883 "if it contains a single sample.".format(array)
884 )
886 if dtype_numeric and array.dtype.kind in "USV":
887 raise ValueError(
888 "dtype='numeric' is not compatible with arrays of bytes/strings."
889 "Convert your data to numeric values explicitly instead."
890 )
ValueError: Expected 2D array, got 1D array instead:
array=[3.82533e+03 4.04695e+09 3.78100e+03 3.82982e+03 3.75210e+03].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
market_prediction.ipynb
Code In[42]
Error info
My system environment
Can you give me some tips? Thank you.
The text was updated successfully, but these errors were encountered: