-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinteractive.py
56 lines (35 loc) · 1.57 KB
/
interactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import bbconf
bba = bbconf.BedBaseAgent("deployment/config/api-dev.bedbase.org.yaml")
bba.config._b2bsi = bba.config._init_b2bsi_object()
bba.config._r2v = bba.config._init_r2v_object()
bba.config._bivec = bba.config._init_bivec_object()
# Here's some code to test the BiVectorSearchInterface
from geniml.search.interfaces import BiVectorSearchInterface
from geniml.search.backends import BiVectorBackend
from geniml.search.query2vec import Text2Vec
search_backend = BiVectorBackend(
metadata_backend=self._qdrant_text_engine, bed_backend=self._qdrant_engine
)
t2v = Text2Vec("sentence-transformers/all-MiniLM-L6-v2", v2v=None)
bvsi = BiVectorSearchInterface()
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
import logging
from typing import Union
import numpy as np
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from geniml.text2bednn import Vec2VecFNN
from geniml.search.query2vec.abstract import Query2Vec
# culprit:
te = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Testing the sentence transformers:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embeddings = model.encode(sentences)
print(embeddings)
from fastembed import TextEmbedding
model = TextEmbedding(
model_name="sentence-transformers/all-MiniLM-L6-v2", max_length=512
)
sentences = ["This is an example sentence", "Each sentence is converted"]
embeddings = list(model.embed(sentences))