-
Notifications
You must be signed in to change notification settings - Fork 285
/
eigen_geometry_pybind.cpp
410 lines (385 loc) · 14.8 KB
/
eigen_geometry_pybind.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//
// All components of Drake are licensed under the BSD 3-Clause License
// shown below. Where noted in the source code, some portions may
// be subject to other permissive, non-viral licenses.
//
// Copyright 2012-2016 Robot Locomotion Group @ CSAIL
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the Massachusetts Institute of Technology nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include <cmath>
#include <cassert>
#include <dart/common/common.hpp>
#include "pybind11/pybind11.h"
#include "eigen_geometry_pybind.h"
using std::fabs;
namespace dart {
namespace python {
namespace {
// TODO(eric.cousineau): There is validation from Python to C++, but no
// validation in the other direction. Consider intercepting this.
// TODO(eric.cousineau): Add operator overloads.
// TODO(eric.cousineau): Disable tolerance checks for the symbolic case.
// N.B. This could potentially interfere with another library's bindings of
// Eigen types. If/when this happens, this should be addressed for both these
// and AutoDiff types.
// N.B. Use a loose tolerance, so that we don't have to be super strict with
// C++.
const double kCheckTolerance = 1e-5;
template <typename T>
void CheckRotMat(const Eigen::Matrix<T, 3, 3>& R) {
// See `ExpectRotMat`.
const T identity_error =
(R * R.transpose() - Eigen::Matrix<T, 3, 3>::Identity())
.array().abs().maxCoeff();
DART_UNUSED(identity_error);
assert(
identity_error < kCheckTolerance &&
"Rotation matrix is not orthonormal");
const T det_error = fabs(R.determinant() - 1);
DART_UNUSED(det_error);
assert(
det_error < kCheckTolerance &&
"Rotation matrix violates right-hand rule");
}
template <typename T>
void CheckIsometry(const Eigen::Transform<T, 3, Eigen::Isometry>& X) {
CheckRotMat<T>(X.linear());
Eigen::Matrix<T, 1, 4> bottom_expected;
bottom_expected << 0, 0, 0, 1;
const T bottom_error =
(X.matrix().bottomRows(1) - bottom_expected).array().abs().maxCoeff();
DART_UNUSED(bottom_error);
assert(
bottom_error < kCheckTolerance &&
"Homogeneous matrix is improperly scaled.");
}
template <typename T>
void CheckQuaternion(const Eigen::Quaternion<T>& q) {
const T norm_error = fabs(q.coeffs().norm() - 1);
DART_UNUSED(norm_error);
assert(
norm_error < kCheckTolerance &&
"Quaternion is not normalized");
}
template <typename T>
void CheckAngleAxis(const Eigen::AngleAxis<T>& value) {
const T norm_error = fabs(value.axis().norm() - 1);
DART_UNUSED(norm_error);
assert(
norm_error < kCheckTolerance &&
"Axis is not normalized");
}
} // namespace
// PYBIND11_MODULE(eigen_geometry, m) {
void eigen_geometry(pybind11::module& parent_m)
{
auto m = parent_m.def_submodule("math");
m.doc() = "Bindings for Eigen geometric types.";
using T = double;
// Do not return references to matrices (e.g. `Eigen::Ref<>`) so that we have
// tighter control over validation.
// Isometry3d.
// @note `linear` implies rotation, and `affine` implies translation.
{
using Class = Eigen::Transform<T, 3, Eigen::Isometry>;
::pybind11::class_<Class> py_class(m, "Isometry3");
py_class
.def(::pybind11::init([]() {
return Class::Identity();
}))
.def_static("Identity", []() {
return Class::Identity();
})
.def(::pybind11::init([](const Eigen::Matrix<T, 4, 4>& matrix) {
Class out(matrix);
CheckIsometry(out);
return out;
}), ::pybind11::arg("matrix"))
.def(::pybind11::init([](
const Eigen::Matrix<T, 3, 3>& rotation,
const Eigen::Matrix<T, 3, 1>& translation) {
CheckRotMat(rotation);
Class out = Class::Identity();
out.linear() = rotation;
out.translation() = translation;
return out;
}), ::pybind11::arg("rotation"), ::pybind11::arg("translation"))
.def(::pybind11::init([](
const Eigen::Quaternion<T>& q,
const Eigen::Matrix<T, 3, 1>& translation) {
CheckQuaternion(q);
Class out = Class::Identity();
out.linear() = q.toRotationMatrix();
out.translation() = translation;
return out;
}), ::pybind11::arg("quaternion"), ::pybind11::arg("translation"))
.def(::pybind11::init([](const Class& other) {
CheckIsometry(other);
return other;
}), ::pybind11::arg("other"))
.def("matrix", [](const Class* self) -> Eigen::Matrix<T, 4, 4> {
return self->matrix();
})
.def("set_matrix", [](Class* self, const Eigen::Matrix<T, 4, 4>& matrix) {
Class update(matrix);
CheckIsometry(update);
*self = update;
})
.def("translation", [](const Class* self) -> Eigen::Matrix<T, 3, 1> {
return self->translation();
})
.def("set_translation", [](Class* self, const Eigen::Matrix<T, 3, 1>& translation) {
self->translation() = translation;
})
.def("rotation", [](const Class* self) -> Eigen::Matrix<T, 3, 3> {
return self->linear();
})
.def("set_rotation", [](Class* self, const Eigen::Matrix<T, 3, 3>& rotation) {
CheckRotMat(rotation);
self->linear() = rotation;
})
.def("quaternion", [](const Class* self) {
return Eigen::Quaternion<T>(self->linear());
})
.def("set_quaternion", [](Class* self, const Eigen::Quaternion<T>& q) {
CheckQuaternion(q);
self->linear() = q.toRotationMatrix();
})
.def("__str__", [](::pybind11::object self) {
return ::pybind11::str(self.attr("matrix")());
})
// Do not define operator `__mul__` until we have the Python3 `@`
// operator so that operations are similar to those of arrays.
.def("multiply", [](const Class& self, const Class& other) {
return self * other;
}, ::pybind11::arg("other"))
.def("multiply", [](const Class& self, const Eigen::Matrix<T, 3, 1>& position) {
return self * position;
}, ::pybind11::arg("position"))
.def("inverse", [](const Class* self) {
return self->inverse();
})
//========================
// Begin: added by dartpy
//========================
.def("translate", [](Class* self, const Eigen::Matrix<T, 3, 1>& other) {
self->translate(other);
}, ::pybind11::arg("other"))
.def("pretranslate", [](Class* self, const Eigen::Matrix<T, 3, 1>& other) {
self->pretranslate(other);
}, ::pybind11::arg("other"))
//========================
// End: added by dartpy
//========================
;
::pybind11::implicitly_convertible<Eigen::Matrix<T, 4, 4>, Class>();
}
// Quaternion.
// Since the Eigen API for Quaternion is insufficiently explicit, we will
// deviate some from the API to maintain clarity.
// TODO(eric.cousineau): Should this not be restricted to a unit quaternion?
{
using Class = Eigen::Quaternion<T>;
::pybind11::class_<Class> py_class(m, "Quaternion");
py_class.attr("__doc__") =
"Provides a unit quaternion binding of Eigen::Quaternion<>.";
::pybind11::object py_class_obj = py_class;
py_class
.def(::pybind11::init([]() {
return Class::Identity();
}))
.def_static("Identity", []() {
return Class::Identity();
})
.def(::pybind11::init([](const Eigen::Matrix<T, 4, 1>& wxyz) {
Class out(wxyz(0), wxyz(1), wxyz(2), wxyz(3));
CheckQuaternion(out);
return out;
}), ::pybind11::arg("wxyz"))
.def(::pybind11::init([](T w, T x, T y, T z) {
Class out(w, x, y, z);
CheckQuaternion(out);
return out;
}), ::pybind11::arg("w"), ::pybind11::arg("x"), ::pybind11::arg("y"), ::pybind11::arg("z"))
.def(::pybind11::init([](const Eigen::Matrix<T, 3, 3>& rotation) {
Class out(rotation);
CheckQuaternion(out);
return out;
}), ::pybind11::arg("rotation"))
.def(::pybind11::init([](const Class& other) {
CheckQuaternion(other);
return other;
}), ::pybind11::arg("other"))
.def("w", [](const Class* self) { return self->w(); })
.def("x", [](const Class* self) { return self->x(); })
.def("y", [](const Class* self) { return self->y(); })
.def("z", [](const Class* self) { return self->z(); })
.def("xyz", [](const Class* self) { return self->vec(); })
.def("wxyz", [](Class* self) {
Eigen::Matrix<T, 4, 1> wxyz;
wxyz << self->w(), self->vec();
return wxyz;
})
.def("set_wxyz", [](Class* self, const Eigen::Matrix<T, 4, 1>& wxyz) {
Class update;
update.w() = wxyz(0);
update.vec() = wxyz.tail(3);
CheckQuaternion(update);
*self = update;
}, ::pybind11::arg("wxyz"))
.def("set_wxyz", [](Class* self, T w, T x, T y, T z) {
Class update(w, x, y, z);
CheckQuaternion(update);
*self = update;
}, ::pybind11::arg("w"), ::pybind11::arg("x"), ::pybind11::arg("y"), ::pybind11::arg("z"))
.def("rotation", [](const Class* self) {
return self->toRotationMatrix();
})
.def("set_rotation", [](Class* self, const Eigen::Matrix<T, 3, 3>& rotation) {
Class update(rotation);
CheckQuaternion(update);
*self = update;
})
.def("__str__", [py_class_obj](const Class* self) {
return ::pybind11::str("{}(w={}, x={}, y={}, z={})").format(
py_class_obj.attr("__name__"),
self->w(), self->x(), self->y(), self->z());
})
// Do not define operator `__mul__` until we have the Python3 `@`
// operator so that operations are similar to those of arrays.
.def("multiply", [](const Class& self, const Class& other) {
return self * other;
})
.def("multiply", [](const Class& self, const Eigen::Matrix<T, 3, 1>& position) {
return self * position;
}, ::pybind11::arg("position"))
.def("inverse", [](const Class* self) {
return self->inverse();
})
.def("conjugate", [](const Class* self) {
return self->conjugate();
})
//========================
// Begin: added by dartpy
//========================
.def("to_rotation_matrix", [](Class* self) -> Eigen::Matrix<T, 3, 3> {
return self->toRotationMatrix();
})
//========================
// End: added by dartpy
//========================
;
}
// Angle-axis.
{
using Class = Eigen::AngleAxis<T>;
::pybind11::class_<Class> py_class(m, "AngleAxis");
py_class.attr("__doc__") =
"Bindings for Eigen::AngleAxis<>.";
::pybind11::object py_class_obj = py_class;
py_class
.def(::pybind11::init([]() {
return Class::Identity();
}))
.def_static("Identity", []() {
return Class::Identity();
})
.def(::pybind11::init([](const T& angle, const Eigen::Matrix<T, 3, 1>& axis) {
Class out(angle, axis);
CheckAngleAxis(out);
return out;
}), ::pybind11::arg("angle"), ::pybind11::arg("axis"))
.def(::pybind11::init([](const Eigen::Quaternion<T>& q) {
Class out(q);
CheckAngleAxis(out);
return out;
}), ::pybind11::arg("quaternion"))
.def(::pybind11::init([](const Eigen::Matrix<T, 3, 3>& rotation) {
Class out(rotation);
CheckAngleAxis(out);
return out;
}), ::pybind11::arg("rotation"))
.def(::pybind11::init([](const Class& other) {
CheckAngleAxis(other);
return other;
}), ::pybind11::arg("other"))
.def("angle", [](const Class* self) { return self->angle(); })
.def("axis", [](const Class* self) { return self->axis(); })
.def("set_angle", [](Class* self, const T& angle) {
// N.B. Since `axis` should already be valid, do not need to check.
self->angle() = angle;
}, ::pybind11::arg("angle"))
.def("set_axis", [](Class* self, const Eigen::Matrix<T, 3, 1>& axis) {
Class update(self->angle(), axis);
CheckAngleAxis(update);
*self = update;
}, ::pybind11::arg("axis"))
.def("rotation", [](const Class* self) {
return self->toRotationMatrix();
})
.def("set_rotation", [](Class* self, const Eigen::Matrix<T, 3, 3>& rotation) {
Class update(rotation);
CheckAngleAxis(update);
*self = update;
})
.def("quaternion", [](const Class* self) {
return Eigen::Quaternion<T>(*self);
})
.def("set_quaternion", [](Class* self, const Eigen::Quaternion<T>& q) {
CheckQuaternion(q);
Class update(q);
CheckAngleAxis(update);
*self = update;
})
.def("__str__", [py_class_obj](const Class* self) {
return ::pybind11::str("{}(angle={}, axis={})").format(
py_class_obj.attr("__name__"),
self->angle(), self->axis());
})
// Do not define operator `__mul__` until we have the Python3 `@`
// operator so that operations are similar to those of arrays.
.def("multiply", [](const Class& self, const Class& other) {
return self * other;
})
.def("inverse", [](const Class* self) {
return self->inverse();
})
//========================
// Begin: added by dartpy
//========================
.def("to_rotation_matrix", [](Class* self) -> Eigen::Matrix<T, 3, 3> {
return self->toRotationMatrix();
})
//========================
// End: added by dartpy
//========================
;
}
}
} // namespace python
} // namespace dart