forked from daviddao/spatial-transformer-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 5
/
spatial_transformer.py
827 lines (653 loc) · 28.7 KB
/
spatial_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
"""
Implementation of Spatial Transformer Networks
References
----------
[1] Spatial Transformer Networks
Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
Submitted on 5 Jun 2015
[2] https://github.com/tensorflow/models/tree/master/transformer/transformerlayer.py
[3] https://github.com/daviddao/spatial-transformer-tensorflow
[4] https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
[5] https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/special.py
[6] Fred L. Bookstein (1989):
Principal warps: thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
http://doi.org/10.1109/34.24792
"""
import tensorflow as tf
import math
"""
Legacy Function
"""
def transformer(inp, theta, out_size, name='SpatialTransformer', **kwargs):
with tf.variable_scope(name):
stl = AffineTransformer(out_size)
output = stl.transform(inp, theta, out_size)
return output
class AffineVolumeTransformer(object):
"""Spatial Affine Volume Transformer Layer
Implements a spatial transformer layer for volumetric 3D input.
Implemented by Daniyar Turmukhambetov.
"""
def __init__(self, out_size, name='SpatialAffineVolumeTransformer', interp_method='bilinear', **kwargs):
"""
Parameters
----------
out_size : tuple of three ints
The size of the output of the spatial network (depth, height, width), i.e. z, y, x
name : string
The scope name of the variables in this network.
"""
self.name = name
self.out_size = out_size
self.param_dim = 3*4
self.interp_method=interp_method
with tf.variable_scope(self.name):
self.voxel_grid = _meshgrid3d(self.out_size)
def transform(self, inp, theta):
"""
Affine Transformation of input tensor inp with parameters theta
Parameters
----------
inp : float
The input tensor should have the shape
[batch_size, depth, height, width, in_channels].
theta: float
The output of the localisation network
should have the shape
[batch_size, 12].
Notes
-----
To initialize the network to the identity transform initialize ``theta`` to :
identity = np.array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.]])
identity = identity.flatten()
theta = tf.Variable(initial_value=identity)
"""
with tf.variable_scope(self.name):
x_s, y_s, z_s = self._transform(inp, theta)
output = _interpolate3d(
inp, x_s, y_s, z_s,
self.out_size,
method=self.interp_method
)
batch_size, _, _, _, num_channels = inp.get_shape().as_list()
output = tf.reshape(output, [batch_size, self.out_size[0], self.out_size[1], self.out_size[2], num_channels])
return output
def _transform(self, inp, theta):
with tf.variable_scope(self.name + '_affine_volume_transform'):
batch_size, _, _, _, num_channels = inp.get_shape().as_list()
theta = tf.reshape(theta, (-1, 3, 4))
voxel_grid = tf.tile(self.voxel_grid, [batch_size])
voxel_grid = tf.reshape(voxel_grid, [batch_size, 4, -1])
# Transform A x (x_t, y_t, z_t, 1)^T -> (x_s, y_s, z_s)
T_g = tf.matmul(theta, voxel_grid)
x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
z_s = tf.slice(T_g, [0, 2, 0], [-1, 1, -1])
x_s_flat = tf.reshape(x_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
z_s_flat = tf.reshape(z_s, [-1])
return x_s_flat, y_s_flat, z_s_flat
class AffineTransformer(object):
"""Spatial Affine Transformer Layer
Implements a spatial transformer layer as described in [1]_.
Based on [2]_ and [3]_. Edited by Daniyar Turmukhambetov.
"""
def __init__(self, out_size, name='SpatialAffineTransformer', interp_method='bilinear', **kwargs):
"""
Parameters
----------
out_size : tuple of two ints
The size of the output of the spatial network (height, width).
name : string
The scope name of the variables in this network.
"""
self.name = name
self.out_size = out_size
self.param_dim = 6
self.interp_method=interp_method
with tf.variable_scope(self.name):
self.pixel_grid = _meshgrid(self.out_size)
def transform(self, inp, theta):
"""
Affine Transformation of input tensor inp with parameters theta
Parameters
----------
inp : float
The input tensor should have the shape
[batch_size, height, width, num_channels].
theta: float
The output of the localisation network
should have the shape
[batch_size, 6].
Notes
-----
To initialize the network to the identity transform initialize ``theta`` to :
identity = np.array([[1., 0., 0.],
[0., 1., 0.]])
identity = identity.flatten()
theta = tf.Variable(initial_value=identity)
"""
with tf.variable_scope(self.name):
x_s, y_s = self._transform(inp, theta)
output = _interpolate(
inp, x_s, y_s,
self.out_size,
method=self.interp_method
)
batch_size, _, _, num_channels = inp.get_shape().as_list()
output = tf.reshape(output, [batch_size, self.out_size[0], self.out_size[1], num_channels])
return output
def _transform(self, inp, theta):
with tf.variable_scope(self.name + '_affine_transform'):
batch_size, _, _, num_channels = inp.get_shape().as_list()
theta = tf.reshape(theta, (-1, 2, 3))
pixel_grid = tf.tile(self.pixel_grid, [batch_size])
pixel_grid = tf.reshape(pixel_grid, [batch_size, 3, -1])
# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
T_g = tf.matmul(theta, pixel_grid)
x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
x_s_flat = tf.reshape(x_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
return x_s_flat, y_s_flat
class ProjectiveTransformer(object):
"""Spatial Projective Transformer Layer
Implements a spatial transformer layer as described in [1]_.
Based on [2]_ and [3]_. Edited by Daniyar Turmukhambetov.
"""
def __init__(self, out_size, name='SpatialProjectiveTransformer', interp_method='bilinear', **kwargs):
"""
Parameters
----------
out_size : tuple of two ints
The size of the output of the spatial network (height, width).
name : string
The scope name of the variables in this network.
"""
self.name = name
self.out_size = out_size
self.param_dim = 8
self.interp_method=interp_method
with tf.variable_scope(self.name):
self.pixel_grid = _meshgrid(self.out_size)
def transform(self, inp, theta):
"""
Projective Transformation of input tensor inp with parameters theta
Parameters
----------
inp : float
The input tensor should have the shape
[batch_size, height, width, num_channels].
theta: float
The output of the localisation network
should have the shape
[batch_size, 8].
Notes
-----
To initialize the network to the identity transform initialize ``theta`` to :
identity = np.array([1., 0., 0.,
[0., 1., 0.,
[0., 0.])
theta = tf.Variable(initial_value=identity)
"""
with tf.variable_scope(self.name):
x_s, y_s = self._transform(inp, theta)
output = _interpolate(
inp, x_s, y_s,
self.out_size,
method=self.interp_method
)
batch_size, _, _, num_channels = inp.get_shape().as_list()
output = tf.reshape(output, [batch_size, self.out_size[0], self.out_size[1], num_channels])
return output
def _transform(self, inp, theta):
with tf.variable_scope(self.name + '_projective_transform'):
batch_size, _, _, num_channels = inp.get_shape().as_list()
theta = tf.reshape(theta, (batch_size, 8))
theta = tf.concat([theta, tf.ones([batch_size, 1])], 1)
theta = tf.reshape(theta, (batch_size, 3, 3))
pixel_grid = tf.tile(self.pixel_grid, [batch_size])
pixel_grid = tf.reshape(pixel_grid, [batch_size, 3, -1])
# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
T_g = tf.matmul(theta, pixel_grid)
x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
z_s = tf.slice(T_g, [0, 2, 0], [-1, 1, -1])
x_s = x_s/z_s
y_s = y_s/z_s
x_s_flat = tf.reshape(x_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
return x_s_flat, y_s_flat
class ElasticTransformer(object):
"""Spatial Elastic Transformer Layer with Thin Plate Spline deformations
Implements a spatial transformer layer as described in [1]_.
Based on [4]_ and [5]_. Edited by Daniyar Turmukhambetov.
"""
def __init__(self, out_size, param_dim=2*16, name='SpatialElasticTransformer', interp_method='bilinear', **kwargs):
"""
Parameters
----------
out_size : tuple of two ints
The size of the output of the spatial network (height, width).
param_dim: int
The 2 x number of control points that define
Thin Plate Splines deformation field.
number of control points *MUST* be a square of an integer.
2 x 16 by default.
name : string
The scope name of the variables in this network.
"""
num_control_points = int(param_dim/2)
assert param_dim == 2*num_control_points, 'param_dim must be 2 times a square of an integer.'
self.name = name
self.param_dim = param_dim
self.interp_method=interp_method
self.num_control_points = num_control_points
self.out_size = out_size
self.grid_size = math.floor(math.sqrt(self.num_control_points))
assert self.grid_size*self.grid_size == self.num_control_points, 'num_control_points must be a square of an int'
with tf.variable_scope(self.name):
# Create source grid
self.source_points = ElasticTransformer.get_meshgrid(self.grid_size, self.grid_size)
# Construct pixel grid
self.pixel_grid = ElasticTransformer.get_meshgrid(self.out_size[1], self.out_size[0])
self.num_pixels = self.out_size[0]*self.out_size[1]
self.pixel_distances, self.L_inv = self._initialize_tps(self.source_points, self.pixel_grid)
def transform(self, inp, theta, forward=True, **kwargs):
"""
Parameters
----------
inp : float
The input tensor should have the shape
[batch_size, height, width, num_channels].
theta: float
Should have the shape of [batch_size, self.num_control_points x 2]
Theta is the output of the localisation network, so it is
the x and y offsets of the destination coordinates
of each of the control points.
Notes
-----
To initialize the network to the identity transform initialize ``theta`` to zeros:
identity = np.zeros(16*2)
identity = identity.flatten()
theta = tf.Variable(initial_value=identity)
"""
with tf.variable_scope(self.name):
# reshape destination offsets to be (batch_size, 2, num_control_points)
# and add to source_points
source_points = tf.expand_dims(self.source_points, 0)
theta = source_points + tf.reshape(theta, [-1, 2, self.num_control_points])
x_s, y_s = self._transform(
inp, theta, self.num_control_points,
self.pixel_grid, self.num_pixels,
self.pixel_distances, self.L_inv,
self.name + '_elastic_transform', forward)
if forward:
output = _interpolate(
inp, x_s, y_s,
self.out_size,
method=self.interp_method
)
else:
rx_s, ry_s = self._transform(
inp, theta, self.num_control_points,
self.pixel_grid, self.num_pixels,
self.pixel_distances, self.L_inv,
self.name + '_elastic_transform', forward)
output = _interpolate(
inp, rx_s, ry_s,
self.out_size,
method=self.interp_method
)
pass
batch_size, _, _, num_channels = inp.get_shape().as_list()
output = tf.reshape(output, [batch_size, self.out_size[0], self.out_size[1], num_channels])
return output
def _transform(self, inp, theta, num_control_points, pixel_grid, num_pixels, pixel_distances, L_inv, name, forward=True):
with tf.variable_scope(name):
batch_size = inp.get_shape().as_list()[0]
# Solve as in ref [2]
theta = tf.reshape(theta, [-1, num_control_points])
coefficients = tf.matmul(theta, L_inv)
coefficients = tf.reshape(coefficients, [-1, 2, num_control_points+3])
# Transform each point on the target grid (out_size)
right_mat = tf.concat([pixel_grid, pixel_distances], 0)
right_mat = tf.tile(tf.expand_dims(right_mat, 0), (batch_size, 1, 1))
transformed_points = tf.matmul(coefficients, right_mat)
transformed_points = tf.reshape(transformed_points, [-1, 2, num_pixels])
x_s_flat = tf.reshape(transformed_points[:,0,:], [-1])
y_s_flat = tf.reshape(transformed_points[:,1,:], [-1])
return x_s_flat, y_s_flat
# U function for the new point and each source point
@staticmethod
def U_func(points1, points2):
# The U function is simply U(r) = r^2 * log(r^2), as in ref [5]_,
# where r is the euclidean distance
r_sq = tf.transpose(tf.reduce_sum(tf.square(points1 - points2), axis=0))
log_r = tf.log(r_sq)
log_r = tf.where(tf.is_inf(log_r), tf.zeros_like(log_r), log_r)
phi = r_sq * log_r
# The U function is simply U(r) = r, where r is the euclidean distance
#phi = tf.sqrt(r_sq)
return phi
@staticmethod
def get_meshgrid(grid_size_x, grid_size_y):
# Create 2 x num_points array of source points
x_points, y_points = tf.meshgrid(
tf.linspace(-1.0, 1.0, int(grid_size_x)),
tf.linspace(-1.0, 1.0, int(grid_size_y)))
x_flat = tf.reshape(x_points, (1,-1))
y_flat = tf.reshape(y_points, (1,-1))
points = tf.concat([x_flat, y_flat], 0)
return points
def _initialize_tps(self, source_points, pixel_grid):
"""
Initializes the thin plate spline calculation by creating the source
point array and the inverted L matrix used for calculating the
transformations as in ref [5]_
Returns
----------
right_mat : float
Tensor of shape [num_control_points + 3, out_height*out_width].
L_inv : float
Tensor of shape [num_control_points + 3, num_control_points].
source_points : float
Tensor of shape (2, num_control_points).
"""
tL = ElasticTransformer.U_func(tf.expand_dims(source_points, 2), tf.expand_dims(source_points, 1))
# Initialize L
L_top = tf.concat([tf.zeros([2,3]), source_points], 1)
L_mid = tf.concat([tf.zeros([1, 2]), tf.ones([1, self.num_control_points+1])], 1)
L_bot = tf.concat([tf.transpose(source_points), tf.ones([self.num_control_points, 1]), tL], 1)
L = tf.concat([L_top, L_mid, L_bot], 0)
L_inv = tf.matrix_inverse(L)
# Construct right mat
to_transform = tf.expand_dims(pixel_grid, 2)
stacked_source_points = tf.expand_dims(source_points, 1)
distances = ElasticTransformer.U_func(to_transform, stacked_source_points)
# Add in the coefficients for the affine translation (1, x, and y,
# corresponding to a_1, a_x, and a_y)
ones = tf.ones(shape=[1, self.num_pixels])
pixel_distances = tf.concat([ones, distances], 0)
L_inv = tf.transpose(L_inv[:,3:])
return pixel_distances, L_inv
"""
Common Functions
"""
def _meshgrid3d(out_size):
"""
the regular grid of coordinates to sample the values after the transformation
"""
with tf.variable_scope('meshgrid3d'):
# This should be equivalent to:
# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
# np.linspace(-1, 1, height))
# ones = np.ones(np.prod(x_t.shape))
# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
#z_t, y_t, x_t = tf.meshgrid(tf.linspace(0., out_size[0]-1., out_size[0]),
# tf.linspace(0., out_size[1]-1., out_size[1]),
# tf.linspace(0., out_size[2]-1., out_size[2]), indexing='ij')
z_t, y_t, x_t = tf.meshgrid(tf.linspace(-1., 1., out_size[0]),
tf.linspace(-1., 1., out_size[1]),
tf.linspace(-1., 1., out_size[2]), indexing='ij')
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
z_t_flat = tf.reshape(z_t, (1, -1))
ones = tf.ones_like(x_t_flat)
grid = tf.concat([x_t_flat, y_t_flat, z_t_flat, ones], 0)
grid = tf.reshape(grid, [-1])
return grid
def _meshgrid(out_size):
"""
the regular grid of coordinates to sample the values after the transformation
"""
with tf.variable_scope('meshgrid'):
# This should be equivalent to:
# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
# np.linspace(-1, 1, height))
# ones = np.ones(np.prod(x_t.shape))
# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
x_t, y_t = tf.meshgrid(tf.linspace(-1.0, 1.0, out_size[1]),
tf.linspace(-1.0, 1.0, out_size[0]))
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
grid = tf.concat([x_t_flat, y_t_flat, tf.ones_like(x_t_flat)], 0)
grid = tf.reshape(grid, [-1])
return grid
def _repeat(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.tile(tf.expand_dims(x,1), [1, n_repeats])
return tf.reshape(rep, [-1])
def _interpolate(im, x, y, out_size, method):
if method=='bilinear':
return bilinear_interp(im, x, y, out_size)
if method=='bicubic':
return bicubic_interp(im, x, y, out_size)
return None
def _interpolate3d(vol, x, y, z, out_size, method='bilinear'):
return bilinear_interp3d(vol, x, y, z, out_size)
def bilinear_interp3d(vol, x, y, z, out_size, edge_size=1):
with tf.variable_scope('bilinear_interp3d'):
batch_size, depth, height, width, channels = vol.get_shape().as_list()
if edge_size>0:
vol = tf.pad(vol, [[0,0], [edge_size,edge_size], [edge_size,edge_size], [edge_size,edge_size], [0,0]], mode='CONSTANT')
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
z = tf.cast(z, tf.float32)
depth_f = tf.cast(depth, tf.float32)
height_f = tf.cast(height, tf.float32)
width_f = tf.cast(width, tf.float32)
out_depth = out_size[0]
out_height = out_size[1]
out_width = out_size[2]
# scale indices to [0, width/height/depth - 1]
x = (x + 1.) / 2. * (width_f -1.)
y = (y + 1.) / 2. * (height_f -1.)
z = (z + 1.) / 2. * (depth_f -1.)
# clip to to [0, width/height/depth - 1] +- edge_size
x = tf.clip_by_value(x, -edge_size, width_f -1. + edge_size)
y = tf.clip_by_value(y, -edge_size, height_f -1. + edge_size)
z = tf.clip_by_value(z, -edge_size, depth_f -1. + edge_size)
x += edge_size
y += edge_size
z += edge_size
# do sampling
x0_f = tf.floor(x)
y0_f = tf.floor(y)
z0_f = tf.floor(z)
x1_f = x0_f + 1
y1_f = y0_f + 1
z1_f = z0_f + 1
x0 = tf.cast(x0_f, tf.int32)
y0 = tf.cast(y0_f, tf.int32)
z0 = tf.cast(z0_f, tf.int32)
x1 = tf.cast(tf.minimum(x1_f, width_f - 1. + 2*edge_size), tf.int32)
y1 = tf.cast(tf.minimum(y1_f, height_f - 1. + 2*edge_size), tf.int32)
z1 = tf.cast(tf.minimum(z1_f, depth_f - 1. + 2*edge_size), tf.int32)
dim3 = (width + 2*edge_size)
dim2 = (width + 2*edge_size)*(height + 2*edge_size)
dim1 = (width + 2*edge_size)*(height + 2*edge_size)*(depth + 2*edge_size)
base = _repeat(tf.range(batch_size)*dim1, out_depth*out_height*out_width)
base_z0 = base + z0*dim2
base_z1 = base + z1*dim2
base_y00 = base_z0 + y0*dim3
base_y01 = base_z0 + y1*dim3
base_y10 = base_z1 + y0*dim3
base_y11 = base_z1 + y1*dim3
idx_000 = base_y00 + x0
idx_001 = base_y00 + x1
idx_010 = base_y01 + x0
idx_011 = base_y01 + x1
idx_100 = base_y10 + x0
idx_101 = base_y10 + x1
idx_110 = base_y11 + x0
idx_111 = base_y11 + x1
# use indices to lookup pixels in the flat image and restore
# channels dim
vol_flat = tf.reshape(vol, [-1, channels])
I000 = tf.gather(vol_flat, idx_000)
I001 = tf.gather(vol_flat, idx_001)
I010 = tf.gather(vol_flat, idx_010)
I011 = tf.gather(vol_flat, idx_011)
I100 = tf.gather(vol_flat, idx_100)
I101 = tf.gather(vol_flat, idx_101)
I110 = tf.gather(vol_flat, idx_110)
I111 = tf.gather(vol_flat, idx_111)
# and finally calculate interpolated values
w000 = tf.expand_dims((z1_f-z)*(y1_f-y)*(x1_f-x),1)
w001 = tf.expand_dims((z1_f-z)*(y1_f-y)*(x-x0_f),1)
w010 = tf.expand_dims((z1_f-z)*(y-y0_f)*(x1_f-x),1)
w011 = tf.expand_dims((z1_f-z)*(y-y0_f)*(x-x0_f),1)
w100 = tf.expand_dims((z-z0_f)*(y1_f-y)*(x1_f-x),1)
w101 = tf.expand_dims((z-z0_f)*(y1_f-y)*(x-x0_f),1)
w110 = tf.expand_dims((z-z0_f)*(y-y0_f)*(x1_f-x),1)
w111 = tf.expand_dims((z-z0_f)*(y-y0_f)*(x-x0_f),1)
output = tf.add_n([
w000*I000,
w001*I001,
w010*I010,
w011*I011,
w100*I100,
w101*I101,
w110*I110,
w111*I111])
return output
def bilinear_interp(im, x, y, out_size):
with tf.variable_scope('bilinear_interp'):
batch_size, height, width, channels = im.get_shape().as_list()
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
height_f = tf.cast(height, tf.float32)
width_f = tf.cast(width, tf.float32)
out_height = out_size[0]
out_width = out_size[1]
# scale indices from [-1, 1] to [0, width/height - 1]
x = tf.clip_by_value(x, -1, 1)
y = tf.clip_by_value(y, -1, 1)
x = (x + 1.0) / 2.0 * (width_f-1.0)
y = (y + 1.0) / 2.0 * (height_f-1.0)
# do sampling
x0_f = tf.floor(x)
y0_f = tf.floor(y)
x1_f = x0_f + 1
y1_f = y0_f + 1
x0 = tf.cast(x0_f, tf.int32)
y0 = tf.cast(y0_f, tf.int32)
x1 = tf.cast(tf.minimum(x1_f, width_f - 1), tf.int32)
y1 = tf.cast(tf.minimum(y1_f, height_f - 1), tf.int32)
dim2 = width
dim1 = width*height
base = _repeat(tf.range(batch_size)*dim1, out_height*out_width)
base_y0 = base + y0*dim2
base_y1 = base + y1*dim2
idx_00 = base_y0 + x0
idx_01 = base_y0 + x1
idx_10 = base_y1 + x0
idx_11 = base_y1 + x1
# use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, [-1, channels])
I00 = tf.gather(im_flat, idx_00)
I01 = tf.gather(im_flat, idx_01)
I10 = tf.gather(im_flat, idx_10)
I11 = tf.gather(im_flat, idx_11)
# and finally calculate interpolated values
w00 = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
w01 = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
w10 = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
w11 = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
output = tf.add_n([w00*I00, w01*I01, w10*I10, w11*I11])
return output
def bicubic_interp(im, x, y, out_size):
alpha = -0.75 # same as in tf.image.resize_images, see:
# tensorflow/tensorflow/core/kernels/resize_bicubic_op.cc
bicubic_coeffs = (
(1, 0, -(alpha+3), (alpha+2)),
(0, alpha, -2*alpha, alpha ),
(0, -alpha, 2*alpha+3, -alpha-2 ),
(0, 0, alpha, -alpha )
)
with tf.variable_scope('bicubic_interp'):
batch_size, height, width, channels = im.get_shape().as_list()
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
height_f = tf.cast(height, tf.float32)
width_f = tf.cast(width, tf.float32)
out_height = out_size[0]
out_width = out_size[1]
# scale indices from [-1, 1] to [0, width/height - 1]
x = tf.clip_by_value(x, -1, 1)
y = tf.clip_by_value(y, -1, 1)
x = (x + 1.0) / 2.0 * (width_f-1.0)
y = (y + 1.0) / 2.0 * (height_f-1.0)
# do sampling
# integer coordinates of 4x4 neighbourhood around (x0_f, y0_f)
x0_f = tf.floor(x)
y0_f = tf.floor(y)
xm1_f = x0_f - 1
ym1_f = y0_f - 1
xp1_f = x0_f + 1
yp1_f = y0_f + 1
xp2_f = x0_f + 2
yp2_f = y0_f + 2
# clipped integer coordinates
xs = [0, 0, 0, 0]
ys = [0, 0, 0, 0]
xs[0] = tf.cast(x0_f, tf.int32)
ys[0] = tf.cast(y0_f, tf.int32)
xs[1] = tf.cast(tf.maximum(xm1_f, 0), tf.int32)
ys[1] = tf.cast(tf.maximum(ym1_f, 0), tf.int32)
xs[2] = tf.cast(tf.minimum(xp1_f, width_f - 1), tf.int32)
ys[2] = tf.cast(tf.minimum(yp1_f, height_f - 1), tf.int32)
xs[3] = tf.cast(tf.minimum(xp2_f, width_f - 1), tf.int32)
ys[3] = tf.cast(tf.minimum(yp2_f, height_f - 1), tf.int32)
# indices of neighbours for the batch
dim2 = width
dim1 = width*height
base = _repeat(tf.range(batch_size)*dim1, out_height*out_width)
idx = []
for i in range(4):
idx.append([])
for j in range(4):
cur_idx = base + ys[i]*dim2 + xs[j]
idx[i].append(cur_idx)
# use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, [-1, channels])
Is = []
for i in range(4):
Is.append([])
for j in range(4):
Is[i].append(tf.gather(im_flat, idx[i][j]))
def get_weights(x, x0_f):
tx = (x-x0_f)
tx2 = tx * tx
tx3 = tx2 * tx
t = [1, tx, tx2, tx3]
weights = []
for i in range(4):
result = 0
for j in range(4):
result = result + bicubic_coeffs[i][j]*t[j]
result = tf.reshape(result, [-1, 1])
weights.append(result)
return weights
# to calculate interpolated values first,
# interpolate in x dim 4 times for y=[0, -1, 1, 2]
weights = get_weights(x, x0_f)
x_interp = []
for i in range(4):
result = []
for j in range(4):
result = result + [weights[j]*Is[i][j]]
x_interp.append(tf.add_n(result))
# finally, interpolate in y dim using interpolations in x dim
weights = get_weights(y, y0_f)
y_interp = []
for i in range(4):
y_interp = y_interp + [weights[i]*x_interp[i]]
output = tf.add_n(y_interp)
return output