-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_graph.py
406 lines (326 loc) · 10.2 KB
/
main_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from graph import *
def test_1():
# From first example in class
# G = (V, E)
# V = {v1, v2, v3, v4}
# E = {e1, e2, e3, e4}
# Create graph, vertex set and edge set
G = Graph(name="G")
v1 = G.add_vertex(1,1,label="v1")
v2 = G.add_vertex(1,2,label="v2")
v3 = G.add_vertex(2,2,label="v3")
v4 = G.add_vertex(2,1,label="v4")
e1 = G.add_edge(v1, v2, dirn=True, label="e1")
e2 = G.add_edge(v2, v1, dirn=True, label="e2")
e3 = G.add_edge(v2, v3, dirn=True, label="e3")
e4 = G.add_edge(v3, v3, dirn=True, label="e4")
# e5 = G.add_edge(v3, v3, dirn=True, label="e5")
# Begin test
num_fail = 0
print "|========= Graph Basics Test Begin =========|"
num_fail += run_test("Print graph G",\
" Graph: G(V, E) with\n" +
"Vertex set: V = ['v1', 'v2', 'v3', 'v4']\n" +
" Edges set: E = ['e4', 'e1', 'e3', 'e2']",\
G.__str__)
# # G.has_parallel_edges()
# print G
num_fail += run_test("Is graph G a digraph?",\
True,\
G.is_directed)
# # Expected answer: True
# print "\nIs graph G a digraph?"
# print G.is_directed()
num_fail += run_test("Is graph G a simple graph?",\
False,\
G.is_simple_graph)
# # Expected answer: False
# print "\nIs graph G a simple graph?"
# print G.is_simple_graph()
num_fail += run_test("Is v1 adjacent to v2?",\
True,\
v1.is_adjacent_to, v2)
# # Expected answer: True
# print "\nIs v1 adjacent to v2?"
# print v1.is_adjacent_to(v2)
num_fail += run_test("Is v1 adjacent to v3?",\
False,\
v1.is_adjacent_to, v3)
# # Expected answer: False
# print "\nIs v1 adjacent to v3?"
# print v1.is_adjacent_to(v3)
num_fail += run_test("Is e1 incident on v1 and v2?",\
True,\
e1.is_incident_on, v1, v2)
# # Expected answer: True and True
# # Second function tests them together
# # Expected answer: True
# print "\nIs e1 incident on v1 and v2?"
# print str( e1.is_incident_on(v1) ) + " and " + str(e1.is_incident_on(v2))
# # print e1.is_incident_on(v1, v2)
num_fail += run_test("Is e1 incident on v2 and v3?",\
False,\
e1.is_incident_on, v2, v3)
# # Expected answer: False
# print "\nIs e1 incident on v2 and v3?"
# print e1.is_incident_on(v2, v3)
num_fail += run_test("Is v1 incident on e1 and e2?",\
True,\
v1.is_incident_on, e1, e2)
# # Expected answer: True and True
# print "\nIs v1 incident on e1 and e2?"
# print str( v1.is_incident_on(e1) ) + " and " + str( v1.is_incident_on(e2) )
num_fail += run_test("Is v1 incident on e3?",\
False,\
v1.is_incident_on, e3)
# # Expected answer: False
# print "\nIs v1 incident on e3?"
# print v1.is_incident_on(e3)
num_fail += run_test("Is v4 isolated?",\
True,\
v4.is_isolated)
# # Expected answer: True
# print "\nIs v4 isolated?"
# print v4.is_isolated()
num_fail += run_test("Is v1 isolated?",\
False,\
v1.is_isolated)
# # Expected answer: False
# print "\nIs v1 isolated?"
# print v1.is_isolated()
num_fail += run_test("Is e4 a loop?",\
True,\
e4.is_loop)
# # Expected answer: True
# print "\nIs e4 a loop?"
# print e4.is_loop()
num_fail += run_test("Is e3 a loop?",\
False,\
e3.is_loop)
# # Expected answer: False
# print "\nIs e3 a loop?"
# print e3.is_loop()
num_fail += run_test("Are e1 and e2 parallel edges?",\
True,\
e1.is_parallel_to, e2)
# # Expected answer: True
# print "\nAre e1 and e2 parallel edges?"
# print e1.is_parallel_to(e2)
num_fail += run_test("Are e1 and e3 parallel edges?",\
False,\
e1.is_parallel_to, e3)
# # Expected answer: False
# print "\nAre e1 and e3 parallel edges?"
# print e1.is_parallel_to(e3)
print "\n|========== Graph Basics Test End ==========|"
print "\nTest finished with {} failures. {}".format(num_fail,\
"Great job!" if num_fail == 0 else \
"Sorry. Let's try again.")
# End test
def test_2():
# Create graph, vertex set and edge set
G = Graph(name="G")
v1 = G.add_vertex(1,1,label="v1")
v2 = G.add_vertex(1,2,label="v2")
v3 = G.add_vertex(2,2,label="v3")
v4 = G.add_vertex(2,1,label="v4")
e1 = G.add_edge(v1, v2, dirn=True, label="e1")
e2 = G.add_edge(v2, v1, dirn=True, label="e2")
e3 = G.add_edge(v2, v3, dirn=True, label="e3")
e4 = G.add_edge(v3, v3, dirn=True, label="e4")
e5 = G.add_edge(v3, v3, dirn=True, label="e5")
# Begin test
num_fail = 0
print "|============= Path Test Begin =============|"
num_fail += run_test("Is (v1, v2, v3) a path in G",\
True,\
G.is_path,(v1, v2, v3))
# # Expected answer: True
# print "\nIs (v1, v2, v3) a path in G"
# print G.is_path((v1, v2, v3))
num_fail += run_test("Is (v1, v2, v3, v4) a path in G",\
False,\
G.is_path,(v1, v2, v3, v4))
# # Expected answer: False
# print "\nIs (v1, v2, v3, v4) a path in G"
# print G.is_path((v1, v2, v3, v4))
num_fail += run_test("Is (v1, v2, v3, v2, v1) a path in G",\
True,\
G.is_path,(v1, v2, v3, v2, v1))
# # Expected answer: True
# print "\nIs (v1, v2, v3, v2, v1) a path in G"
# print G.is_path((v1, v2, v3, v2, v1))
print "\n|============== Path Test End ==============|"
print "\nTest finished with {} failures. {}".format(num_fail,\
"Great job!" if num_fail == 0 else \
"Sorry. Let's try again.")
# End test
def test_3():
# Create graphs and their vertex sets and edge sets
G = Graph(name="G")
v1 = G.add_vertex(1,1,label="v1")
v2 = G.add_vertex(3,1,label="v2")
v3 = G.add_vertex(2,2,label="v3")
v4 = G.add_vertex(1,3,label="v4")
v5 = G.add_vertex(3,3,label="v5")
e1 = G.add_edge(v1, v4, dirn=True, label="e1")
e2 = G.add_edge(v1, v3, dirn=True, label="e2")
e3 = G.add_edge(v3, v2, dirn=True, label="e3")
e4 = G.add_edge(v2, v4, dirn=True, label="e4")
e5 = G.add_edge(v4, v5, dirn=True, label="e5")
F = Graph(name="F")
v1 = F.add_vertex(1,2,label="v1")
v2 = F.add_vertex(2,1,label="v2")
v3 = F.add_vertex(3,2,label="v3")
v4 = F.add_vertex(4,1,label="v4")
e1 = F.add_edge(v1, v2, dirn=True, label="e1")
e2 = F.add_edge(v2, v2, dirn=True, label="e2")
e3 = F.add_edge(v2, v3, dirn=True, label="e3")
K_2_3 = Graph(name="K_2_3")
v1 = K_2_3.add_vertex(2,1,label="v1")
v2 = K_2_3.add_vertex(1,2,label="v2")
v3 = K_2_3.add_vertex(2,3,label="v3")
v4 = K_2_3.add_vertex(1,4,label="v4")
v5 = K_2_3.add_vertex(2,5,label="v5")
e1 = K_2_3.add_edge(v2, v1, dirn=True, label="e1")
e2 = K_2_3.add_edge(v2, v3, dirn=True, label="e2")
e3 = K_2_3.add_edge(v2, v5, dirn=True, label="e3")
e4 = K_2_3.add_edge(v4, v1, dirn=True, label="e4")
e5 = K_2_3.add_edge(v4, v3, dirn=True, label="e5")
e6 = K_2_3.add_edge(v4, v5, dirn=True, label="e6")
H = Graph(name="H")
v1 = H.add_vertex(1,1,label="v1")
v2 = H.add_vertex(2,1,label="v2")
v3 = H.add_vertex(3,2,label="v3")
v4 = H.add_vertex(1,2,label="v4")
v5 = H.add_vertex(2,2,label="v5")
v6 = H.add_vertex(3,2,label="v6")
v7 = H.add_vertex(4,1,label="v7")
v8 = H.add_vertex(5,2,label="v8")
v9 = H.add_vertex(3,3,label="v9")
v10 = H.add_vertex(4,3,label="v10")
e1 = H.add_edge(v1, v4, dirn=True, label="e1")
e2 = H.add_edge(v4, v5, dirn=True, label="e2")
e3 = H.add_edge(v5, v2, dirn=True, label="e3")
e4 = H.add_edge(v5, v6, dirn=True, label="e4")
e5 = H.add_edge(v6, v3, dirn=True, label="e5")
e6 = H.add_edge(v6, v7, dirn=True, label="e6")
e7 = H.add_edge(v6, v8, dirn=True, label="e7")
e8 = H.add_edge(v6, v9, dirn=True, label="e8")
e9 = H.add_edge(v6, v10, dirn=True, label="e9")
# Begin test
num_fail = 0
print "|=========== Bipartite Test Begin ==========|"
num_fail += run_test("Is graph G bipartite?",\
([v4, v3], [v1, v2, v5]),\
G.is_bipartite)
# # Expected answer: ([v1, v2, v5], [v3, v4])
# print "\nIs graph G bipartite?"
# print G.is_bipartite()
num_fail += run_test("Is graph F bipartite?",\
None,\
F.is_bipartite)
# # Expected answer: None
# print "\nIs graph F bipartite?"
# print F.is_bipartite()
num_fail += run_test("Is graph K_2_3 bipartite?",\
([v1, v3, v5], [v2, v4]),\
K_2_3.is_bipartite)
# # Expected answer: ([v1, v3, v5], [v2, v4])
# print "\nIs graph K_2_3 bipartite?"
# print K_2_3.is_bipartite()
num_fail += run_test("Is graph H bipartite?",\
([v1, v3, v5, v7, v8, v10, v9], [v2, v4, v6]),\
H.is_bipartite)
# # Expected answer: ([v1, v3, v5, v7, v8, v10, v9], [v2, v4, v6])
# print "\nIs graph H bipartite?"
# print H.is_bipartite()
print "\n|=========== Bipartite Test End ============|"
print "\nTest finished with {} failures. {}".format(num_fail,\
"Great job!" if num_fail == 0 else \
"Sorry. Let's try again.")
# End test
def test_x():
g = Graph()
# print g.name
v1 = Vertex(g,1,2)
v2 = Vertex(g,1,2)
# v3 = Vertex(g,1,2)
v3 = g.add_vertex(1,1)
# v2 = g.add_vertex(2,2)
e1 = g.add_edge(v1, v2)
v_1 = g.get_vertex("v1")
e_1 = g.get_edge("e1")
e_2 = g.add_edge(Vertex(g,9,9),Vertex(g,-9,-9))
# print g.verts
print v3
print e_2
g.is_directed()
print v2
print e1
print v_1
print e_1
print "\nPrinting Graph:"
print g
print g.verts
for v in g.verts:
print g.verts[v].graph
for v, v1 in g.verts.items():
print v1.graph
def run_test(prompt, expected, function, *arg):
print "\n" + prompt
print "Expected result: {}".format(expected)
if len(arg) == 0:
result = function()
else:
result = function(*arg)
print "Actual result: {}".format( result )
# print my_cmp(result , expected)
test = my_cmp(expected, result)
print "Success!" if test else "Failure!"
return 0 if test else 1
def my_cmp(exp, res):
# IF arg is 'None'
if res is None:
return exp is res
if type(res) is bool:
return exp is res
# If arg is a tuple
elif type(res) is tuple:
if len(res) != len(exp):
return False
e = []
r = []
for i in range(len(exp)):
e.append(sorted(exp[i]))
r.append(sorted(res[i]))
e = sorted(e)
r = sorted(r)
return e == r
# print e
# print r
# print cmp(e, r)
# e = sorted(exp)
# r = sorted(res)
# print e
# print r
# for i in range(len(e)):
# if sorted(e[i]) != sorted(r[i]):
# # print e
# # print r
# print sorted(e[i])
# print sorted(r[i])
# return False
# return True
elif type(res) is str:
return exp == res
else:
print "No comparison test for " + str(type(res))
def main():
# Might want to change to eval_1 later
test_1() # Graph basics
test_2() # Path test
test_3() # Bipartite Test
# test_x()
if __name__ == '__main__':
main()