-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_classifier.py
464 lines (375 loc) · 17.1 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import csv
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
from utils_fun import split_question
import modeling
import optimization
import tokenization
import tensorflow as tf
import numpy as np
from tensorflow.python.framework import graph_util
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) for the task.")
flags.DEFINE_string("bert_config_file", None,"This specifies the model architecture.")
flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string("output_dir", "./output", "The output directory where the model checkpoints will be written.")
flags.DEFINE_string("init_checkpoint", "model_files/chinese_L-12_H-768_A-12/bert_model.ckpt", "from a pre-trained BERT model).")
flags.DEFINE_bool( "do_lower_case", True, " Should be True for uncased models and False for cased models.")
flags.DEFINE_integer("max_seq_length", 512, "than this will be padded.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_predict", False, "Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 4, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 4, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 4, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 0.00001, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 10.0, "Total number of training epochs to perform.")
flags.DEFINE_float("warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.")
class InputExample(object):
def __init__(self, guid, text_a, text_b=None, label=None):
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class PaddingInputExample(object):
"""Fake example so the num input examples is a multiple of the batch size.
"""
class InputFeatures(object):
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
is_real_example=True):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
class DataProcessor(object):
def get_train_examples(self, data_dir):
raise NotImplementedError()
def get_dev_examples(self, data_dir):
raise NotImplementedError()
def get_test_examples(self, data_dir):
raise NotImplementedError()
def get_labels(self):
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class MrpcProcessor(DataProcessor):
def get_train_examples(self, data_dir, num_labels):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.txt")), "train", num_labels)
#self._read_tsv(os.path.join(data_dir, "qa_testset_B.txt")), "train", num_labels)
def get_dev_examples(self, data_dir, num_labels):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.txt")), "dev", num_labels)
def get_test_examples(self, data_dir):
pass
def get_labels(self):
with open("data/label_stat.txt",'r') as f2:
txt = f2.readlines()
label_list = [x.strip().split()[1] for x in txt]
return label_list
def _create_examples(self, lines, set_type, num_classes):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = tokenization.convert_to_unicode(line[1])
#text_b = tokenization.convert_to_unicode(line[2])
text_b = None
if set_type == "test":
label = "0"
else:
#label = tokenization.convert_to_unicode(line[0])
label_idx = line[0].split(',')
label = [0] * num_classes
for i in label_idx:
label[int(i)] = 1
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer):
if isinstance(example, PaddingInputExample):
return InputFeatures(
input_ids=[0] * max_seq_length,
input_mask=[0] * max_seq_length,
segment_ids=[0] * max_seq_length,
label_id=0,
is_real_example=False)
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
#label_id = label_map[example.label]
label_id = example.label
if ex_index < 2:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
print("label: %s" % " ".join([str(x) for x in label_id]))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True)
return feature
def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file):
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer)
def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_id)
features["is_real_example"] = create_int_feature([int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def get_input_data(input_file, seq_length, batch_size, num_labels):
def parser(record):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([num_labels], tf.int64),
#"is_real_example": tf.FixedLenFeature([], tf.int64),
}
example = tf.parse_single_example(record, features=name_to_features)
input_ids = example["input_ids"]
input_mask = example["input_mask"]
segment_ids = example["segment_ids"]
labels = example["label_ids"]
return input_ids, input_mask, segment_ids, labels
dataset = tf.data.TFRecordDataset(input_file)
dataset = dataset.map(parser).repeat().batch(batch_size).shuffle(buffer_size=1000)
iterator = dataset.make_one_shot_iterator()
input_ids, input_mask, segment_ids, labels = iterator.get_next()
return input_ids, input_mask, segment_ids, labels
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
def my_sigmoid_loss(logits, labels):
gamma = 0.9 *labels + 0.1
sign = 2 *labels - 1
#res = 1 - tf.log1p( gamma*logits/(1+ tf.abs(logits)) )
res = gamma * (1 - tf.log1p(sign* logits/(1+ tf.abs(logits))))
return res
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable("output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
#one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
#per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
#sigmoid_loss = tf.nn.sigmoid_cross_entropy_with_logits(
sigmoid_loss = my_sigmoid_loss(
logits=logits, labels=tf.cast(labels, tf.float32))
loss = tf.reduce_mean(sigmoid_loss)
return (loss, logits, probabilities)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError("Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings))
tf.gfile.MakeDirs(FLAGS.output_dir)
processor = MrpcProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
if 0:
train_examples = processor.get_train_examples(FLAGS.data_dir, num_labels)
#train_file = os.path.join(FLAGS.output_dir, "l512_train.tf_record")
train_file = os.path.join(FLAGS.output_dir, "testB_train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
if 0:
eval_examples = processor.get_dev_examples(FLAGS.data_dir, num_labels)
eval_file = os.path.join(FLAGS.output_dir, "l512_eval.tf_record")
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
train_examples = processor.get_train_examples(FLAGS.data_dir, num_labels)
num_train_steps = int(len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_epochs_steps = int(len(train_examples) / FLAGS.train_batch_size)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
is_training = True
seq_len = FLAGS.max_seq_length
input_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_ids')
input_mask = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_mask')
segment_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='segment_ids')
labels = tf.placeholder(tf.int64, shape=[None, num_labels], name='labels')
#labels = tf.placeholder(tf.int64, shape=[None], name='labels')
use_one_hot_embeddings = False
loss, logits, probabilities = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings)
mylogits = tf.multiply(logits,1, name="logits")
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate).minimize(loss)
input_file = "output/testB_train.tf_record"
batch_size = FLAGS.train_batch_size
tb_input_ids2, tb_input_mask2, tb_segment_ids2, tb_labels2 = get_input_data(input_file, seq_len, batch_size, num_labels)
input_file = "output/l512_train.tf_record"
batch_size = FLAGS.train_batch_size
input_ids2, input_mask2, segment_ids2, labels2 = get_input_data(input_file, seq_len, batch_size, num_labels)
val_input_file = "output/l512_eval.tf_record"
#val_input_file = "output/train.tf_record"
val_batch_size = FLAGS.eval_batch_size
val_input_ids2, val_input_mask2, val_segment_ids2, val_labels2 = get_input_data(val_input_file, seq_len, val_batch_size, num_labels)
if 0:
tvars = tf.trainable_variables()
initialized_variable_names = {}
assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, FLAGS.init_checkpoint)
tf.train.init_from_checkpoint(FLAGS.init_checkpoint, assignment_map)
#assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, FLAGS.init_checkpoint)
#tvars = tf.global_variables()
#assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, latest_checkpoint)
#not_initialized_vars = [v for v in tvars if v.name not in initialized_variable_names]
#tf.logging.info('all size %s; not initialized size %s' % (len(tvars), len(not_initialized_vars)))
#saver = tf.train.Saver([v for v in tvars if v.name in initialized_variable_names])
init_global = tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
sess.run(init_global)
#if len(not_initialized_vars):
# sess.run(tf.variables_initializer(not_initialized_vars))
#saver.restore(sess, FLAGS.init_checkpoint)
#for v in not_initialized_vars:
# tf.logging.info('not initialized: %s' % (v.name))
if 1:
latest_checkpoint = tf.train.latest_checkpoint('output')
saver.restore(sess, latest_checkpoint)
print("checkpoint restored from %s" % latest_checkpoint)
#tf.summary.FileWriter("output/",sess.graph)
vr = []; vp=[]
for i in range(num_train_steps):
if i % 13 == 1 and False:
#print('~~~~~~~use testset B')
ids, mask, segment,y = sess.run([tb_input_ids2, tb_input_mask2, tb_segment_ids2, tb_labels2])
else:
ids, mask, segment,y = sess.run([input_ids2, input_mask2, segment_ids2, labels2])
if i % 2 == 1:
ids, mask, segment, y = split_question(ids, mask, segment, y)
feed = {input_ids:ids, input_mask: mask, segment_ids: segment, labels:y}
_, out_loss, out_logits = sess.run([optimizer, loss,logits], feed_dict=feed)
ids, mask, segment,y = sess.run([val_input_ids2, val_input_mask2, val_segment_ids2, val_labels2])
feed = {input_ids:ids, input_mask: mask, segment_ids: segment, labels:y}
val_loss, val_logits = sess.run([loss, logits], feed_dict=feed)
#val_recall = np.mean(y[np.where(val_logits>0)])
val_recall = np.array(y[np.where(val_logits>0)]).flatten().tolist()
#val_precision = np.mean(np.int16(val_logits[y==1]>0))
val_precision = np.array(np.int16(val_logits[y==1]>0)).flatten().tolist()
vr += val_recall
vp += val_precision
if i % 100 == 0 and len(vr) > 10:
val_recall = np.mean(vr)
val_precision = np.mean(vp)
log_info = "epoch-%d step %d/%d - loss: %f val_loss: %f\trecall: %f precision: %f" % (
1+i/num_epochs_steps, i, num_train_steps, out_loss, val_loss, val_recall, val_precision)
print(log_info)
vr = []; vp=[]
if i % 1000 == 1 and i > 100:
saver.save(sess, 'output/bert_v2.ckpt')
print('\ncheckpoint saved\n')
if i % 2000 == 100:
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def,
output_node_names=["input_ids", "input_mask", "logits", "segment_ids"])
with tf.gfile.FastGFile('output/v2_testB_model.pb', mode='wb') as f:
f.write(output_graph_def.SerializeToString())
print('\nmodel exported!\n')
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def,
output_node_names=["input_ids", "input_mask", "logits", "segment_ids"])
with tf.gfile.FastGFile('output/v2_testB_model.pb', mode='wb') as f:
f.write(output_graph_def.SerializeToString())
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
tf.app.run()