forked from Farama-Foundation/Minigrid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwrappers.py
198 lines (150 loc) · 5.59 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
import operator
from functools import reduce
import numpy as np
import gym
from gym import error, spaces, utils
class ActionBonus(gym.core.Wrapper):
"""
Wrapper which adds an exploration bonus.
This is a reward to encourage exploration of less
visited (state,action) pairs.
"""
def __init__(self, env):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
env = self.unwrapped
tup = (tuple(env.agent_pos), env.agent_dir, action)
# Get the count for this (s,a) pair
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this (s,a) pair
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class StateBonus(gym.core.Wrapper):
"""
Adds an exploration bonus based on which positions
are visited on the grid.
"""
def __init__(self, env):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
# Tuple based on which we index the counts
# We use the position after an update
env = self.unwrapped
tup = (tuple(env.agent_pos))
# Get the count for this key
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this key
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ImgObsWrapper(gym.core.ObservationWrapper):
"""
Use the image as the only observation output, no language/mission.
"""
def __init__(self, env):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super().__init__(env)
self.observation_space = env.observation_space.spaces['image']
def observation(self, obs):
return obs['image']
class FullyObsWrapper(gym.core.ObservationWrapper):
"""
Fully observable gridworld using a compact grid encoding
"""
def __init__(self, env):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super().__init__(env)
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(self.env.width, self.env.height, 3), # number of cells
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
full_grid = env.grid.encode()
full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array([255, env.agent_dir, 0])
return full_grid
class FlatObsWrapper(gym.core.ObservationWrapper):
"""
Encode mission strings using a one-hot scheme,
and combine these with observed images into one flat array
"""
def __init__(self, env, maxStrLen=96):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super().__init__(env)
self.maxStrLen = maxStrLen
self.numCharCodes = 27
imgSpace = env.observation_space.spaces['image']
imgSize = reduce(operator.mul, imgSpace.shape, 1)
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(1, imgSize + self.numCharCodes * self.maxStrLen),
dtype='uint8'
)
self.cachedStr = None
self.cachedArray = None
def observation(self, obs):
image = obs['image']
mission = obs['mission']
# Cache the last-encoded mission string
if mission != self.cachedStr:
assert len(mission) <= self.maxStrLen, 'mission string too long ({} chars)'.format(len(mission))
mission = mission.lower()
strArray = np.zeros(shape=(self.maxStrLen, self.numCharCodes), dtype='float32')
for idx, ch in enumerate(mission):
if ch >= 'a' and ch <= 'z':
chNo = ord(ch) - ord('a')
elif ch == ' ':
chNo = ord('z') - ord('a') + 1
assert chNo < self.numCharCodes, '%s : %d' % (ch, chNo)
strArray[idx, chNo] = 1
self.cachedStr = mission
self.cachedArray = strArray
obs = np.concatenate((image.flatten(), self.cachedArray.flatten()))
return obs
class AgentViewWrapper(gym.core.Wrapper):
"""
Wrapper to customize the agent's field of view.
"""
def __init__(self, env, agent_view_size=7):
self.__dict__.update(vars(env)) # Pass values to super wrapper
super(AgentViewWrapper, self).__init__(env)
# Override default view size
env.unwrapped.agent_view_size = agent_view_size
# Compute observation space with specified view size
observation_space = gym.spaces.Box(
low=0,
high=255,
shape=(agent_view_size, agent_view_size, 3),
dtype='uint8'
)
# Override the environment's observation space
self.observation_space = spaces.Dict({
'image': observation_space
})
def reset(self, **kwargs):
return self.env.reset(**kwargs)
def step(self, action):
return self.env.step(action)