-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_ucb_ts.py
136 lines (102 loc) · 4.08 KB
/
neural_ucb_ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from NeuralTS.data_multi import Bandit_multi
from NeuralTS.learner_linear import LinearTS
from NeuralTS.learner_diag import NeuralTSDiag
from NeuralTS.learner_kernel import KernelTS
import scipy as sp
import torch
import torch.nn as nn
import torch.optim as optim
from backpack import backpack, extend
from backpack.extensions import BatchGrad
from scipy.optimize import minimize
import torch.nn.functional as F
import numpy as np
import pickle
# import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
save_interval = 50 # save a log file after every "save_interval" iteration
max_iter = 5000 + save_interval
##### choose which baseline to runs
### algo = {"neural", "linear", "kernel"}
### style = {"ucb", "ts"}
algo = "neural"
style = "ucb"
depth = 1
width = 20
lam, nu = 0.1, 0.1
diag = False
#### choose which synthetic experiment to run: {"cosine", "square", "shuttle", "MagicTelescope"}
dataset = "shuttle"
if dataset == "cosine" or dataset == "square":
# define the contextual bandit function for synthetic functions
K_arms = 4
context_dim = 10
def bandit_contextual(a_ground, K_arms):
context = []
rwd = []
fs = []
for k in range(K_arms):
x = np.random.random(context_dim) - 0.5
x = x / np.sqrt(np.sum(x * x))
context.append(x)
if dataset == "cosine":
f = np.cos(3 * np.sum(a_ground * x))
elif dataset == "square":
f = 10 * np.sum(a_ground * x)**2
y = f + np.random.normal(scale=0.01)
rwd.append(y)
fs.append(f)
context = np.array(context)
rwd = np.array(rwd)
return context, rwd, fs
a_ground = pickle.load(open("a_groundtruth_synth.pkl", "rb"))
elif dataset == "shuttle" or dataset == "MagicTelescope":
b = Bandit_multi(dataset, is_shuffle=True, seed=0)
context_dim = b.dim
stop_training_after_iter = 2000
local_training_iter = 30
run_list = np.arange(0, 3)
for itr in run_list:
if algo == "linear":
log_file_name = "results_fn_ucb/regret_iter_" + str(itr) + "_dataset_" + dataset + \
"_lam_" + str(lam) + "_nu_" + str(nu) + "_linear.pkl"
elif algo == "kernel":
log_file_name = "results_fn_ucb/regret_iter_" + str(itr) + "_dataset_" + dataset + \
"_lam_" + str(lam) + "_nu_" + str(nu) + "_kernel.pkl"
elif algo == "neural":
log_file_name = "results_fn_ucb/regret_iter_" + str(itr) + "_dataset_" + dataset + \
"_depth_" + str(depth) + "_width_" + str(width) + "_lam_" + str(lam) + \
"_nu_" + str(nu) + "_train_steps_" + str(local_training_iter) + "_neural_ucb.pkl"
if diag:
log_file_name = log_file_name[:-4] + "_diag.pkl"
if style == "ts":
log_file_name = log_file_name[:-4] + "_ts.pkl"
if algo == "linear":
l = LinearTS(context_dim, lam, nu, style)
setattr(l, 'delay', 1)
elif algo == "neural":
l = NeuralTSDiag(context_dim, lam, nu=nu, hidden=width, depth=depth, style=style, diagonalize=diag)
setattr(l, 'delay', 1)
elif algo == "kernel":
l = KernelTS(context_dim, lam, nu, style)
setattr(l, 'delay', 1)
if dataset == "shuttle" or dataset == "MagicTelescope":
b = Bandit_multi(dataset, is_shuffle=True, seed=0)
regrets = []
for t in range(max_iter):
regrets_per_agent = []
if dataset == "shuttle" or dataset == "MagicTelescope":
context, rwd = b.step()
fs = rwd
elif dataset == "cosine" or dataset == "square":
context, rwd, fs = bandit_contextual(a_ground, K_arms)
arm_select, nrm, sig, ave_rwd = l.select(context)
r = rwd[arm_select]
if t < stop_training_after_iter:
l.train(context[arm_select], r, local_training_iter)
reg = np.max(fs) - r
regrets_per_agent.append(reg)
print("iter {0} --- reward: {1} --- itr: {2}".format(t, r, itr))
regrets.append(regrets_per_agent)
if t % save_interval == 0:
pickle.dump(regrets, open(log_file_name, "wb"))