-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathexecutor.py
313 lines (257 loc) · 12.1 KB
/
executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from collections.abc import Mapping, Sequence
from typing import Any, Optional
import dask
import dask.distributed
from dagster import (
Executor,
Field,
Permissive,
Selector,
StringSource,
_check as check,
_seven,
multiple_process_executor_requirements,
)
from dagster._core.definitions.executor_definition import executor
from dagster._core.definitions.reconstruct import ReconstructableJob
from dagster._core.errors import raise_execution_interrupts
from dagster._core.events import DagsterEvent
from dagster._core.execution.api import create_execution_plan, execute_plan
from dagster._core.execution.context.system import PlanOrchestrationContext
from dagster._core.execution.plan.plan import ExecutionPlan
from dagster._core.execution.plan.state import KnownExecutionState
from dagster._core.execution.retries import RetryMode
from dagster._core.instance import DagsterInstance
from dagster._core.instance.ref import InstanceRef
from dagster._core.storage.dagster_run import DagsterRun
from dagster._utils import iterate_with_context
# Dask resource requirements are specified under this key
DASK_RESOURCE_REQUIREMENTS_KEY = "dagster-dask/resource_requirements"
@executor(
name="dask",
requirements=multiple_process_executor_requirements(),
config_schema={
"cluster": Field(
Selector(
{
"existing": Field(
{"address": StringSource},
description="Connect to an existing scheduler.",
),
"local": Field(
Permissive(), is_required=False, description="Local cluster configuration."
),
"yarn": Field(
Permissive(), is_required=False, description="YARN cluster configuration."
),
"ssh": Field(
Permissive(), is_required=False, description="SSH cluster configuration."
),
"pbs": Field(
Permissive(), is_required=False, description="PBS cluster configuration."
),
"moab": Field(
Permissive(), is_required=False, description="Moab cluster configuration."
),
"sge": Field(
Permissive(), is_required=False, description="SGE cluster configuration."
),
"lsf": Field(
Permissive(), is_required=False, description="LSF cluster configuration."
),
"slurm": Field(
Permissive(), is_required=False, description="SLURM cluster configuration."
),
"oar": Field(
Permissive(), is_required=False, description="OAR cluster configuration."
),
"kube": Field(
Permissive(),
is_required=False,
description="Kubernetes cluster configuration.",
),
}
)
)
},
)
def dask_executor(init_context):
"""Dask-based executor.
The 'cluster' can be one of the following:
('existing', 'local', 'yarn', 'ssh', 'pbs', 'moab', 'sge', 'lsf', 'slurm', 'oar', 'kube').
If the Dask executor is used without providing executor-specific config, a local Dask cluster
will be created (as when calling :py:class:`dask.distributed.Client() <dask:distributed.Client>`
with :py:class:`dask.distributed.LocalCluster() <dask:distributed.LocalCluster>`).
The Dask executor optionally takes the following config:
.. code-block:: none
cluster:
{
local?: # takes distributed.LocalCluster parameters
{
timeout?: 5, # Timeout duration for initial connection to the scheduler
n_workers?: 4 # Number of workers to start
threads_per_worker?: 1 # Number of threads per each worker
}
}
To use the `dask_executor`, set it as the `executor_def` when defining a job:
.. code-block:: python
from dagster import job
from dagster_dask import dask_executor
@job(executor_def=dask_executor)
def dask_enabled_job():
pass
"""
((cluster_type, cluster_configuration),) = init_context.executor_config["cluster"].items()
return DaskExecutor(cluster_type, cluster_configuration)
def query_on_dask_worker(
dependencies: Any,
recon_job: ReconstructableJob,
dagster_run: DagsterRun,
run_config: Optional[Mapping[str, object]],
step_keys: Optional[Sequence[str]],
instance_ref: InstanceRef,
known_state: Optional[KnownExecutionState],
) -> Sequence[DagsterEvent]:
"""Note that we need to pass "dependencies" to ensure Dask sequences futures during task
scheduling, even though we do not use this argument within the function.
"""
with DagsterInstance.from_ref(instance_ref) as instance:
subset_job = recon_job.get_subset(op_selection=dagster_run.resolved_op_selection)
execution_plan = create_execution_plan(
subset_job,
run_config=run_config,
step_keys_to_execute=step_keys,
known_state=known_state,
)
return execute_plan(
execution_plan, subset_job, instance, dagster_run, run_config=run_config
)
def get_dask_resource_requirements(tags: Mapping[str, str]):
check.mapping_param(tags, "tags", key_type=str, value_type=str)
req_str = tags.get(DASK_RESOURCE_REQUIREMENTS_KEY)
if req_str is not None:
return _seven.json.loads(req_str)
return {}
class DaskExecutor(Executor):
def __init__(self, cluster_type, cluster_configuration):
self.cluster_type = check.opt_str_param(cluster_type, "cluster_type", default="local")
self.cluster_configuration = check.opt_dict_param(
cluster_configuration, "cluster_configuration"
)
@property
def retries(self):
return RetryMode.DISABLED
def execute(self, plan_context: PlanOrchestrationContext, execution_plan: ExecutionPlan):
check.inst_param(plan_context, "plan_context", PlanOrchestrationContext)
check.inst_param(execution_plan, "execution_plan", ExecutionPlan)
check.param_invariant(
isinstance(plan_context.executor, DaskExecutor),
"plan_context",
f"Expected executor to be DaskExecutor got {plan_context.executor}",
)
check.invariant(
plan_context.instance.is_persistent,
"Dask execution requires a persistent DagsterInstance",
)
step_levels = execution_plan.get_steps_to_execute_by_level()
job_name = plan_context.job_name
instance = plan_context.instance
cluster_type = self.cluster_type
if cluster_type == "existing":
# address passed directly to Client() below to connect to existing Scheduler
cluster = self.cluster_configuration["address"]
elif cluster_type == "local":
from dask.distributed import LocalCluster
cluster = LocalCluster(**self.build_dict(job_name))
elif cluster_type == "yarn":
from dask_yarn import YarnCluster
cluster = YarnCluster(**self.build_dict(job_name))
elif cluster_type == "ssh":
from dask.distributed import SSHCluster
cluster = SSHCluster(**self.build_dict(job_name))
elif cluster_type == "pbs":
from dask_jobqueue import PBSCluster
cluster = PBSCluster(**self.build_dict(job_name))
elif cluster_type == "moab":
from dask_jobqueue import MoabCluster
cluster = MoabCluster(**self.build_dict(job_name))
elif cluster_type == "sge":
from dask_jobqueue import SGECluster
cluster = SGECluster(**self.build_dict(job_name))
elif cluster_type == "lsf":
from dask_jobqueue import LSFCluster
cluster = LSFCluster(**self.build_dict(job_name))
elif cluster_type == "slurm":
from dask_jobqueue import SLURMCluster
cluster = SLURMCluster(**self.build_dict(job_name))
elif cluster_type == "oar":
from dask_jobqueue import OARCluster
cluster = OARCluster(**self.build_dict(job_name))
elif cluster_type == "kube":
from dask_kubernetes import KubeCluster
cluster = KubeCluster(**self.build_dict(job_name))
else:
raise ValueError(
"Must be providing one of the following ('existing', 'local', 'yarn', 'ssh',"
f" 'pbs', 'moab', 'sge', 'lsf', 'slurm', 'oar', 'kube') not {cluster_type}"
)
with dask.distributed.Client(cluster) as client:
execution_futures = []
execution_futures_dict = {}
for step_level in step_levels:
for step in step_level:
# We ensure correctness in sequencing by letting Dask schedule futures and
# awaiting dependencies within each step.
dependencies = []
for step_input in step.step_inputs:
for key in step_input.dependency_keys:
dependencies.append(execution_futures_dict[key])
run_config = plan_context.run_config
dask_task_name = f"{job_name}.{step.key}"
recon_job = plan_context.reconstructable_job
future = client.submit(
query_on_dask_worker,
dependencies,
recon_job,
plan_context.dagster_run,
run_config,
[step.key],
instance.get_ref(),
execution_plan.known_state,
key=dask_task_name,
resources=get_dask_resource_requirements(step.tags),
)
execution_futures.append(future)
execution_futures_dict[step.key] = future
# This tells Dask to awaits the step executions and retrieve their results to the
# master
futures = dask.distributed.as_completed(execution_futures, with_results=True)
# Allow interrupts while waiting for the results from Dask
for future, result in iterate_with_context(raise_execution_interrupts, futures):
for step_event in result:
yield check.inst(step_event, DagsterEvent)
def build_dict(self, job_name):
"""Returns a dict we can use for kwargs passed to dask client instantiation.
Intended to be used like:
with dask.distributed.Client(**cfg.build_dict()) as client:
<< use client here >>
"""
if self.cluster_type in ["yarn", "pbs", "moab", "sge", "lsf", "slurm", "oar", "kube"]:
dask_cfg = {"name": job_name}
else:
dask_cfg = {}
if self.cluster_configuration:
for k, v in self.cluster_configuration.items():
dask_cfg[k] = v
# if address is set, don't add LocalCluster args
# context: https://github.com/dask/distributed/issues/3313
if (self.cluster_type == "local") and ("address" not in dask_cfg):
# We set threads_per_worker because Dagster is not thread-safe. Even though
# environments=True by default, there is a clever piece of machinery
# (dask.distributed.deploy.local.nprocesses_nthreads) that automagically makes execution
# multithreaded by default when the number of available cores is greater than 4.
# See: https://github.com/dagster-io/dagster/issues/2181
# We may want to try to figure out a way to enforce this on remote Dask clusters against
# which users run Dagster workloads.
dask_cfg["threads_per_worker"] = 1
return dask_cfg