-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathBinaryOperations.dfy
182 lines (138 loc) · 3.86 KB
/
BinaryOperations.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// RUN: %verify "%s"
/*******************************************************************************
* Copyright by the contributors to the Dafny Project
* SPDX-License-Identifier: MIT
*******************************************************************************/
include "../src/dafny/BinaryOperations.dfy"
module {:options "-functionSyntax:4"} IntegersExample {
import opened BinaryOperations
ghost function add(x: int, y: int): int {
x + y
}
ghost function minus(x: int): int {
-x
}
ghost function mult(x: int, y: int): int {
x * y
}
lemma IntegersAreAssociative()
ensures IsAssociative(add)
ensures IsAssociative(mult)
{}
lemma IntegersAreMonoid()
ensures IsMonoid(add, 0)
ensures IsMonoid(mult, 1)
{}
lemma IntegersHaveUnit()
ensures IsLeftUnital(add, 0)
ensures IsRightUnital(add, 0)
ensures IsUnital(add, 0)
ensures IsLeftUnital(mult, 1)
ensures IsRightUnital(mult, 1)
ensures IsUnital(mult, 1)
{}
lemma IntegersAreAbelian()
ensures IsCommutative(add)
ensures IsCommutative(mult)
{}
lemma IntegersAreAdditiveGroup()
ensures IsGroup(add, minus, 0)
{}
lemma IntegersAreAdditiveAbelianGroup()
ensures IsAbelianGroup(add, minus, 0)
{}
lemma IntegersHaveAdditiveInverse()
ensures IsInverse(add, minus, 0)
{}
lemma IntegersAreDistributive()
ensures IsLeftDistributive(add, mult)
ensures IsRightDistributive(add, mult)
ensures IsDistributive(add, mult)
{}
lemma IntegersAreRing()
ensures IsRing(add, minus, 0, mult, 1)
{}
}
module {:options "-functionSyntax:4"} RealsExample {
import opened BinaryOperations
ghost function add(x: real, y: real): real {
x + y
}
ghost function minus(x: real): real {
-x
}
ghost function mult(x: real, y: real): real {
x * y
}
ghost function div(x: real): real
requires x != 0.0
{
1.0 / x
}
lemma RealsAreAssociative()
ensures IsAssociative(add)
ensures IsAssociative(mult)
{}
lemma RealsAreMonoid()
ensures IsMonoid(add, 0.0)
ensures IsMonoid(mult, 1.0)
{}
lemma RealsHaveUnit()
ensures IsLeftUnital(add, 0.0)
ensures IsRightUnital(add, 0.0)
ensures IsUnital(add, 0.0)
ensures IsLeftUnital(mult, 1.0)
ensures IsRightUnital(mult, 1.0)
ensures IsUnital(mult, 1.0)
{}
lemma RealsAreAbelian()
ensures IsCommutative(add)
ensures IsCommutative(mult)
{}
lemma RealsAreAdditiveGroup()
ensures IsGroup(add, minus, 0.0)
{}
lemma RealsAreAdditiveAbelianGroup()
ensures IsAbelianGroup(add, minus, 0.0)
{}
lemma NonZeroRealsAreMultiplicativeGroup()
ensures IsGroup(mult, div, 1.0)
{}
lemma NonZeroRealsAreMultiplicativeAbelianGroup()
ensures IsAbelianGroup(mult, div, 1.0)
{}
lemma RealsHaveAdditiveInverse()
ensures IsInverse(add, minus, 0.0)
{}
lemma RealsAreDistributive()
ensures IsLeftDistributive(add, mult)
ensures IsRightDistributive(add, mult)
ensures IsDistributive(add, mult)
{}
lemma RealsAreRing()
ensures IsRing(add, minus, 0.0, mult, 1.0)
{
assert IsDistributive(add, mult);
}
lemma RealsAreField()
ensures IsField(add, minus, 0.0, mult, div, 1.0)
{}
}
module {:options "-functionSyntax:4"} HomomorphismExamples {
import opened BinaryOperations
import IntegersExample
import RealsExample
lemma IdentityIsHomomorphism<T(!new)>(bop: (T, T) -> T)
ensures IsHomomorphism(bop, bop, x => x)
{}
lemma IntRealEmbeddingIsHomomorphism()
ensures IsHomomorphism(IntegersExample.add, RealsExample.add, (x: int) => x as real)
{}
lemma ConstUnitIsHomomorphism<S(!new), T(!new)>(bop1: (S, S) -> S, bop2: (T, T) -> T, unit: T)
requires IsUnital(bop2, unit)
ensures IsHomomorphism(bop1, bop2, x => unit)
{}
lemma ConstMultIsHomomorphism(n: int)
ensures IsHomomorphism(IntegersExample.add, IntegersExample.add, x => n * x)
{}
}