-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathgringorten.js
147 lines (132 loc) · 4.15 KB
/
gringorten.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import {geoProjection as projection} from "d3-geo";
import {abs, asin, atan2, cos, sign, epsilon, epsilon2, halfPi, pi, sin, sqrt} from "./math.js";
import squareRaw from "./square.js";
export function gringortenRaw(lambda, phi) {
var sLambda = sign(lambda),
sPhi = sign(phi),
cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(sPhi * phi);
lambda = abs(atan2(y, z));
phi = asin(x);
if (abs(lambda - halfPi) > epsilon) lambda %= halfPi;
var point = gringortenHexadecant(lambda > pi / 4 ? halfPi - lambda : lambda, phi);
if (lambda > pi / 4) z = point[0], point[0] = -point[1], point[1] = -z;
return (point[0] *= sLambda, point[1] *= -sPhi, point);
}
gringortenRaw.invert = function(x, y) {
if (abs(x) > 1) x = sign(x) * 2 - x;
if (abs(y) > 1) y = sign(y) * 2 - y;
var sx = sign(x),
sy = sign(y),
x0 = -sx * x,
y0 = -sy * y,
t = y0 / x0 < 1,
p = gringortenHexadecantInvert(t ? y0 : x0, t ? x0 : y0),
lambda = p[0],
phi = p[1],
cosPhi = cos(phi);
if (t) lambda = -halfPi - lambda;
return [sx * (atan2(sin(lambda) * cosPhi, -sin(phi)) + pi), sy * asin(cos(lambda) * cosPhi)];
};
function gringortenHexadecant(lambda, phi) {
if (phi === halfPi) return [0, 0];
var sinPhi = sin(phi),
r = sinPhi * sinPhi,
r2 = r * r,
j = 1 + r2,
k = 1 + 3 * r2,
q = 1 - r2,
z = asin(1 / sqrt(j)),
v = q + r * j * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * j,
a = sqrt(a2),
h = p * q,
x,
i;
if (lambda === 0) return [0, -(h + r * a)];
var cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * k) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = (0.5 * dp2dPhi) / p,
dhdPhi = q * dpdPhi - 2 * r * p * drdPhi,
dra2dPhi = r * j * dp2dPhi + p2 * k * drdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * dra2dPhi,
zeta = -2 * secPhi * dhdPhi,
lambda1 = 4 * lambda / pi,
delta;
// Slower but accurate bisection method.
if (lambda > 0.222 * pi || phi < pi / 4 && lambda > 0.175 * pi) {
x = (h + r * sqrt(a2 * (1 + r2) - h * h)) / (1 + r2);
if (lambda > pi / 4) return [x, x];
var x1 = x, x0 = 0.5 * x;
x = 0.5 * (x0 + x1), i = 50;
do {
var g = sqrt(a2 - x * x),
f = (x * (zeta + mu * g) + nu * asin(x / a)) - lambda1;
if (!f) break;
if (f < 0) x0 = x;
else x1 = x;
x = 0.5 * (x0 + x1);
} while (abs(x1 - x0) > epsilon && --i > 0);
}
// Newton-Raphson.
else {
x = epsilon, i = 25;
do {
var x2 = x * x,
g2 = sqrt(a2 - x2),
zetaMug = zeta + mu * g2,
f2 = x * zetaMug + nu * asin(x / a) - lambda1,
df = zetaMug + (nu - mu * x2) / g2;
x -= delta = g2 ? f2 / df : 0;
} while (abs(delta) > epsilon && --i > 0);
}
return [x, -h - r * sqrt(a2 - x * x)];
}
function gringortenHexadecantInvert(x, y) {
var x0 = 0,
x1 = 1,
r = 0.5,
i = 50;
while (true) {
var r2 = r * r,
sinPhi = sqrt(r),
z = asin(1 / sqrt(1 + r2)),
v = (1 - r2) + r * (1 + r2) * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * (1 + r2),
h = p * (1 - r2),
g2 = a2 - x * x,
g = sqrt(g2),
y0 = y + h + r * g;
if (abs(x1 - x0) < epsilon2 || --i === 0 || y0 === 0) break;
if (y0 > 0) x0 = r;
else x1 = r;
r = 0.5 * (x0 + x1);
}
if (!i) return null;
var phi = asin(sinPhi),
cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * (1 + 3 * r2)) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = 0.5 * dp2dPhi / p,
dhdPhi = (1 - r2) * dpdPhi - 2 * r * p * drdPhi,
zeta = -2 * secPhi * dhdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * (r * (1 + r2) * dp2dPhi + p2 * (1 + 3 * r2) * drdPhi);
return [pi / 4 * (x * (zeta + mu * g) + nu * asin(x / sqrt(a2))), phi];
}
export default function() {
return projection(squareRaw(gringortenRaw))
.scale(239.75);
}