forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_handler.py
69 lines (54 loc) · 2.33 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (C) 2021-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import torch
import numpy as np
import cv2
import os
from isegm.inference import utils
from isegm.inference.predictors import get_predictor
from isegm.inference.clicker import Clicker, Click
def convert_mask_to_polygon(mask):
contours = None
if int(cv2.__version__.split('.')[0]) > 3:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
else:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
contours = max(contours, key=lambda arr: arr.size)
if contours.shape.count(1):
contours = np.squeeze(contours)
if contours.size < 3 * 2:
raise Exception('Less then three point have been detected. Can not build a polygon.')
polygon = []
for point in contours:
polygon.append([int(point[0]), int(point[1])])
return polygon
class ModelHandler:
def __init__(self):
torch.backends.cudnn.deterministic = True
base_dir = os.path.abspath(os.environ.get("MODEL_PATH", "/opt/nuclio/hrnet"))
model_path = os.path.join(base_dir)
self.net = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
checkpoint_path = utils.find_checkpoint(model_path, "coco_lvis_h18_itermask.pth")
self.net = utils.load_is_model(checkpoint_path, self.device)
def handle(self, image, pos_points, neg_points, threshold):
image_nd = np.array(image)
clicker = Clicker()
for x, y in pos_points:
click = Click(is_positive=True, coords=(y, x))
clicker.add_click(click)
for x, y in neg_points:
click = Click(is_positive=False, coords=(y, x))
clicker.add_click(click)
predictor = get_predictor(self.net, 'NoBRS', device=self.device, prob_thresh=0.49)
predictor.set_input_image(image_nd)
object_prob = predictor.get_prediction(clicker)
if self.device == 'cuda':
torch.cuda.empty_cache()
object_mask = object_prob > threshold
object_mask = np.array(object_mask, dtype=np.uint8)
cv2.normalize(object_mask, object_mask, 0, 255, cv2.NORM_MINMAX)
polygon = convert_mask_to_polygon(object_mask)
return object_mask, polygon