From 2397d093cfb28805049636a95e00442039dc5d09 Mon Sep 17 00:00:00 2001 From: Jennifer Yu <165851215+jennhyu26@users.noreply.github.com> Date: Wed, 1 May 2024 22:43:06 -0700 Subject: [PATCH] Update logistic-regression.qmd Using prior established notation (D, not D; E, not E) but specifying what exposures and disease are per example. --- logistic-regression.qmd | 38 +++++++++++++++++++------------------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/logistic-regression.qmd b/logistic-regression.qmd index fb80680..6b1da02 100644 --- a/logistic-regression.qmd +++ b/logistic-regression.qmd @@ -769,28 +769,28 @@ In @exm-oc-mi, we have: $$ \begin{aligned} -\theta(MI; OC) +\theta(D_{MI}; E_{OC}) &\eqdef -\frac{\omega(MI|OC)}{\omega(MI|\neg OC)}\\ +\frac{\omega(D_{MI}|E_{OC})}{\omega(D_{MI}|\neg E_{OC})}\\ &\eqdef \frac -{\left(\frac{\Pr(MI|OC)}{\Pr(\neg MI|OC)}\right)} -{\left(\frac{\Pr(MI|\neg OC)}{\Pr(\neg MI|\neg OC)}\right)}\\ +{\left(\frac{\Pr(D_{MI}|E_{OC})}{\Pr(\neg D_{MI}|E_{OC})}\right)} +{\left(\frac{\Pr(D_{MI}|\neg E_{OC})}{\Pr(\neg D_{MI}|\neg E_{OC})}\right)}\\ &= \frac -{\left(\frac{\Pr(MI,OC)}{\Pr(\neg MI,OC)}\right)} -{\left(\frac{\Pr(MI,\neg OC)}{\Pr(\neg MI,\neg OC)}\right)}\\ -&= \left(\frac{\Pr(MI,OC)}{\Pr(\neg MI,OC)}\right) -\left(\frac{\Pr(\neg MI,\neg OC)}{\Pr(MI,\neg OC)}\right)\\ -&= \left(\frac{\Pr(MI,OC)}{\Pr(MI,\neg OC)}\right) -\left(\frac{\Pr(\neg MI,\neg OC)}{\Pr(\neg MI,OC)}\right)\\ -&= \left(\frac{\Pr(OC,MI)}{\Pr(\neg OC,MI)}\right) -\left(\frac{\Pr(\neg OC,\neg MI)}{\Pr(OC,\neg MI)}\right)\\ -&= \left(\frac{\Pr(OC|MI)}{\Pr(\neg OC|MI)}\right) -\left(\frac{\Pr(\neg OC|\neg MI)}{\Pr(OC|\neg MI)}\right)\\ -&= \frac{\left(\frac{\Pr(OC|MI)}{\Pr(\neg OC|MI)}\right)} -{\left(\frac{\Pr(OC|\neg MI)}{\Pr(\neg OC|\neg MI)}\right)}\\ -&\eqdef \frac{\omega(OC|MI)} -{\omega(OC|\neg MI)}\\ -&\eqdef \theta(OC; MI) +{\left(\frac{\Pr(D_{MI},E_{OC})}{\Pr(\neg D_{MI},E_{OC})}\right)} +{\left(\frac{\Pr(D_{MI},\neg E_{OC})}{\Pr(\neg D_{MI},\neg E_{OC})}\right)}\\ +&= \left(\frac{\Pr(D_{MI},E_{OC})}{\Pr(\neg D_{MI},E_{OC})}\right) +\left(\frac{\Pr(\neg D_{MI},\neg E_{OC})}{\Pr(D_{MI},\neg E_{OC})}\right)\\ +&= \left(\frac{\Pr(D_{MI},E_{OC})}{\Pr(D_{MI},\neg E_{OC})}\right) +\left(\frac{\Pr(\neg D_{MI},\neg E_{OC})}{\Pr(\neg D_{MI},E_{OC})}\right)\\ +&= \left(\frac{\Pr(E_{OC},D_{MI})}{\Pr(\neg E_{OC},D_{MI})}\right) +\left(\frac{\Pr(\neg E_{OC},\neg D_{MI})}{\Pr(E_{OC},\neg D_{MI})}\right)\\ +&= \left(\frac{\Pr(E_{OC}|D_{MI})}{\Pr(\neg E_{OC}|D_{MI})}\right) +\left(\frac{\Pr(\neg E_{OC}|\neg D_{MI})}{\Pr(E_{OC}|\neg D_{MI})}\right)\\ +&= \frac{\left(\frac{\Pr(E_{OC}|D_{MI})}{\Pr(\neg E_{OC}|D_{MI})}\right)} +{\left(\frac{\Pr(E_{OC}|\neg D_{MI})}{\Pr(\neg E_{OC}|\neg D_{MI})}\right)}\\ +&\eqdef \frac{\omega(E_{OC}|D_{MI})} +{\omega(E_{OC}|\neg D_{MI})}\\ +&\eqdef \theta(E_{OC}; D_{MI}) \end{aligned} $$ :::