forked from bbloomf/jgabc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
moment.easter.js
96 lines (85 loc) · 4.38 KB
/
moment.easter.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
(function(moment){
// I found this algorithm on
// http://www.merlyn.demon.co.uk/estralgs.txt
//
// Given by
// Al Petrofsky, San Mateo County, California, U.S.A., E-mail 2009-05-22
moment.easter = function Easter20ops(year) {
'use strict';
/*jslint bitwise: true, vars: true */
var a = (year / 100 | 0) * 1483 - (year / 400 | 0) * 2225 + 2613;
var b = ((year % 19 * 3510 + (a / 25 | 0) * 319) / 330 | 0) % 29;
// return 56 - b - ((year * 5 / 4 | 0) + a - b) % 7;
var c = 148 - b - ((year * 5 / 4 | 0) + a - b) % 7;
return moment({year: year, month: (c / 31 | 0) - 1, day: c % 31 + 1});
// To get Month & Day in 23 total arithmetic operations, use:
// c = 148 - b - ((year * 5 / 4 | 0) + a - b) % 7;
// Month = (c / 31 | 0);
// Day = c % 31 + 1;
// The coefficients in the formula for A were chosen so that both of
// these equations would hold:
//
// a / 25 % 30 == ((y / 100 * 17 + 11) / 25 - y / 400 + 16) % 30
// a % 7 == (y / 400 + y / 100 * 6 + 2) % 7
// As a result, the formulae for B and the return value are
// equivalent to:
//
// b = ( 29 * 11 * (15 + y % 19 * 19
// + y / 100 - y / 400
// - ( (y / 100 + 25 - 14) * 8 / 25
// - ( 25 - 14) * 8 / 25)
// + 1)
// - 1 - y % 19)
// % (30 * 29 * 11) / (30 * 11)
// return 28 + b - (2 + b + y + y / 4 - y / 100 + y / 400) % 7
// B represents the date of the Paschal Full Moon, ranging from 0
// for March 21st to 28 for April 18th.
//
// Here are some pertinent facts about the constants in these
// formulae:
//
// 400 is the number of years in the cycle of solar corrections.
// 100 is the number of years between solar or lunar corrections.
// 30 is the number of different epacts (not distinguishing xxv and 25).
// 29 is the number of different Paschal Full Moon dates.
// 28 is the day of March one week after the equinox.
// 25 is the number of centuries in the cycle of lunar corrections.
// 19 is the number of years in the Metonic cycle.
// 19 is also the ordinary decrement from one year's epact to the next.
// 15 is the number of days after the equinox that the Paschal
// Full Moon falls, in the year zero.
// 14 is one hundredth of the year at the start of the first span of
// four centuries between lunar corrections.
// 11 is the number of golden numbers for which epact xxv/25 maps to
// a Paschal Full Moon date of April 18th rather than April 17th.
// 8 is the number of lunar corrections per 25 centuries.
// 7 is the number of days in the week.
// 4 is the number of years in the uncorrected leap year cycle.
// 2 is the number of days that are after the first Sunday after the
// equinox, but on or before March 28, in the year zero.
// Implementation limits:
// In C and other languages and systems with ordinary fixed-width
// 32-bit unsigned integer arithmetic, the function fails due to
// overflow at year 58,714,311, and with 64-bit integers, it fails
// at year 252,188,329,394,345,111. In either case, if a "y = y %
// 5700000" line is added at the start of the function, then correct
// results will be returned for all possible inputs.
// In ECMAscript/javascript: the language has no integer division
// operator, and non-integer division results must somehow be
// rounded down. If division results are truncated by using a
// bitwise logical operation (e.g. "|0") to cause an internal
// floating-point-to-integer conversion, then the first year for
// which the function fails is 1,717,986,919, which is when (y * 5 /
// 4) first exceeds the 31-bit range for unsigned logical integer
// values. If division results are truncated using the Math.floor
// function, then first failure comes at year 123,138,832,709,500,
// shortly after the sum in the B formula first exceeds the 53-bit
// positive range over which IEEE 64-bit floating point values have
// integer precision. In either case, if a "y = y % 5700000" line
// is added at the start of the function, then the correct result
// will be returned for any input that is a non-negative integer.
};
moment.fn.easter = function () {
return moment.easter(this.year());
};
})(moment);