-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_sdxl_controlnet.py
86 lines (73 loc) · 3.06 KB
/
run_sdxl_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
from diffusers.utils import load_image, make_image_grid
from PIL import Image
import cv2
import numpy as np
import torch
import torch.distributed as dist
from asyncdiff.async_sd import AsyncDiff
import time
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default='stabilityai/stable-diffusion-xl-base-1.0') #model= 'runwayml/stable-diffusion-v1-5'
parser.add_argument("--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting")
parser.add_argument("--seed", type=int, default=20)
parser.add_argument("--model_n", type=int, default=2)
parser.add_argument("--stride", type=int, default=1)
parser.add_argument("--warm_up", type=int, default=3)
parser.add_argument("--time_shift", type=bool, default=False)
args = parser.parse_args()
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)
image = np.array(original_image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
make_image_grid([original_image, canny_image], rows=1, cols=2)
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
low_cpu_mem_usage=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
low_cpu_mem_usage=True
)
async_diff = AsyncDiff(pipeline, model_n=args.model_n, stride=args.stride, time_shift=args.time_shift)
negative_prompt = 'low quality, bad quality, sketches'
# warm up
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
async_diff.reset_state(warm_up=args.warm_up)
image = pipeline(
args.prompt,
negative_prompt=negative_prompt,
image=canny_image,
controlnet_conditioning_scale=0.5,
).images[0]
#Inference
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
async_diff.reset_state(warm_up=args.warm_up)
start = time.time()
image = pipeline(
args.prompt,
negative_prompt=negative_prompt,
image=canny_image,
controlnet_conditioning_scale=0.5,
).images[0]
print(f"Rank {dist.get_rank()} Time taken: {time.time()-start:.2f} seconds.")
if dist.get_rank() == 0:
output = make_image_grid([original_image, canny_image, image], rows=1, cols=3)
output.save(f"output.jpg")