-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_sd_upscaler.py
61 lines (49 loc) · 2.01 KB
/
run_sd_upscaler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.distributed as dist
from asyncdiff.async_sd import AsyncDiff
import time
import argparse
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionUpscalePipeline
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default='stabilityai/stable-diffusion-x4-upscaler') #model= 'runwayml/stable-diffusion-v1-5'
parser.add_argument("--prompt", type=str, default='a white cat')
parser.add_argument("--seed", type=int, default=20)
parser.add_argument("--model_n", type=int, default=2)
parser.add_argument("--stride", type=int, default=1)
parser.add_argument("--warm_up", type=int, default=1)
parser.add_argument("--time_shift", type=bool, default=False)
args = parser.parse_args()
pipeline = StableDiffusionUpscalePipeline.from_pretrained(
args.model, torch_dtype=torch.float16,
use_safetensors=True, low_cpu_mem_usage=True
)
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png"
response = requests.get(url)
low_res_img = Image.open(BytesIO(response.content)).convert("RGB")
low_res_img = low_res_img.resize((128, 128))
async_diff = AsyncDiff(pipeline, model_n=args.model_n, stride=args.stride, time_shift=args.time_shift)
# warm up
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
async_diff.reset_state(warm_up=args.warm_up)
image = pipeline(
prompt=args.prompt,
image=low_res_img,
).images[0]
# inference
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
async_diff.reset_state(warm_up=args.warm_up)
start = time.time()
image = pipeline(
prompt=args.prompt,
image=low_res_img,
).images[0]
print(f"Rank {dist.get_rank()} Time taken: {time.time()-start:.2f} seconds.")
image.save(f"output.jpg")
if dist.get_rank() == 0:
image.save(f"output.jpg")