-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsingle_model.py
36 lines (28 loc) · 1.19 KB
/
single_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from utils import *
model_name = sys.argv[1]
projection_name = sys.argv[2]
if not os.path.isdir("run_model"):
os.mkdir("run_model")
np.random.seed(0)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(funcName)s: %(message)s',
filename="run_model/%s__%s.log" % (model_name, projection_name))
X_raw, y = get_raw_data()
rec_score = []
X_raw_train, X_raw_test, y_train, y_test = train_test_split(X_raw, y,
test_size=0.1,
random_state=0)
clf = make_model(model_name)
clf.fit(X_raw_train, y_train)
score = rmse(clf, X_raw_test, y_test)
rec_score.append(score)
for k in [10, 100, 500, 1000, 2000]:
logging.info("k=%d" % k)
X = projection(projection_name, X_raw, k)
logging.info("after projection: %s" % str(X.shape))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
clf = make_model(model_name)
clf.fit(X_train, y_train)
score = rmse(clf, X_test, y_test)
rec_score.append(score)
np.savetxt("run_model/%s__%s.txt" % (model_name, projection_name), rec_score)