-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathpredict.py
191 lines (153 loc) · 7.65 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
from pathlib import Path
import torch
import torch.optim as optim
from torchvision import transforms, models
import tempfile
import StyleNet
import utils
import clip
import torch.nn.functional as F
from template import imagenet_templates
from torchvision.utils import save_image
from torchvision.transforms.functional import adjust_contrast
import cog
from argparse import Namespace
class Predictor(cog.Predictor):
def setup(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.VGG = models.vgg19(pretrained=True).features
self.VGG.to(self.device)
for parameter in self.VGG.parameters():
parameter.requires_grad_(False)
self.style_net = StyleNet.UNet()
self.style_net.to(self.device)
self.clip_model, preprocess = clip.load('ViT-B/32', self.device, jit=False)
@cog.input("image", type=Path, help="Input image (will be cropped before style transfer)")
@cog.input("text", type=str, help="text for style transfer")
@cog.input("iterations", type=int, default=100, help="training iterations")
def predict(self, image, text, iterations):
training_args = {
"lambda_tv": 2e-3,
"lambda_patch": 9000,
"lambda_dir": 500,
"lambda_c": 150,
"crop_size": 128,
"num_crops": 64,
"img_size": 512,
"max_step": iterations,
"lr": 5e-4,
"thresh": 0.7,
"content_path": str(image),
"text": text
}
args = Namespace(**training_args)
out_path = Path(tempfile.mkdtemp()) / "out.png"
content_path = args.content_path
content_image = utils.load_image2(content_path, img_size=512)
content_image = content_image.to(self.device)
content_features = utils.get_features(img_normalize(content_image, self.device), self.VGG)
content_weight = args.lambda_c
optimizer = optim.Adam(self.style_net.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
steps = args.max_step
total_loss_epoch = []
cropper = transforms.Compose([
transforms.RandomCrop(args.crop_size)
])
augment = transforms.Compose([
transforms.RandomPerspective(fill=0, p=1, distortion_scale=0.5),
transforms.Resize(224)
])
prompt = args.text
source = "a Photo"
with torch.no_grad():
template_text = compose_text_with_templates(prompt, imagenet_templates)
tokens = clip.tokenize(template_text).to(self.device)
text_features = self.clip_model.encode_text(tokens).detach()
text_features = text_features.mean(axis=0, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
template_source = compose_text_with_templates(source, imagenet_templates)
tokens_source = clip.tokenize(template_source).to(self.device)
text_source = self.clip_model.encode_text(tokens_source).detach()
text_source = text_source.mean(axis=0, keepdim=True)
text_source /= text_source.norm(dim=-1, keepdim=True)
source_features = self.clip_model.encode_image(clip_normalize(content_image, self.device))
source_features /= (source_features.clone().norm(dim=-1, keepdim=True))
num_crops = args.num_crops
for epoch in range(0, steps + 1):
scheduler.step()
target = self.style_net(content_image, use_sigmoid=True).to(self.device)
target.requires_grad_(True)
target_features = utils.get_features(img_normalize(target, self.device), self.VGG)
content_loss = 0
content_loss += torch.mean((target_features['conv4_2'] - content_features['conv4_2']) ** 2)
content_loss += torch.mean((target_features['conv5_2'] - content_features['conv5_2']) ** 2)
loss_patch = 0
img_proc = []
for n in range(num_crops):
target_crop = cropper(target)
target_crop = augment(target_crop)
img_proc.append(target_crop)
img_proc = torch.cat(img_proc, dim=0)
img_aug = img_proc
image_features = self.clip_model.encode_image(clip_normalize(img_aug, self.device))
image_features /= (image_features.clone().norm(dim=-1, keepdim=True))
img_direction = (image_features - source_features)
img_direction /= img_direction.clone().norm(dim=-1, keepdim=True)
text_direction = (text_features - text_source).repeat(image_features.size(0), 1)
text_direction /= text_direction.norm(dim=-1, keepdim=True)
loss_temp = (1 - torch.cosine_similarity(img_direction, text_direction, dim=1))
loss_temp[loss_temp < args.thresh] = 0
loss_patch += loss_temp.mean()
glob_features = self.clip_model.encode_image(clip_normalize(target, self.device))
glob_features /= (glob_features.clone().norm(dim=-1, keepdim=True))
glob_direction = (glob_features - source_features)
glob_direction /= glob_direction.clone().norm(dim=-1, keepdim=True)
loss_glob = (1 - torch.cosine_similarity(glob_direction, text_direction, dim=1)).mean()
reg_tv = args.lambda_tv * get_image_prior_losses(target)
total_loss = args.lambda_patch * loss_patch + content_weight * content_loss + reg_tv + args.lambda_dir * loss_glob
total_loss_epoch.append(total_loss)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if epoch % 20 == 0 or epoch == steps:
yield checkin(epoch, target, total_loss, content_loss, loss_patch, loss_glob, reg_tv, out_path)
return out_path
@torch.no_grad()
def checkin(epoch, target, total_loss, content_loss, loss_patch, loss_glob, reg_tv, out_path):
sys.stderr.write(f'After {epoch} iterations')
sys.stderr.write(f'Total loss: {total_loss.item()}')
sys.stderr.write(f'Content loss: {content_loss.item()}')
sys.stderr.write(f'patch loss: {loss_patch.item()}')
sys.stderr.write(f'dir loss: {loss_glob.item()}')
sys.stderr.write(f'TV loss: {reg_tv.item()}')
output_image = target.clone()
output_image = torch.clamp(output_image, 0, 1)
output_image = adjust_contrast(output_image, 1.5)
save_image(output_image, str(out_path), nrow=1, normalize=True)
return out_path
def img_normalize(image, device):
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
mean = mean.view(1, -1, 1, 1)
std = std.view(1, -1, 1, 1)
image = (image - mean) / std
return image
def clip_normalize(image, device):
image = F.interpolate(image, size=224, mode='bicubic')
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)
mean = mean.view(1, -1, 1, 1)
std = std.view(1, -1, 1, 1)
image = (image - mean) / std
return image
def get_image_prior_losses(inputs_jit):
diff1 = inputs_jit[:, :, :, :-1] - inputs_jit[:, :, :, 1:]
diff2 = inputs_jit[:, :, :-1, :] - inputs_jit[:, :, 1:, :]
diff3 = inputs_jit[:, :, 1:, :-1] - inputs_jit[:, :, :-1, 1:]
diff4 = inputs_jit[:, :, :-1, :-1] - inputs_jit[:, :, 1:, 1:]
loss_var_l2 = torch.norm(diff1) + torch.norm(diff2) + torch.norm(diff3) + torch.norm(diff4)
return loss_var_l2
def compose_text_with_templates(text: str, templates=imagenet_templates) -> list:
return [template.format(text) for template in templates]