-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_lsae.py
714 lines (587 loc) · 24.4 KB
/
train_lsae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import argparse
import math
import random
import os
import cv2
from functools import partial
import numpy as np
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
try:
import wandb
except ImportError:
wandb = None
from model import PyramidEncoder, Generator, Discriminator, Cooccurv2Discriminator, MultiProjectors, PatchNCELoss
from dataset import CXR14maskDataset
from stylegan2.distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
def get_N(W, H):
"""N that maps from unnormalized to normalized coordinates"""
N = np.zeros((3, 3), dtype=np.float64)
N[0, 0] = 2.0 / W
N[0, 1] = 0
N[1, 1] = 2.0 / H
N[1, 0] = 0
N[0, -1] = -1.0
N[1, -1] = -1.0
N[-1, -1] = 1.0
return N
def get_N_inv(W, H):
"""N that maps from normalized to unnormalized coordinates"""
# TODO: do this analytically maybe?
N = get_N(W, H)
return np.linalg.inv(N)
def cvt_MToTheta(M, w, h):
"""convert affine warp matrix `M` compatible with `opencv.warpAffine` to `theta` matrix
compatible with `torch.F.affine_grid`
Note:
M works with `opencv.warpAffine`.
To transform a set of bounding box corner points using `opencv.perspectiveTransform`, M^-1 is required
Parameters
----------
M : np.ndarray
affine warp matrix shaped [2, 3]
w : int
width of image
h : int
height of image
Returns
-------
np.ndarray
theta tensor for `torch.F.affine_grid`, shaped [2, 3]
"""
M_aug = np.concatenate([M, np.zeros((1, 3))], axis=0)
M_aug[-1, -1] = 1.0
N = get_N(w, h)
N_inv = get_N_inv(w, h)
theta = N @ M_aug @ N_inv
theta = np.linalg.inv(theta)
return theta[:2, :]
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real_list = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real_list[0].pow(2).reshape(grad_real_list[0].shape[0], -1).sum(1).mean()
if len(grad_real_list) > 1:
for grad_real in grad_real_list[1:]:
grad_penalty += grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def set_grad_none(model, targets):
for n, p in model.named_parameters():
if n in targets:
p.grad = None
def differential_crop_w_random_rotation(image, max_angle):
"""
max_angle defines the maximum rotation angles from [-max_angle, max_angle]
"""
thetas = []
N, D, H, W = image.shape
for i in range(N):
angle = random.uniform(-max_angle, max_angle)
# angle = 60
center = (W//2, H//2)
scale = math.cos(math.pi*abs(angle)/180) + math.sin(math.pi*abs(angle)/180)*H/W
# scale = 1.6
# print(scale)
affine_trans = cv2.getRotationMatrix2D(center, angle, scale)
theta = cvt_MToTheta(affine_trans, W, H)
thetas.append(torch.from_numpy(theta))
thetas = torch.stack(thetas).to(image.device)
grid = F.affine_grid(thetas, image.size(), align_corners=False)
rotated = F.grid_sample(image, grid.float(), align_corners=False)
return rotated
def raw_patchify_image(img, n_crop, mask=None, min_size=1 / 16, max_size=1 / 8, max_angle=60):
batch, channel, height, width = img.shape
def compute_corner(cent_x, cent_y, c_w, c_h):
c_x = cent_x - c_w//2
c_y = cent_y - c_h//2
return c_x, c_y
default_mask = torch.zeros(batch, height, width)
default_mask[:, height//4:3*height//4, width//4:3*width//4] = 1
if mask is None:
mask = default_mask
mask = mask.squeeze()
crop_size = torch.rand(batch, n_crop) * (max_size - min_size) + min_size
target_h = int(height * max_size)
target_w = int(width * max_size)
crop_h = (crop_size * height).type(torch.int64).tolist()
crop_w = (crop_size * width).type(torch.int64).tolist()
min_h = int(height * min_size)
min_w = int(width * min_size)
patches = []
for b in range(batch):
indices = torch.nonzero(mask[b]) # [height, width]
if indices.size(0) == 0:
indices = torch.nonzero(default_mask[b])
for _ in range(n_crop):
# random sample origin
ind = random.randrange(0, indices.size(0))
cent_y, cent_x = indices[ind].tolist()
# random sample crop size
crop_ratio = random.uniform(0,1) * (max_size - min_size) + min_size
c_h, c_w = int(height * crop_ratio), int(width * crop_ratio)
# recompute corners and area
c_x, c_y = compute_corner(cent_x, cent_y, c_w, c_h)
# clip the coordinates
if c_y < 0:
c_y = 0
if c_x < 0:
c_x = 0
if c_y + c_h >= height:
c_y = height - c_h - 1
if c_x + c_w >= width:
c_x = width - c_w - 1
init_patch = img[b, :, c_y : c_y + c_h, c_x : c_x + c_w].view(1, channel, c_h, c_w)
intp_patch = F.interpolate(init_patch, size=(target_h, target_w), mode="bilinear", align_corners=False)
patches.append(intp_patch)
# patches shape: [batch*n_crop, channel, target_h, target_w]
patches = torch.cat(patches, dim=0)
rotated = differential_crop_w_random_rotation(patches, max_angle)
return rotated
def sample_patches(feat_list, n_crop, mask=None, coords=None, inv=False):
if inv and mask is not None:
mask = 1 - mask
if mask is not None:
mask = mask.squeeze()
# collect info
batchSize = feat_list[0].size(0)
channels = []
spt_dims = []
for feat in feat_list:
assert(feat.size(0) == batchSize), "Batch size of features should be consistent"
channels.append(feat.size(1))
spt_dims.append(feat.shape[2:])
if coords is None:
# sample coords from mask
batch_coords = []
for b in range(batchSize):
# height and width of mask
h, w = mask[b].shape
# get valid candidates from mask
indices = torch.nonzero(mask[b])
if indices.size(0) == 0:
indices = torch.nonzero(torch.ones(h, w))
# sample points
normed_coords = []
for _ in range(n_crop):
ind = random.randrange(0, indices.size(0))
cent_y, cent_x = indices[ind].tolist()
normed_coords.append((cent_y / h, cent_x / w))
batch_coords.append(normed_coords)
else:
batch_coords = coords
# extract features according to sampled points
scale_feats = []
for i, feat in enumerate(feat_list):
h, w = spt_dims[i]
sampled_feats = []
for b in range(batchSize):
for j in range(n_crop):
cent_y, cent_x = min(h-1, int(batch_coords[b][j][0] * h)), min(w-1, int(batch_coords[b][j][1] * w))
sampled_feats.append(feat[b, :, cent_y, cent_x])
# [batchSize*n_crop, channel]
sampled_feats = torch.stack(sampled_feats, dim=0)
scale_feats.append(sampled_feats)
return scale_feats, batch_coords
def train(
args,
loaders,
encoder,
generator,
str_projectors,
discriminator,
cooccur,
g_optim,
d_optim,
e_ema,
g_ema,
device,
):
patchify_image = partial(raw_patchify_image, min_size=args.min_patch, max_size=args.max_patch)
loader = sample_data(loaders[0])
ts_loader = sample_data(loaders[1])
patchnce_loss = PatchNCELoss(nce_T=0.07, batch=args.batch//2)
pbar = range(args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
cooccur_r1_loss = torch.tensor(0.0, device=device)
feat_recon_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
loss_dict = {}
# create output folders
if args.proj_name != "":
sample_dir = f"outputs/sample-{args.proj_name}"
ckpt_dir = f"outputs/ckpt-{args.proj_name}"
else:
sample_dir = "outputs/sample"
ckpt_dir = "outputs/ckpt"
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
if args.distributed:
e_module = encoder.module
g_module = generator.module
s_module = str_projectors.module
d_module = discriminator.module
c_module = cooccur.module
else:
e_module = encoder
g_module = generator
s_module = str_projectors
d_module = discriminator
c_module = cooccur
accum = 0.5 ** (32 / (10 * 1000))
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
real_img, real_msk, _ = next(loader)
real_img = real_img.to(device)
requires_grad(encoder, False)
requires_grad(generator, False)
requires_grad(str_projectors, False)
requires_grad(discriminator, True)
requires_grad(cooccur, True)
real_img1, real_img2 = real_img.chunk(2, dim=0)
real_msk1, real_msk2 = real_msk.chunk(2, dim=0)
structure1, texture1 = encoder(real_img1, multi_tex=False)
_, texture2 = encoder(real_img2, run_str=False, multi_tex=False)
# image adversarial loss
fake_img1 = generator(structure1, texture1)
fake_img2 = generator(structure1, texture2)
fake_pred = discriminator(torch.cat((fake_img1, fake_img2), 0))
real_pred = discriminator(real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
# texture adversarial loss
fake_patch = patchify_image(fake_img2, args.n_crop, mask=real_msk1)
real_patch = patchify_image(real_img2, args.n_crop, mask=real_msk2)
ref_patch = patchify_image(real_img2, args.ref_crop * args.n_crop, mask=real_msk2)
fake_patch_pred, ref_input = cooccur(
fake_patch, args.n_crop, reference=ref_patch, ref_batch=args.ref_crop
)
real_patch_pred, _ = cooccur(real_patch, args.n_crop, ref_input=ref_input)
cooccur_loss = d_logistic_loss(real_patch_pred, fake_patch_pred)
loss_dict["d"] = d_loss
loss_dict["cooccur"] = cooccur_loss
d_optim.zero_grad()
(d_loss + cooccur_loss).backward()
d_optim.step()
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
real_patch.requires_grad = True
real_patch_pred, _ = cooccur(real_patch, args.n_crop, reference=ref_patch, ref_batch=args.ref_crop)
cooccur_r1_loss = d_r1_loss(real_patch_pred, real_patch)
d_optim.zero_grad()
r1_loss_sum = args.r1 / 2 * r1_loss * args.d_reg_every
r1_loss_sum += args.cooccur_r1 / 2 * cooccur_r1_loss * args.d_reg_every
r1_loss_sum += 0 * real_pred[0, 0] + 0 * real_patch_pred[0, 0]
r1_loss_sum.backward()
d_optim.step()
# real_img.requires_grad = False
loss_dict["r1"] = r1_loss
loss_dict["cooccur_r1"] = cooccur_r1_loss
requires_grad(encoder, True)
requires_grad(generator, True)
requires_grad(str_projectors, True)
requires_grad(discriminator, False)
requires_grad(cooccur, False)
structure1_list, texture1 = encoder(real_img1, multi_str=True, multi_tex=False)
_, texture2 = encoder(real_img2, run_str=False, multi_tex=False)
structure1 = structure1_list[-1]
fake_img1 = generator(structure1, texture1)
fake_img2 = generator(structure1, texture2)
# reconstruction loss
recon_loss = F.l1_loss(fake_img1, real_img1.detach())
# image adversarial loss
fake_pred = discriminator(torch.cat((fake_img1, fake_img2), 0))
g_loss = g_nonsaturating_loss(fake_pred)
# texture adversarial loss
fake_patch = patchify_image(fake_img2, args.n_crop, mask=real_msk1)
ref_patch = patchify_image(real_img2, args.ref_crop * args.n_crop, mask=real_msk2)
fake_patch_pred, _ = cooccur(fake_patch, args.n_crop, reference=ref_patch, ref_batch=args.ref_crop)
g_cooccur_loss = g_nonsaturating_loss(fake_patch_pred)
# Patch NCE loss
# re-encode
fake_structure1_list, fake_texture2 = encoder(fake_img2, multi_str=True, multi_tex=False)
fake_patch_vectors, coords = sample_patches(fake_structure1_list[:-1], args.n_crop, mask=real_msk1, inv=True)
real_patch_vectors, _ = sample_patches(structure1_list[:-1], args.n_crop, coords=coords)
str_qs = str_projectors(fake_patch_vectors)
str_ks = str_projectors(real_patch_vectors)
## compute loss
g_pnce_loss = 0
num_scales = len(str_qs)
for str_q, str_k in zip(str_qs, str_ks):
g_pnce_loss += patchnce_loss(str_q, str_k) / num_scales
# g_pnce_loss += patchnce_loss(str_k, str_k)
# feature reconstruction loss
feat_recon_loss = 0.5 * F.mse_loss(fake_structure1_list[-1], structure1.detach()) + 0.5 * F.mse_loss(fake_texture2, texture2.detach())
loss_dict["recon"] = recon_loss
loss_dict["g"] = g_loss
loss_dict["g_cooccur"] = g_cooccur_loss
loss_dict["g_pnce"] = g_pnce_loss
loss_dict["feat_recon"] = feat_recon_loss
g_optim.zero_grad()
(recon_loss + 0.5*g_loss + g_pnce_loss + g_cooccur_loss + 0.5*feat_recon_loss).backward() # + 10*
g_optim.step()
accumulate(e_ema, e_module, accum)
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
cooccur_val = loss_reduced["cooccur"].mean().item()
recon_val = loss_reduced["recon"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
g_cooccur_val = loss_reduced["g_cooccur"].mean().item()
g_pnce_val = loss_reduced["g_pnce"].mean().item()
feat_recon_val = loss_reduced["feat_recon"].mean().item()
r1_val = loss_reduced["r1"].mean().item()
cooccur_r1_val = loss_reduced["cooccur_r1"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"d: {d_loss_val:.4f}; c: {cooccur_val:.4f} g: {g_loss_val:.4f}; g_cooccur: {g_cooccur_val:.4f}; "
f"recon: {recon_val:.4f}; feat_recon: {feat_recon_val:.4f}; pnce: {g_pnce_val:.4f}; "
f"r1: {r1_val:.4f}; r1_cooccur: {cooccur_r1_val:.4f}"
)
)
if wandb and args.wandb and i % 10 == 0:
wandb.log(
{
"Generator": g_loss_val,
"Discriminator": d_loss_val,
"Cooccur": cooccur_val,
"Recon": recon_val,
"Feat Recon": feat_recon_val,
"Generator Cooccur": g_cooccur_val,
"R1": r1_val,
"Cooccur R1": cooccur_r1_val,
"PNCE": g_pnce_val,
},
step=i,
)
if i % 200 == 0:
with torch.no_grad():
# read test image
real_img, _, _ = next(ts_loader)
real_img = real_img.to(device)
real_img1, real_img2 = real_img.chunk(2, dim=0)
e_ema.eval()
g_ema.eval()
structure1, texture1 = e_ema(real_img1, multi_tex=False)
_, texture2 = e_ema(real_img2, run_str=False, multi_tex=False)
fake_img1 = g_ema(structure1, texture1)
fake_img2 = g_ema(structure1, texture2)
sample = torch.cat((real_img1, fake_img1, fake_img2, real_img2), 0)
utils.save_image(
sample,
f"{sample_dir}/{str(i).zfill(6)}.png",
nrow=sample.shape[0] // 4,
normalize=True,
range=(-1, 1),
)
if i % 10000 == 0:
torch.save(
{
"e": e_module.state_dict(),
"g": g_module.state_dict(),
"s": s_module.state_dict(),
"d": d_module.state_dict(),
"cooccur": c_module.state_dict(),
"e_ema": e_ema.state_dict(),
"g_ema": g_ema.state_dict(),
"g_optim": g_optim.state_dict(),
"d_optim": d_optim.state_dict(),
"args": args,
},
f"{ckpt_dir}/{str(i).zfill(6)}.pt",
)
if __name__ == "__main__":
device = "cuda"
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument("path", type=str, nargs="+")
parser.add_argument("--trlist", type=str)
parser.add_argument("--tslist", type=str)
parser.add_argument("--iter", type=int, default=800000)
parser.add_argument("--batch", type=int, default=16)
parser.add_argument("--size", type=int, default=256)
parser.add_argument("--min_patch", type=float, default=1/16)
parser.add_argument("--max_patch", type=float, default=1/4)
parser.add_argument("--r1", type=float, default=10)
parser.add_argument("--cooccur_r1", type=float, default=1)
parser.add_argument("--ref_crop", type=int, default=4)
parser.add_argument("--n_crop", type=int, default=8)
parser.add_argument("--d_reg_every", type=int, default=16)
parser.add_argument("--ckpt", type=str, default=None)
parser.add_argument("--lr", type=float, default=0.002)
parser.add_argument("--channel", type=int, default=32)
parser.add_argument("--channel_multiplier", type=int, default=1)
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--local_rank", type=int, default=0)
# a new param, weights of scales
parser.add_argument("--weights", type=float, nargs="+")
parser.add_argument("--proj_name", type=str, default="")
args = parser.parse_args()
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
encoder = PyramidEncoder(args.channel, gray=True).to(device)
generator = Generator(args.channel, gray=True).to(device)
str_projectors = MultiProjectors([args.channel, args.channel * 2, args.channel * 8], use_mlp=True).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier, gray=True
).to(device)
cooccur = Cooccurv2Discriminator(args.channel, size=args.size*args.max_patch, gray=True).to(device)
e_ema = PyramidEncoder(args.channel, gray=True).to(device)
g_ema = Generator(args.channel, gray=True).to(device)
e_ema.eval()
g_ema.eval()
accumulate(e_ema, encoder, 0)
accumulate(g_ema, generator, 0)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
list(encoder.parameters()) + list(generator.parameters()) + list(str_projectors.parameters()),
lr=args.lr,
betas=(0, 0.99),
)
d_optim = optim.Adam(
list(discriminator.parameters()) + list(cooccur.parameters()),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.ckpt is not None:
print("load model:", args.ckpt)
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
try:
ckpt_name = os.path.basename(args.ckpt)
args.start_iter = int(os.path.splitext(ckpt_name)[0])
except ValueError:
pass
encoder.load_state_dict(ckpt["e"])
generator.load_state_dict(ckpt["g"])
str_projectors.load_state_dict(ckpt['s'])
discriminator.load_state_dict(ckpt["d"])
cooccur.load_state_dict(ckpt["cooccur"])
e_ema.load_state_dict(ckpt["e_ema"])
g_ema.load_state_dict(ckpt["g_ema"])
g_optim.load_state_dict(ckpt["g_optim"])
d_optim.load_state_dict(ckpt["d_optim"])
if args.distributed:
encoder = nn.parallel.DistributedDataParallel(
encoder,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
str_projectors = nn.parallel.DistributedDataParallel(
str_projectors,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
cooccur = nn.parallel.DistributedDataParallel(
cooccur,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
transform = transforms.Compose(
[
# transforms.RandomHorizontalFlip(),
transforms.Resize(args.size),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,), inplace=True),
]
)
dataset = CXR14maskDataset(args.path[0], args.path[1], args.trlist, transform, gray=True)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
num_workers=4,
)
# test dataset
ts_dataset = CXR14maskDataset(args.path[0], args.path[1], args.tslist, transform, gray=True)
ts_loader = data.DataLoader(
ts_dataset,
batch_size=args.batch,
sampler=data_sampler(ts_dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
if get_rank() == 0 and wandb is not None and args.wandb:
wandb.init(project=f"proj_{args.proj_name}")
train(
args,
[loader, ts_loader],
encoder,
generator,
str_projectors,
discriminator,
cooccur,
g_optim,
d_optim,
e_ema,
g_ema,
device,
)