diff --git a/README.md b/README.md index 27567e3b3a29..064128e75ce3 100644 --- a/README.md +++ b/README.md @@ -38,18 +38,17 @@ Format selection is possible after clicking on the Upload annotation / Dump anno [Datumaro](datumaro/README.md) dataset framework allows additional dataset transformations via its command line tool. -| Annotation format | Dumper | Loader | -| ---------------------------------------------------------------------------------- | ------ | ------ | -| [CVAT XML v1.1 for images](cvat/apps/documentation/xml_format.md#annotation) | X | X | -| [CVAT XML v1.1 for a video](cvat/apps/documentation/xml_format.md#interpolation) | X | X | -| [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) | X | X | -| [YOLO](https://pjreddie.com/darknet/yolo/) | X | X | -| [MS COCO Object Detection](http://cocodataset.org/#format-data) | X | X | -| PNG mask | X | | -| PNG instance mask | X | | -| [TFrecord](https://www.tensorflow.org/tutorials/load_data/tf_records) | X | X | -| [MOT](https://motchallenge.net/) | X | X | -| [LabelMe](http://labelme.csail.mit.edu/Release3.0) | X | X | +| Annotation format | Dumper | Loader | +| ------------------------------------------------------------------------------------------ | ------ | ------ | +| [CVAT XML v1.1 for images](cvat/apps/documentation/xml_format.md#annotation) | X | X | +| [CVAT XML v1.1 for a video](cvat/apps/documentation/xml_format.md#interpolation) | X | X | +| [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) | X | X | +| [YOLO](https://pjreddie.com/darknet/yolo/) | X | X | +| [MS COCO Object Detection](http://cocodataset.org/#format-data) | X | X | +| PNG class mask + instance mask as in [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) | X | X | +| [TFrecord](https://www.tensorflow.org/tutorials/load_data/tf_records) | X | X | +| [MOT](https://motchallenge.net/) | X | X | +| [LabelMe](http://labelme.csail.mit.edu/Release3.0) | X | X | ## Links - [Intel AI blog: New Computer Vision Tool Accelerates Annotation of Digital Images and Video](https://www.intel.ai/introducing-cvat) diff --git a/cvat/apps/annotation/README.md b/cvat/apps/annotation/README.md index a99fbcea4d64..d30eab7c90c4 100644 --- a/cvat/apps/annotation/README.md +++ b/cvat/apps/annotation/README.md @@ -486,18 +486,48 @@ python create_pascal_tf_record.py --data_dir --set train --y - downloaded file: a zip archive with the following structure: ```bash taskname.zip - ├── frame_000001.png - ├── frame_000002.png - ├── frame_000003.png - ├── ... - └── colormap.txt + ├── labelmap.txt # optional, required for non-VOC labels + ├── ImageSets/ + │   └── Segmentation/ + │   └── default.txt # list of image names without extension + ├── SegmentationClass/ # merged class masks + │   └── image1.png + │   └── image2.png + └── SegmentationObject/ # merged instance masks + └── image1.png + └── image2.png ``` Mask is a png image with several (RGB) channels where each pixel has own color which corresponds to a label. Color generation correspond to the Pascal VOC color generation [algorithm](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html#sec:voclabelcolormap). (0, 0, 0) is used for background. - `colormap.txt` file contains the values of the used colors in RGB format. + `labelmap.txt` file contains the values of the used colors in RGB format. The file structure: + ```bash + # label:color_rgb:parts:actions + background:0,128,0:: + aeroplane:10,10,128:: + bicycle:10,128,0:: + bird:0,108,128:: + boat:108,0,100:: + bottle:18,0,8:: + bus:12,28,0:: + ``` - supported shapes - Rectangles, Polygons #### Mask loader description -Not supported +- uploaded file: a zip archive of the following structure: + ```bash + name.zip + ├── labelmap.txt # optional, required for non-VOC labels + ├── ImageSets/ + │   └── Segmentation/ + │   └── .txt + ├── SegmentationClass/ + │   └── image1.png + │   └── image2.png + └── SegmentationObject/ + └── image.png + └── image2.png + ``` +- supported shapes: Polygons +- additional comments: the CVAT task should be created with the full label set that may be in the annotation files \ No newline at end of file diff --git a/cvat/apps/annotation/mask.py b/cvat/apps/annotation/mask.py index ad1b1a6c8089..dbdb48df1c97 100644 --- a/cvat/apps/annotation/mask.py +++ b/cvat/apps/annotation/mask.py @@ -6,130 +6,60 @@ "name": "MASK", "dumpers": [ { - "display_name": "{name} (by class) {format} {version}", + "display_name": "{name} {format} {version}", "format": "ZIP", - "version": "1.0", - "handler": "dump_by_class" + "version": "1.1", + "handler": "dump", }, + ], + "loaders": [ { - "display_name": "{name} (by instance) {format} {version}", + "display_name": "{name} {format} {version}", "format": "ZIP", - "version": "1.0", - "handler": "dump_by_instance" + "version": "1.1", + "handler": "load", }, ], - "loaders": [ - ], } -MASK_BY_CLASS = 0 -MASK_BY_INSTANCE = 1 - -def convert_box_to_polygon(shape): - xtl = shape.points[0] - ytl = shape.points[1] - xbr = shape.points[2] - ybr = shape.points[3] - - return [xtl, ytl, xbr, ytl, xbr, ybr, xtl, ybr] - -def create_mask_colorizer(annotations, colorize_type): - import numpy as np - from collections import OrderedDict - - class MaskColorizer: - - def __init__(self, annotations, colorize_type): - - if colorize_type == MASK_BY_CLASS: - self.colors = self.gen_class_mask_colors(annotations) - elif colorize_type == MASK_BY_INSTANCE: - self.colors = self.gen_instance_mask_colors() - - def generate_pascal_colormap(self, size=256): - # RGB format, (0, 0, 0) used for background - colormap = np.zeros((size, 3), dtype=int) - ind = np.arange(size, dtype=int) - - for shift in reversed(range(8)): - for channel in range(3): - colormap[:, channel] |= ((ind >> channel) & 1) << shift - ind >>= 3 - - return colormap - - def gen_class_mask_colors(self, annotations): - colormap = self.generate_pascal_colormap() - labels = [label[1]["name"] for label in annotations.meta["task"]["labels"] if label[1]["name"] != 'background'] - labels.insert(0, 'background') - label_colors = OrderedDict((label, colormap[idx]) for idx, label in enumerate(labels)) - - return label_colors - - def gen_instance_mask_colors(self): - colormap = self.generate_pascal_colormap() - # The first color is black - instance_colors = OrderedDict((idx, colormap[idx]) for idx in range(len(colormap))) - - return instance_colors - - return MaskColorizer(annotations, colorize_type) - -def dump(file_object, annotations, colorize_type): - - from zipfile import ZipFile, ZIP_STORED - import numpy as np - import os - from pycocotools import mask as maskUtils - import matplotlib.image - import io - - colorizer = create_mask_colorizer(annotations, colorize_type=colorize_type) - if colorize_type == MASK_BY_CLASS: - save_dir = "SegmentationClass" - elif colorize_type == MASK_BY_INSTANCE: - save_dir = "SegmentationObject" - - with ZipFile(file_object, "w", ZIP_STORED) as output_zip: - for frame_annotation in annotations.group_by_frame(): - image_name = frame_annotation.name - annotation_name = "{}.png".format(os.path.splitext(os.path.basename(image_name))[0]) - width = frame_annotation.width - height = frame_annotation.height - - shapes = frame_annotation.labeled_shapes - # convert to mask only rectangles and polygons - shapes = [shape for shape in shapes if shape.type == 'rectangle' or shape.type == 'polygon'] - if not shapes: - continue - shapes = sorted(shapes, key=lambda x: int(x.z_order)) - img_mask = np.zeros((height, width, 3)) - buf_mask = io.BytesIO() - for shape_index, shape in enumerate(shapes): - points = shape.points if shape.type != 'rectangle' else convert_box_to_polygon(shape) - rles = maskUtils.frPyObjects([points], height, width) - rle = maskUtils.merge(rles) - mask = maskUtils.decode(rle) - idx = (mask > 0) - # get corresponding color - if colorize_type == MASK_BY_CLASS: - color = colorizer.colors[shape.label] / 255 - elif colorize_type == MASK_BY_INSTANCE: - color = colorizer.colors[shape_index+1] / 255 - - img_mask[idx] = color - - # write mask - matplotlib.image.imsave(buf_mask, img_mask, format='png') - output_zip.writestr(os.path.join(save_dir, annotation_name), buf_mask.getvalue()) - # Store color map for each class - labels = '\n'.join('{}:{}'.format(label, ','.join(str(i) for i in color)) for label, color in colorizer.colors.items()) - output_zip.writestr('colormap.txt', labels) - -def dump_by_class(file_object, annotations): - - return dump(file_object, annotations, MASK_BY_CLASS) - -def dump_by_instance(file_object, annotations): - return dump(file_object, annotations, MASK_BY_INSTANCE) +def dump(file_object, annotations): + from cvat.apps.dataset_manager.bindings import CvatAnnotationsExtractor + from cvat.apps.dataset_manager.util import make_zip_archive + from datumaro.components.project import Environment, Dataset + from tempfile import TemporaryDirectory + + env = Environment() + polygons_to_masks = env.transforms.get('polygons_to_masks') + boxes_to_masks = env.transforms.get('boxes_to_masks') + merge_instance_segments = env.transforms.get('merge_instance_segments') + id_from_image = env.transforms.get('id_from_image_name') + + extractor = CvatAnnotationsExtractor('', annotations) + extractor = extractor.transform(polygons_to_masks) + extractor = extractor.transform(boxes_to_masks) + extractor = extractor.transform(merge_instance_segments) + extractor = extractor.transform(id_from_image) + extractor = Dataset.from_extractors(extractor) # apply lazy transforms + converter = env.make_converter('voc_segmentation', + apply_colormap=True, label_map='source') + with TemporaryDirectory() as temp_dir: + converter(extractor, save_dir=temp_dir) + make_zip_archive(temp_dir, file_object) + +def load(file_object, annotations): + from pyunpack import Archive + from tempfile import TemporaryDirectory + from datumaro.plugins.voc_format.importer import VocImporter + from datumaro.components.project import Environment + from cvat.apps.dataset_manager.bindings import import_dm_annotations + + archive_file = file_object if isinstance(file_object, str) else getattr(file_object, "name") + with TemporaryDirectory() as tmp_dir: + Archive(archive_file).extractall(tmp_dir) + + dm_project = VocImporter()(tmp_dir) + dm_dataset = dm_project.make_dataset() + masks_to_polygons = Environment().transforms.get('masks_to_polygons') + dm_dataset = dm_dataset.transform(masks_to_polygons) + import_dm_annotations(dm_dataset, annotations) diff --git a/cvat/apps/dataset_manager/bindings.py b/cvat/apps/dataset_manager/bindings.py index 0c984e330cf9..afb0a0b71f1e 100644 --- a/cvat/apps/dataset_manager/bindings.py +++ b/cvat/apps/dataset_manager/bindings.py @@ -211,6 +211,22 @@ def import_dm_annotations(dm_dataset, cvat_task_anno): for item in dm_dataset: frame_number = match_frame(item, cvat_task_anno) + # do not store one-item groups + group_map = { 0: 0 } + group_size = { 0: 0 } + for ann in item.annotations: + if ann.type in shapes: + group = group_map.get(ann.group) + if group is None: + group = len(group_map) + group_map[ann.group] = group + group_size[ann.group] = 1 + else: + group_size[ann.group] += 1 + group_map = {g: s for g, s in group_size.items() + if 1 < s and group_map[g]} + group_map = {g: i for i, g in enumerate([0] + sorted(group_map))} + for ann in item.annotations: if ann.type in shapes: cvat_task_anno.add_shape(cvat_task_anno.LabeledShape( @@ -219,5 +235,6 @@ def import_dm_annotations(dm_dataset, cvat_task_anno): label=label_cat.items[ann.label].name, points=ann.points, occluded=False, + group=group_map.get(ann.group, 0), attributes=[], )) \ No newline at end of file diff --git a/cvat/apps/engine/tests/test_rest_api.py b/cvat/apps/engine/tests/test_rest_api.py index 15bfea7abad8..680c44ed15a7 100644 --- a/cvat/apps/engine/tests/test_rest_api.py +++ b/cvat/apps/engine/tests/test_rest_api.py @@ -2658,9 +2658,9 @@ def _get_initial_annotation(annotation_format): elif annotation_format == "COCO JSON 1.0": annotations["shapes"] = polygon_shapes_wo_attrs - elif annotation_format == "MASK ZIP 1.0": - annotations["shapes"] = rectangle_shapes_with_attrs + rectangle_shapes_wo_attrs + polygon_shapes_wo_attrs - annotations["tracks"] = rectangle_tracks_with_attrs + rectangle_tracks_wo_attrs + elif annotation_format == "MASK ZIP 1.1": + annotations["shapes"] = rectangle_shapes_wo_attrs + polygon_shapes_wo_attrs + annotations["tracks"] = rectangle_tracks_wo_attrs elif annotation_format == "MOT CSV 1.0": annotations["tracks"] = rectangle_tracks_wo_attrs @@ -2730,6 +2730,8 @@ def _get_initial_annotation(annotation_format): } for loader in annotation_format["loaders"]: + if loader["display_name"] == "MASK ZIP 1.1": + continue # can't really predict the result and check response = self._upload_api_v1_tasks_id_annotations(task["id"], annotator, uploaded_data, "format={}".format(loader["display_name"])) self.assertEqual(response.status_code, HTTP_202_ACCEPTED) diff --git a/datumaro/datumaro/components/project.py b/datumaro/datumaro/components/project.py index 881bb3dc9625..f6ca653a8673 100644 --- a/datumaro/datumaro/components/project.py +++ b/datumaro/datumaro/components/project.py @@ -321,17 +321,17 @@ def from_extractors(cls, *sources): subsets = defaultdict(lambda: Subset(dataset)) for source in sources: for item in source: - path = None # NOTE: merge everything into our own dataset - existing_item = subsets[item.subset].items.get(item.id) if existing_item is not None: - item = self._merge_items(existing_item, item, path=path) - else: - item = item.wrap(path=path, annotations=item.annotations) + path = existing_item.path + if item.path != path: + path = None + item = cls._merge_items(existing_item, item, path=path) subsets[item.subset].items[item.id] = item - self._subsets = dict(subsets) + dataset._subsets = dict(subsets) + return dataset def __init__(self, categories=None): super().__init__() @@ -419,7 +419,7 @@ def _merge_items(cls, existing_item, current_item, path=None): image._path = current_item.image.path if all([existing_item.image._size, current_item.image._size]): - assert existing_item.image._size == current_item.image._size, "Image info differs for item '%s'" % item.id + assert existing_item.image._size == current_item.image._size, "Image info differs for item '%s'" % existing_item.id elif existing_item.image._size: image._size = existing_item.image._size else: diff --git a/datumaro/datumaro/plugins/coco_format/converter.py b/datumaro/datumaro/plugins/coco_format/converter.py index 42d5497c4719..bdd43e616ed6 100644 --- a/datumaro/datumaro/plugins/coco_format/converter.py +++ b/datumaro/datumaro/plugins/coco_format/converter.py @@ -361,6 +361,7 @@ def save_annotations(self, item): @classmethod def find_solitary_points(cls, annotations): + annotations = sorted(annotations, key=lambda a: a.group) solitary_points = [] for g_id, group in groupby(annotations, lambda a: a.group): diff --git a/datumaro/datumaro/plugins/transforms.py b/datumaro/datumaro/plugins/transforms.py index 693edbc339c2..502414c2d50e 100644 --- a/datumaro/datumaro/plugins/transforms.py +++ b/datumaro/datumaro/plugins/transforms.py @@ -181,6 +181,27 @@ def convert_polygon(polygon, img_h, img_w): return RleMask(rle=rle, label=polygon.label, z_order=polygon.z_order, id=polygon.id, attributes=polygon.attributes, group=polygon.group) +class BoxesToMasks(Transform, CliPlugin): + def transform_item(self, item): + annotations = [] + for ann in item.annotations: + if ann.type == AnnotationType.bbox: + if not item.has_image: + raise Exception("Image info is required for this transform") + h, w = item.image.size + annotations.append(self.convert_bbox(ann, h, w)) + else: + annotations.append(ann) + + return self.wrap_item(item, annotations=annotations) + + @staticmethod + def convert_bbox(bbox, img_h, img_w): + rle = mask_utils.frPyObjects([bbox.as_polygon()], img_h, img_w)[0] + + return RleMask(rle=rle, label=bbox.label, z_order=bbox.z_order, + id=bbox.id, attributes=bbox.attributes, group=bbox.group) + class MasksToPolygons(Transform, CliPlugin): def transform_item(self, item): annotations = [] diff --git a/datumaro/datumaro/plugins/voc_format/converter.py b/datumaro/datumaro/plugins/voc_format/converter.py index 37b181f7c484..54d13e7e08f6 100644 --- a/datumaro/datumaro/plugins/voc_format/converter.py +++ b/datumaro/datumaro/plugins/voc_format/converter.py @@ -411,8 +411,10 @@ def _load_categories(self, label_map_source=None): # generate colormap from the input dataset labels = self._extractor.categories() \ .get(AnnotationType.label, LabelCategories()) - label_map = OrderedDict( - (item.name, [None, [], []]) for item in labels.items) + label_map = OrderedDict() + label_map['background'] = [None, [], []] + for item in labels.items: + label_map[item.name] = [None, [], []] elif label_map_source in [LabelmapType.guess.name, None]: # generate colormap for union of VOC and input dataset labels diff --git a/datumaro/datumaro/util/annotation_tools.py b/datumaro/datumaro/util/annotation_tools.py index 00871b157ec3..d0fb1f64ab49 100644 --- a/datumaro/datumaro/util/annotation_tools.py +++ b/datumaro/datumaro/util/annotation_tools.py @@ -7,6 +7,7 @@ def find_instances(instance_anns): + instance_anns = sorted(instance_anns, key=lambda a: a.group) ann_groups = [] for g_id, group in groupby(instance_anns, lambda a: a.group): if not g_id: diff --git a/datumaro/datumaro/util/test_utils.py b/datumaro/datumaro/util/test_utils.py index 1d6395feef94..8600b62199ef 100644 --- a/datumaro/datumaro/util/test_utils.py +++ b/datumaro/datumaro/util/test_utils.py @@ -84,7 +84,8 @@ def compare_datasets(test, expected, actual): test.assertEqual(sorted(expected.subsets()), sorted(actual.subsets())) test.assertEqual(len(expected), len(actual)) for item_a in expected: - item_b = find(actual, lambda x: x.id == item_a.id) + item_b = find(actual, lambda x: x.id == item_a.id and \ + x.subset == item_a.subset) test.assertFalse(item_b is None, item_a.id) test.assertEqual(len(item_a.annotations), len(item_b.annotations)) for ann_a in item_a.annotations: diff --git a/datumaro/tests/test_project.py b/datumaro/tests/test_project.py index 5b3c47f1d69a..229c9f0f628d 100644 --- a/datumaro/tests/test_project.py +++ b/datumaro/tests/test_project.py @@ -4,8 +4,8 @@ from unittest import TestCase -from datumaro.components.project import Project, Environment -from datumaro.components.project import Source, Model +from datumaro.components.project import Project, Environment, Dataset +from datumaro.components.config_model import Source, Model from datumaro.components.launcher import Launcher, InferenceWrapper from datumaro.components.converter import Converter from datumaro.components.extractor import (Extractor, DatasetItem, @@ -372,7 +372,7 @@ def __iter__(self): self.assertEqual(2, len(filtered)) def test_annotations_filter_can_be_applied(self): - class SrcTestExtractor(Extractor): + class SrcExtractor(Extractor): def __iter__(self): return iter([ DatasetItem(id=0), @@ -386,7 +386,7 @@ def __iter__(self): ]), ]) - class DstTestExtractor(Extractor): + class DstExtractor(Extractor): def __iter__(self): return iter([ DatasetItem(id=0), @@ -398,15 +398,15 @@ def __iter__(self): ]), ]) - extractor = SrcTestExtractor() + extractor = SrcExtractor() filtered = XPathAnnotationsFilter(extractor, '/item/annotation[label_id = 0]') - self.assertListEqual(list(filtered), list(DstTestExtractor())) + self.assertListEqual(list(filtered), list(DstExtractor())) def test_annotations_filter_can_remove_empty_items(self): - class SrcTestExtractor(Extractor): + class SrcExtractor(Extractor): def __iter__(self): return iter([ DatasetItem(id=0), @@ -420,7 +420,7 @@ def __iter__(self): ]), ]) - class DstTestExtractor(Extractor): + class DstExtractor(Extractor): def __iter__(self): return iter([ DatasetItem(id=2, annotations=[ @@ -428,12 +428,12 @@ def __iter__(self): ]), ]) - extractor = SrcTestExtractor() + extractor = SrcExtractor() filtered = XPathAnnotationsFilter(extractor, '/item/annotation[label_id = 2]', remove_empty=True) - self.assertListEqual(list(filtered), list(DstTestExtractor())) + self.assertListEqual(list(filtered), list(DstExtractor())) class ConfigTest(TestCase): def test_can_produce_multilayer_config_from_dict(self): @@ -492,6 +492,46 @@ def __iter__(self): compare_datasets(self, CustomExtractor(), dataset) +class DatasetTest(TestCase): + def test_create_from_extractors(self): + class SrcExtractor1(Extractor): + def __iter__(self): + return iter([ + DatasetItem(id=1, subset='train', annotations=[ + Bbox(1, 2, 3, 4), + Label(4), + ]), + DatasetItem(id=1, subset='val', annotations=[ + Label(4), + ]), + ]) + + class SrcExtractor2(Extractor): + def __iter__(self): + return iter([ + DatasetItem(id=1, subset='val', annotations=[ + Label(5), + ]), + ]) + + class DstExtractor(Extractor): + def __iter__(self): + return iter([ + DatasetItem(id=1, subset='train', annotations=[ + Bbox(1, 2, 3, 4), + Label(4), + ]), + DatasetItem(id=1, subset='val', annotations=[ + Label(4), + Label(5), + ]), + ]) + + dataset = Dataset.from_extractors(SrcExtractor1(), SrcExtractor2()) + + compare_datasets(self, DstExtractor(), dataset) + + class DatasetItemTest(TestCase): def test_ctor_requires_id(self): has_error = False diff --git a/datumaro/tests/test_transforms.py b/datumaro/tests/test_transforms.py index 6260fe517fd0..85b776e3edb9 100644 --- a/datumaro/tests/test_transforms.py +++ b/datumaro/tests/test_transforms.py @@ -271,3 +271,52 @@ def __iter__(self): actual = transforms.IdFromImageName(SrcExtractor()) compare_datasets(self, DstExtractor(), actual) + + def test_boxes_to_masks(self): + class SrcExtractor(Extractor): + def __iter__(self): + return iter([ + DatasetItem(id=1, image=np.zeros((5, 5, 3)), + annotations=[ + Bbox(0, 0, 3, 3, z_order=1), + Bbox(0, 0, 3, 1, z_order=2), + Bbox(0, 2, 3, 1, z_order=3), + ] + ), + ]) + + class DstExtractor(Extractor): + def __iter__(self): + return iter([ + DatasetItem(id=1, image=np.zeros((5, 5, 3)), + annotations=[ + Mask(np.array([ + [1, 1, 1, 0, 0], + [1, 1, 1, 0, 0], + [1, 1, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]], + ), + z_order=1), + Mask(np.array([ + [1, 1, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]], + ), + z_order=2), + Mask(np.array([ + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [1, 1, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]], + ), + z_order=3), + ] + ), + ]) + + actual = transforms.BoxesToMasks(SrcExtractor()) + compare_datasets(self, DstExtractor(), actual) diff --git a/datumaro/tests/test_voc_format.py b/datumaro/tests/test_voc_format.py index 841e1b89853f..12f9e7d33455 100644 --- a/datumaro/tests/test_voc_format.py +++ b/datumaro/tests/test_voc_format.py @@ -1,3 +1,4 @@ +from collections import OrderedDict import numpy as np import os import os.path as osp @@ -643,6 +644,53 @@ def categories(self): SrcExtractor(), VocConverter(label_map='guess'), test_dir, target_dataset=DstExtractor()) + def test_dataset_with_source_labelmap(self): + class SrcExtractor(TestExtractorBase): + def __iter__(self): + yield DatasetItem(id=1, annotations=[ + Bbox(2, 3, 4, 5, label=0, id=1), + Bbox(1, 2, 3, 4, label=1, id=2), + ]) + + def categories(self): + label_cat = LabelCategories() + label_cat.add('label_1') + label_cat.add('label_2') + return { + AnnotationType.label: label_cat, + } + + class DstExtractor(TestExtractorBase): + def __iter__(self): + yield DatasetItem(id=1, annotations=[ + Bbox(2, 3, 4, 5, label=self._label('label_1'), id=1, + attributes={ + 'truncated': False, + 'difficult': False, + 'occluded': False, + } + ), + Bbox(1, 2, 3, 4, label=self._label('label_2'), id=2, + attributes={ + 'truncated': False, + 'difficult': False, + 'occluded': False, + } + ), + ]) + + def categories(self): + label_map = OrderedDict() + label_map['background'] = [None, [], []] + label_map['label_1'] = [None, [], []] + label_map['label_2'] = [None, [], []] + return VOC.make_voc_categories(label_map) + + with TestDir() as test_dir: + self._test_save_and_load( + SrcExtractor(), VocConverter(label_map='source'), + test_dir, target_dataset=DstExtractor()) + def test_dataset_with_fixed_labelmap(self): class SrcExtractor(TestExtractorBase): def __iter__(self):