-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAstroLib.cs
336 lines (276 loc) · 11.6 KB
/
AstroLib.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
namespace ImportWC
{
internal static class AstroLib
{
public static int BrasSolar(double el, double erv, double nfac)
{
// el solar elevation deg from horizon
// erv distance from earth to sun in AU
// nfac atmospheric turbidity parameter (2=clear, 4-5=smoggy)
double sinal = Math.Sin(DegToRad(el)); // Sine of the solar elevation angle
if (sinal < 0)
return 0;
// solar radiation on horizontal surface at top of atmosphere
double i0 = (1367 / (erv * erv)) * sinal;
// optical air mass
double m = 1 / (sinal + (0.15 * Math.Pow(el + 3.885, -1.253)));
// molecular scattering coefficient
double al = 0.128 - (0.054 * Math.Log(m) / Math.Log(10));
// clear-sky solar radiation at earth surface on horizontal surface (W/m^2)
return (int) Math.Round(i0 * Math.Exp(-nfac * al * m));
}
public static int RyanStolzSolar(double el, double erv, double atc, double z)
{
// el solar elevation deg from horizon
// erv distance from earth to sun in AU
// atc atmospheric transmission coefficient
// z elevation, metres
double sinal = Math.Sin(DegToRad(el)); // Sine of the solar elevation angle
if (sinal < 0)
return 0;
double al = Math.Asin(sinal);
double a0 = RadToDeg(al); // convert the radians to degree
double rm = Math.Pow(((288.0 - 0.0065 * z) / 288.0), 5.256) / (sinal + 0.15 * Math.Pow((a0 + 3.885), (-1.253)));
double rsToa = 1360 * sinal / (erv * erv); // RS on the top of atmosphere
return (int) Math.Round(rsToa * Math.Pow(atc, rm)); //RS on the ground
}
private static double DegToRad(double angle)
{
return Math.PI * angle / 180.0;
}
private static double RadToDeg(double angle)
{
return angle * (180.0 / Math.PI);
}
public static int SolarMax(DateTime timestamp, double longitude, double latitude, double altitude,
out double solarelevation, SolarOptions options)
{
double factor = 0;
if (options.SolarCalc == 0)
{
factor = GetFactor(timestamp, options.RStransfactorJun, options.RStransfactorDec);
}
if (options.SolarCalc == 1)
{
factor = GetFactor(timestamp, options.BrasTurbidityJun, options.BrasTurbidityDec);
}
return SolarMax(timestamp, longitude, latitude, altitude, out solarelevation, factor, options.SolarCalc);
}
private static int SolarMax(DateTime timestamp, double longitude, double latitude, double altitude,
out double solarelevation, double factor, int method)
{
DateTime utctime = timestamp.ToUniversalTime();
CalculateSunPosition(utctime, latitude, longitude, out solarelevation, out _);
var dEpoch = new DateTime(1990, 1, 1, 0, 0, 0, DateTimeKind.Local);
double erv = CalcSunDistance(utctime, dEpoch);
if (method == 0)
{
return RyanStolzSolar(solarelevation, erv, factor, altitude);
}
if (method == 1)
{
return BrasSolar(solarelevation, erv, factor);
}
return 0;
}
// Calculate the interpolated factor using a cosine function
private static double GetFactor(DateTime timestamp, double jun, double dec)
{
var range = jun - dec;
var doy = timestamp.DayOfYear;
return dec + Math.Cos((doy - 172) / 183.0 * Math.PI / 2) * range;
}
// From the NOAA_SolarCalculations_day spreadsheet
// https://gml.noaa.gov/grad/solcalc/calcdetails.html
#region NOAA_Solar
private static void CalculateSunPosition(DateTime dateTime, double latitude, double longitude, out double altitude, out double azimuth)
{
// We will use DateTime.ToOADate() which automatically includes the TZ
var zone = 0.0;
var julianDate = dateTime.ToOADate() + 2415018.5;
var julianCentry = (julianDate - 2451545) / 36525.0;
var geoMeanLongSun = PutIn360Deg(280.46646 + julianCentry * (36000.76983 + julianCentry * 0.0003032));
var geoMeanAnomSun = 357.52911 + julianCentry * (35999.05029 - 0.0001537 * julianCentry);
var eccEarthOrbit = 0.016708634 - julianCentry * (0.000042037 + 0.0000001267 * julianCentry);
var sunEqCentre = Math.Sin(DegToRad(geoMeanAnomSun)) * (1.914602 - julianCentry * (0.004817 + 0.000014 * julianCentry)) + Math.Sin(DegToRad(2 * geoMeanAnomSun)) * (0.019993 - 0.000101 * julianCentry) + Math.Sin(DegToRad(3 * geoMeanAnomSun)) * 0.000289;
var sunTrueLong = geoMeanLongSun + sunEqCentre;
//var sunTrueAnom = geoMeanAnomSun + sunEqCentre
//var sunRadVector = (1.000001018 * (1 - eccEarthOrbit * eccEarthOrbit)) / (1 + eccEarthOrbit * Math.Cos(DegToRad(sunTrueAnom)))
var sunAppLong = sunTrueLong - 0.00569 - 0.00478 * Math.Sin(DegToRad(125.04 - 1934.136 * julianCentry));
var meanObliqEcplitic = 23 + (26 + (21.448 - julianCentry * (46.815 + julianCentry * (0.00059 - julianCentry * 0.001813))) / 60.0) / 60.0;
var obliqCorr = meanObliqEcplitic + 0.00256 * Math.Cos(DegToRad(125.04 - 1934.136 * julianCentry));
//var sunRA = RadToDeg(Math.Atan2(Math.Cos(DegToRad(sunAppLong)), Math.Cos(DegToRad(obliqCorr)) * Math.Sin(DegToRad(obliqCorr))))
var sunDec = RadToDeg(Math.Asin(Math.Sin(DegToRad(obliqCorr)) * Math.Sin(DegToRad(sunAppLong))));
var varY = Math.Tan(DegToRad(obliqCorr / 2.0)) * Math.Tan(DegToRad(obliqCorr / 2.0));
var eqOfTime = 4 * RadToDeg(varY * Math.Sin(2 * DegToRad(geoMeanLongSun)) - 2 * eccEarthOrbit * Math.Sin(DegToRad(geoMeanAnomSun)) + 4 * eccEarthOrbit * varY * Math.Sin(DegToRad(geoMeanAnomSun)) * Math.Cos(2 * DegToRad(geoMeanLongSun)) - 0.5 * varY * varY * Math.Sin(4 * DegToRad(geoMeanLongSun)) - 1.25 * eccEarthOrbit * eccEarthOrbit * Math.Sin(2 * DegToRad(geoMeanAnomSun)));
//var haSunRise = RadToDeg(Math.Acos(Math.Cos(DegToRad(90.833)) / (Math.Cos(DegToRad(latitude)) * Math.Cos(DegToRad(sunDec))) - Math.Tan(DegToRad(latitude)) * Math.Tan(DegToRad(sunDec))))
//var solarNoonLst = (720.0 - 4 * longitude - eqOfTime + zone * 60.0) / 1440.0
//var sunriseTimeLst = solarNoonLst - haSunRise * 4 / 1440.0
//var sunsetTimeLst = solarNoonLst + haSunRise * 4 / 1440.0
//var sunlightDurationMins = 8 * haSunRise
var trueSolarTime = PutInRange(dateTime.TimeOfDay.TotalMinutes + eqOfTime + 4 * longitude - 60 * zone, 1440);
var hourAngle = trueSolarTime / 4.0 < 0 ? trueSolarTime / 4.0 + 180 : trueSolarTime / 4.0 - 180;
var solarZenithAngle = RadToDeg(Math.Acos(Math.Sin(DegToRad(latitude)) * Math.Sin(DegToRad(sunDec)) + Math.Cos(DegToRad(latitude)) * Math.Cos(DegToRad(sunDec)) * Math.Cos(DegToRad(hourAngle))));
var solarElevation = 90 - solarZenithAngle;
double refraction;
if (solarElevation > 85)
refraction = 0;
else if (solarElevation > 5)
refraction = 58.1 / Math.Tan(DegToRad(solarElevation)) - 0.07 / Math.Pow(Math.Tan(DegToRad(solarElevation)), 3) + 0.000086 / Math.Pow(Math.Tan(DegToRad(solarElevation)), 5);
else if (solarElevation > -0.575)
refraction = 1735.0 + solarElevation * (-518.2 + solarElevation * (103.4 + solarElevation * (-12.79 + solarElevation * 0.711)));
else
refraction = -20.772 / Math.Tan(DegToRad(solarElevation));
altitude = solarElevation + refraction / 3600.0;
if (hourAngle > 0)
azimuth = PutIn360Deg(DegToRad(Math.Acos(((Math.Sin(DegToRad(latitude)) * Math.Cos(DegToRad(solarZenithAngle))) - Math.Sin(DegToRad(sunDec))) / (Math.Sin(DegToRad(latitude)) * Math.Sin(DegToRad(solarZenithAngle))))) + 180);
else
azimuth = PutIn360Deg(540 - DegToRad(Math.Acos(((Math.Sin(DegToRad(latitude)) * Math.Cos(DegToRad(solarZenithAngle))) - Math.Sin(DegToRad(sunDec))) / (Math.Cos(DegToRad(latitude)) * Math.Sin(DegToRad(solarZenithAngle))))));
}
#endregion
private static double CalcSunDistance(DateTime dDate, DateTime dEpoch)
{
const double fAcc = 0.0000001;
double fD = GetDaysBetween(dDate, dEpoch);
double fSolarMEL = GetSolarMEL(dEpoch, true);
double fSolarPL = GetSolarPerigeeLong(dEpoch, true);
double fSunEarthEcc = GetSunEarthEcc(dEpoch, true);
const double fSMA = 149598500.0;
double fN = (360.0 / 365.242191) * fD;
fN = PutIn360Deg(fN);
double fM = fN + fSolarMEL - fSolarPL;
fM = PutIn360Deg(fM);
fM = DegToRad(fM);
double fE = CalcEccentricAnomaly(fM, fM, fSunEarthEcc, fAcc);
double fTanV2 = Math.Sqrt((1.0 + fSunEarthEcc) / (1.0 - fSunEarthEcc)) * Math.Tan(fE / 2.0);
double fV = Math.Atan(fTanV2) * 2.0;
double fDistance = (fSMA * (1.0 - (fSunEarthEcc * fSunEarthEcc))) / (1.0 + (fSunEarthEcc * Math.Cos(fV)));
// Convert from km to AU
return fDistance / 149597871.0;
}
private static double GetSunEarthEcc(DateTime dDate, bool b0Epoch)
{
//Returns the eccentricity of Earth's orbit around the sun for the specified date
double fJD = GetJulianDay(dDate, 0);
if (b0Epoch)
{
fJD -= 1.0;
}
double fT = (fJD - 2415020.0) / 36525.0;
double fEcc = 0.01675104 - (0.0000418 * fT) - (0.000000126 * fT * fT);
return fEcc;
}
private static double CalcEccentricAnomaly(double fEGuess, double fMA, double fEcc, double fAcc)
{
//Calc Eccentric Anomaly to specified accuracy
double fE;
double fEG = fEGuess;
double fDelta = fEG - (fEcc * Math.Sin(fEG)) - fMA;
if (Math.Abs(fDelta) > fAcc)
{
double fDeltaE = (fDelta / (1.0 - (fEcc * Math.Cos(fEG))));
double fETmp = fEG - fDeltaE;
fE = CalcEccentricAnomaly(fETmp, fMA, fEcc, fAcc);
}
else
{
fE = fEGuess;
}
return fE;
}
public static long GetDaysBetween(DateTime dDate, DateTime dSecDate)
{
double fJD1 = GetJulianDay(dDate, 0);
double fJD2 = GetJulianDay(dSecDate, 0);
double fDays = (fJD1 - fJD2);
if (fDays >= 0)
{
fDays = (long) Math.Floor(fDays);
}
else
{
fDays = (long) Math.Floor(Math.Abs(fDays)) * -1;
}
return (long) Math.Floor(fDays);
}
private static double GetJulianDay(DateTime dDate, int iZone)
{
double iGreg;
double fC;
dDate = CalcUTFromZT(dDate, iZone);
int iYear = dDate.Year;
int iMonth = dDate.Month;
int iDay = dDate.Day;
int iHour = dDate.Hour;
int iMinute = dDate.Minute;
int iSecond = dDate.Second;
double fFrac = iDay + ((iHour + (iMinute / 60) + (iSecond / 60 / 60)) / 24);
iGreg = iYear < 1582 ? 0 : 1;
if ((iMonth == 1) || (iMonth == 2))
{
iYear -= 1;
iMonth += 12;
}
double fA = (long) Math.Floor(iYear / 100.0);
double fB = (2 - fA + (long) Math.Floor(fA / 4)) * iGreg;
if (iYear < 0)
{
fC = (int) Math.Floor((365.25 * iYear) - 0.75);
}
else
{
fC = (int) Math.Floor(365.25 * iYear);
}
double fD = (int) Math.Floor(30.6001 * (iMonth + 1));
double fJD = fB + fC + fD + 1720994.5;
fJD += fFrac;
return fJD;
}
private static DateTime CalcUTFromZT(DateTime dDate, int iZone)
{
if (iZone >= 0)
{
return dDate.Subtract(new TimeSpan(iZone, 0, 0));
}
return dDate.AddHours(Math.Abs(iZone));
}
private static double GetSolarMEL(DateTime dDate, bool b0Epoch)
{
//Returns the Sun's Mean Ecliptic Longitude for the specified date
double fJD = GetJulianDay(dDate, 0);
if (b0Epoch)
{
fJD -= 1.0;
}
double fT = (fJD - 2415020.0) / 36525.0;
double fLong = 279.6966778 + (36000.76892 * fT) + (0.0003025 * fT * fT);
fLong = PutIn360Deg(fLong);
return fLong;
}
private static double GetSolarPerigeeLong(DateTime dDate, bool b0Epoch)
{
//Returns the Sun's Perigee Longitude for the specified date
double fJD = GetJulianDay(dDate, 0);
if (b0Epoch)
{
fJD -= 1.0;
}
double fT = (fJD - 2415020.0) / 36525.0;
double fLong = 281.2208444 + (1.719175 * fT) + (0.000452778 * fT * fT);
fLong = PutIn360Deg(fLong);
return fLong;
}
private static double PutIn360Deg(double pfDeg)
{
return PutInRange(pfDeg, 360);
}
private static double PutInRange(double val, double range)
{
while (val >= range)
val -= range;
while (val < 0)
val += range;
return val;
}
}
}