Skip to content

Latest commit

 

History

History
249 lines (203 loc) · 9.46 KB

README.md

File metadata and controls

249 lines (203 loc) · 9.46 KB
3FAD4652-488F-4F6F-A744-4C2AA5855E92

StaffSpy is a staff scraper library for LinkedIn.

Features

  • Scrapes staff from a company on LinkedIn
  • Obtains skills, experiences, certifications & more
  • Or fetch individuals users / comments on posts
  • Aggregates the employees in a Pandas DataFrame

Video Guide for StaffSpy - updated for release v0.2.18

Installation

pip install -U staffspy[browser]

Python version >= 3.10 required

Usage

from pathlib import Path
from staffspy import LinkedInAccount, SolverType, DriverType, BrowserType

session_file = Path(__file__).resolve().parent / "session.pkl"
account = LinkedInAccount(
    # commenting these out because 2Captcha is not reliable, so sign in with browser
    # username="[email protected]",
    # password="mypassword",
    # solver_api_key="your-api-key",
    # solver_service=SolverType.TWO_CAPTCHA,
    
    # if issues with webdriver, specify
    # driver_type=DriverType(
    #     browser_type=BrowserType.CHROME,
    #     executable_path="/Users/pc/chromedriver-mac-arm64/chromedriver"
    # ),

    session_file=str(session_file), # save login cookies to only log in once (lasts a week or so)
    log_level=1, # 0 for no logs
)

# search by company
staff = account.scrape_staff(
    company_name="openai",
    search_term="software engineer",
    location="london",
    extra_profile_data=True, # fetch all past experiences, schools, & skills
    max_results=50, # can go up to 1000
)
# or fetch by user ids
users = account.scrape_users(
    user_ids=['williamhgates', 'rbranson', 'jeffweiner08']
)

# fetch all comments on two of Bill Gates' posts 
comments = account.scrape_comments(
    ['7252421958540091394','7253083989547048961']
)
staff.to_csv("staff.csv", index=False)
users.to_csv("users.csv", index=False)
comments.to_csv("comments.csv", index=False)

Browser login

If you rather use a browser to log in, install the browser add-on to StaffSpy .

pip install staffspy[browser]

If you do not pass the username & password params, then a browser will open to sign in to LinkedIn on the first sign-in. Press enter after signing in to begin scraping.

Output

profile_id name first_name last_name location age position followers connections company past_company1 past_company2 school1 school2 skill1 skill2 skill3 is_connection premium creator potential_email profile_link profile_photo
javiersierra2102 Javier Sierra Javier Sierra London, England, United Kingdom 39 Software Engineer 735 725 OpenAI Meta Oculus VR Hult International Business School Universidad Simón Bolívar Java JavaScript C++ FALSE FALSE FALSE [email protected], [email protected] https://www.linkedin.com/in/javiersierra2102 https://media.licdn.com/dms/image/C4D03AQHEyUg1kGT08Q/profile-displayphoto-shrink_800_800/0/1516504680512?e=1727913600&v=beta&t=3enCmNDBtJ7LxfbW6j1hDD8qNtHjO2jb2XTONECxUXw
dougli Douglas Li Douglas Li London, England, United Kingdom 37 @ OpenAI UK, previously at Meta 583 401 OpenAI Shift Lab Facebook Washington University in St. Louis Java Python JavaScript FALSE TRUE FALSE [email protected], [email protected] https://www.linkedin.com/in/dougli https://media.licdn.com/dms/image/D4E03AQETmRyb3_GB8A/profile-displayphoto-shrink_800_800/0/1687996628597?e=1727913600&v=beta&t=HRYGJ4RxsTMcPF1YcSikXlbz99hx353csho3PWT6fOQ
nkartashov Nick Kartashov Nick Kartashov London, England, United Kingdom 33 Software Engineer 2186 2182 OpenAI Google DeepMind St. Petersburg Academic University Bioinformatics Institute Teamwork Java Haskell FALSE FALSE FALSE [email protected], [email protected] https://www.linkedin.com/in/nkartashov https://media.licdn.com/dms/image/D4E03AQEjOKxC5UgwWw/profile-displayphoto-shrink_800_800/0/1680706122689?e=1727913600&v=beta&t=m-JnG9nm0zxp1Z7njnInwbCoXyqa3AN-vJZntLfbzQ4

Parameters for LinkedInAccount()

Optional
├── session_file (str):
|    file path to save session cookies, so only one manual login is needed.
|    can use mult profiles this way
|
| For automated login
├── username (str):
|    linkedin account email
│
├── password (str):
|    linkedin account password
|
├── driver_type (DriverType):
|    signs in with the given BrowserType (Chrome, Firefox) and executable_path
|
├── solver_service (SolverType):
|    solves the captcha using the desired service - either CapSolver, or 2Captcha (worse of the two)
|
├── solver_api_key (str):
|    api key for the solver provider
│
├── log_level (int):
|    Controls the verbosity of the runtime printouts
|    (0 prints only errors, 1 is info, 2 is all logs. Default is 0.)

Parameters for scrape_staff()

Optional
├── company_name (str):
|    company identifier on linkedin, will search for that company if that company id does not exist
|    e.g. openai from https://www.linkedin.com/company/openai
|
├── search_term (str):
|    staff title to search for
|    e.g. software engineer
|
├── location (str):
|    location the staff resides
|    e.g. london
│
├── extra_profile_data (bool)
|    fetches educations, experiences, skills, certifications (Default false)
│
├── max_results (int):
|    number of staff to fetch, default/max is 1000 for a search imposed by LinkedIn

Parameters for scrape_users()

├── user_ids (list):
|    user ids to scrape from
|     e.g. dougmcmillon from https://www.linkedin.com/in/dougmcmillon

Parameters for scrape_comments()

├── post_ids (list):
|    post ids to scrape from
|     e.g. 7252381444906364929 from https://www.linkedin.com/posts/williamhgates_technology-transformtheeveryday-activity-7252381444906364929-Bkls

LinkedIn notes

- only 1000 max results per search
- extra_profile_data increases runtime by O(n)
- if rate limited, the program will stop scraping
- if using non-browser sign in, turn off 2fa

Frequently Asked Questions


Q: Can I get my account banned?
A: It is a possibility, although there are no recorded incidents. Let me know if you are the first.


Q: Scraped 999 staff members, with 869 hidden LinkedIn Members?
A: It means your LinkedIn account is bad. Not sure how they classify it but unverified email, new account, low connections and a bunch of factors go into it.


Q: Exception: driver not found for selenium?
A: You need chromedriver installed (not the chrome): https://googlechromelabs.github.io/chrome-for-testing/#stable


Q: Encountering issues with your queries?
A: If problems persist, submit an issue.

Staff Schema

Staff
├── Personal Information
│   ├── search_term
│   ├── id
│   ├── name
│   ├── first_name
│   ├── last_name
│   ├── location
│   └── bio
│
├── Professional Details
│   ├── position
│   ├── profile_id
│   ├── profile_link
│   ├── potential_emails
│   └── estimated_age
│
├── Social Connectivity
│   ├── followers
│   ├── connections
│   └── mutuals_count
│
├── Status
│   ├── influencer
│   ├── creator
│   ├── premium
│   ├── open_to_work
│   ├── is_hiring
│   └── is_connection
│
├── Visuals
│   ├── profile_photo
│   └── banner_photo
│
├── Skills
│   ├── name
│   └── endorsements
│
├── Experiences
│   ├── from_date
│   ├── to_date
│   ├── duration
│   ├── title
│   ├── company
│   ├── location
│   └── emp_type
│
├── Certifications
│   ├── title
│   ├── issuer
│   ├── date_issued
│   ├── cert_id
│   └── cert_link
│
└── Educational Background
    ├── years
    ├── school
    └── degree