-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
200 lines (169 loc) · 7.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import numpy as np
import argparse
import time
from utils import util
from dataset import load_data
from engine import trainer
import os
parser = argparse.ArgumentParser()
#dataset
parser.add_argument('--datapath',type=str,default='./data',help='data path')
parser.add_argument('--adjdata',type=str,default='./data/cossimi_graph.npz',help='initial adj adjacent matrix')
parser.add_argument('--adjtype',type=str,default='symnadj',help='adj type')
parser.add_argument('--aptonly',action='store_true',default=False,help='whether only adaptive adj')
parser.add_argument('--external_dim',type=int,default=940,help='external information dimension')
parser.add_argument('--input_len',type=int,default=12,help='')
parser.add_argument('--out_len',type=int,default=3,help='')
#model
parser.add_argument('--nhid',type=int,default=32,help='')
parser.add_argument('--layers',type=int,default=4,help='')
parser.add_argument('--in_dim',type=int,default=2,help='inputs dimension')
parser.add_argument('--num_nodes',type=int,default=1024,help='number of nodes')
parser.add_argument('--gated',type=bool,default=True,help='whether to use gated fusion')
parser.add_argument('--multi_task',type=bool,default=True,help='whether to use multitask learning')
parser.add_argument('--is_external',type=bool,default=True,help='')
parser.add_argument('--is_timestamp',type=bool,default=True,help='')
#trainning
parser.add_argument('--epochs',type=int,default=200,help='')
parser.add_argument('--batch_size',type=int,default=32,help='batch size')
parser.add_argument('--train_prop',type=int,default=0.8,help='')
parser.add_argument('--eval_prop',type=int,default=0.1,help='')
parser.add_argument('--print_every',type=int,default=50,help='')
parser.add_argument('--seed',type=int,default=99,help='random seed')
parser.add_argument('--save',type=str,default='./garage/metr',help='save path')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
parser.add_argument('--learning_rate',type=float,default=0.001,help='learning rate')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--weight_decay',type=float,default=0.0001,help='weight decay rate')
parser.add_argument('--multi_gpu',type=bool,default=True,help='whether to parallel training')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
torch.backends.cudnn.enabled = False
def main():
#set seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
print(args)
if not os.path.exists(args.save):
os.makedirs(args.save)
#load initial adj
adj_mx = util.load_adj(args.adjdata, args.adjtype)
supports = torch.Tensor(adj_mx[0])
if args.aptonly:
supports = None
#data loader
train_loader,val_loader,test_loader,scaler = load_data.dataloader_all_seq2seq(args.datapath, args.train_prop, args.eval_prop, args.input_len, args.out_len, args.batch_size)
engine = trainer(supports,scaler,args.input_len, args.out_len, args.num_nodes,args.dropout, args.learning_rate, args.weight_decay,
args.layers,args.in_dim,args.nhid,args.external_dim,args.gated,args.multi_task,args.multi_gpu)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
for i in range(1,args.epochs+1):
# if i % 10 == 0:
# lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10)))
# for g in engine.optimizer.param_groups:
# g['lr'] = lr
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
#шонч╗Г
for iter, data in enumerate(train_loader):
x = data['x'].cuda()
y = data['y'].cuda()
timestamp,external = None,None
if args.is_timestamp:
timestamp = data['timestamp'].cuda() #(b,t,n,c)
if args.is_external:
poi_data = data['external'].cuda()
metrics = engine.train(x, y,timestamp,poi_data)
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
#validation
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, data in enumerate(val_loader):
x = data['x'].cuda()
y = data['y'].cuda()
timestamp,external = None,None
if args.is_timestamp:
timestamp = data['timestamp'].cuda() #(b,t,n,c)
if args.is_external:
poi_data = data['external'].cuda()
metrics = engine.eval(x, y,timestamp,poi_data)
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
torch.save(engine.model.state_dict(), args.save+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(args.save+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth"))
#test
outputs = []
realy = []
for iter, data in enumerate(test_loader):
x = data['x'].cuda()
y = data['y'].cuda()
timestamp, external = None, None
if args.is_timestamp:
timestamp = data['timestamp'].cuda()
if args.is_external:
poi_data = data['external'].cuda()
with torch.no_grad():
if args.multi_task:
_,y_hat,y = engine.model(x,y,timestamp,poi_data)
else:
y_hat = engine.model(x,timestamp,poi_data)
outputs.append(y_hat)
realy.append(y)
realy = torch.cat(realy,dim=0)
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
amae = []
amape = []
armse = []
for i in range(args.out_len):
if args.multi_task: #in multitask wrapper, we have inversed transform the data
pred = yhat[:,:,:,i]
real = realy[:,:,:,i]
else:
pred = scaler.inverse_transform(yhat[:,:,:,i])
real = scaler.inverse_transform(realy[:,:,:,i])
metrics = util.metric(pred, real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over '+str(args.out_len)+' horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
torch.save(engine.model.state_dict(), args.save+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
print("Total time spent: {:.4f}".format(t2-t1))